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EXTENSION OF THE
HARDY-LITTLEWOOD-FEFFERMAN-STEIN
INEQUALITY

AKIHITO UCHIYAMA

We will show inequalities concerning the functions of the form
f*t"p(-/t)(x) defined on R"*! and give their applications to real
Hardy spaces. These inequalities can be regarded as weak extensions of
the Hardy-Littlewood-Fefferman-Stein inequality concerning harmonic
functions.

1. Introduction. In C. Fefferman and E. M. Stein [6] (p. 172 Lemma
2), (see also Hardy and Littlewood [8]), they showed

THEOREM 1.A. Let u(x) be a complex-valued harmonic function defined
on

B= {x = (xp,...,x,) € R ) x} < 1},
j=1

Let p > 0. Then
O < cf Ju(x) ax,
B
where C is a constant depending only on p and n.

Consequently, if u(x,t) is harmonic on R"*!= {(x,?): x € R",
t > 0} and if p > 0, then we have

(1.1) w@F s cf e[ fu(x, 0 a.

xl<t Y12
This inequality has some interesting applications to the theory of real
Hardy spaces. (See [6].)

In this paper we show analogous inequalities for functions of the form
f*t7"p(- /t)(x) defined on R;*', where fe U,_,_,,L”(R") is arbi-
trary and where ¢ € C(R") NNy, ., L”(R") satisfies certain condi-
tions. Our results have weaker forms than (1.1) but still they have some
interesting applications to real Hardy spaces.

First we prepare several definitions.
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Functions considered are complex-valued and measurable. Sets con-
sidered are measurable. D, denotes 9 /9¢. For a multi-index y = (vy,---,7,),
where v,,...,y, are nonnegative integers, D) and I(y) denote
oMt Tt /9xn .- 9x¥and v, + --- + v, respectively. For f € L*(R"),
Z f denotes its Fourier transform. For x = (x,,...,x,) € R", |x| denotes
(Zn_,x)% For (x,1) € R}*!, B(x,1t) denotes { y € R™ |x — y| < 1}.
(®),(x) denotes ¢t "p(x/t). For a real number a, [a] denotes its integral
part.

Fork € I} (R") and a > 0 let

Iila, = sup , it |B [ le(x) = P(x)lax,
where the supremum is taken over all balls B in R”, |B| denotes the
Lebesgue measure of B and where the infimum is taken over all polynomi-
als P(x) of degree < a. Let
AL(R") = (x € Ly (R"): ], < +00).
Let
#,(R") = {n € A,(R"): suppk € B(0,1), |k||a, < 1},

B.(R") = { k € A_(R"): there exists a sequence of functions

{k,}o C #,(R") such that

(1.2) c(x) = f 2-f(x,.)2,(x)},

B(R") = {x € B,(R): [ x(x)ax =0},
Rﬂ
BY(R") = {n € A, (R"): there exists a sequence of functions
{K;}7o C B2(R") such that (1.2) holds}.

ReMARK 1.1. Notice the following simple fact: if 0 < B < a and if
@ € B,(R") (or ¢ € B,(R")), then cp € By(R") (or cp € Hy(R")),
where ¢ is a positive constant depending only on «, 8 and n.

DEerFINITION 1.1. For @ > 0 and ¢ € A _(R") we say that ¢ satisfies
the condition (L.«) if the following three conditions hold:
(La.l) ¢ € BL(R"Y),
(L.a2) Fo(§)is(n + [a] + 2)-times differentiable except £ = 0 and
1-1(
IDrFe(8)|<lgl ", £#0,
foranyywithl < l(y) <n + [a] + 2,
(La.3) ZFo(0) # 0.
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DEeFINITION 1.2. For a > 0 and {¢;, ¢,,...,95} € A (R") we say
that the set of functions { ¢,, ,,...,¢p,} satisfies the condition (IL.«) if
the following three conditions hold:

(ILal) ¢, € BY(R"),i=1,2,...,N,
(IL.a2) Fo,(é)(i=1,2,...,N) are (n + [a] + 2)-times differentiable
except £ = 0 and

1-I(y)

ID}Fe,(8)|<lg ™", £#0,i=1,2,...,N,

forany y with0 < I(y) < n + [a] + 2,
(ILa.3) infyc gay(o) SUP,> o ZIs 1| F@i(16)| > 0.
For the sake of simplicity we put

(1.3) 8 = the left-hand side of (II.a.3).

ExaMPLE 1.1. Let

that is the Poisson kernel. Then c¢P(x,1) satisfies the condition (I.a) for
any a > 0 if ¢ (> 0) is small enough depending on a and n.

EXAMPLE 1.2. Let ¢ € #(R") and [z ¢(x) dx # 0. Then co satisfies
the condition (I.a) for any a > 0 if ¢ (> 0) is small enough depending
only on a and ¢.

EXAMPLE 1.3. Let N = 1 and ¢(x) = ¢D,P(x,1). Then { ¢} satisfies
the condition (IL.a) for any a > 0 if ¢ (> 0) is small enough depending on
a and n.

ExaMPLE 1.4. Let N = n and
¢(x) =cD P(x,1), i=12,..,n.

Then the set of functions { @, @,,...,¢,} satisfies the condition (II.«) for
any a > 0 if ¢ (> 0) is small enough depending on a and n.

ExaMPLE 1.5. Let ¢, @,,..., 9y € L(R"),
Fo,(0)=0, i=1,2,...,N,

and let (IL.a.3) hold. Then the set of functions { cg,,...,cp,} satisfies the
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condition (IL.a) for any « > 0 if ¢ (> 0) is small enough depending on a
and {@;,...,py}.

REMARK 1.2. The author learned the condition (II.a.3) from A.
Calder6n and Torchinsky [1], in which they investigated the area integrals
defined from the kernels that satisfy the conditions of Example 1.5.

Our first result is the following.

THEOREM 1.1. Let
(1.4) 0<B<a 0<e<l and 0<g<x<l.

Let ¢ € A (R") satisfy the condition (L.a). Let xk € #g(R") and f €
Ulsps +ooLp(Rn)- Then

(1.5) f f(x)r(x) dx
R"
1/q
* g 9d,n(g—1)—-1
= C(f‘/;R1+1 If (Q’)t()")l kp‘e(y,t) "4 dy dt ,
where
(1.6) kﬂ,e()’» t) = tB(l +y| + t)—n—li—1+s

and where C is a constant depending only on a, B, €, q, #¢(0) and n.

If ¢, a and B are as in Theorem 1.1, then it follows from Remark 1.1
that cp € %;(R") provided ¢ (> 0) is small enough. Thus substituting
k(x) = @(—x) into (1.5) we get

p 1/q
f *9(0)] < c( JL,. @)k t)"t"w-n-ldydt) :

Applying this inequality to the case of Example 1.1, i.e. (¢),(x) = P(x, t),
and putting

u(x,t) = (f*P(-,1))(x)

we get

p/q
Ill(D, 1)|P <C (f/ |u(y’ t)lq‘CB e(y9 t)qtn(q_l)_ldy dt)
R+1 ’

4 (g—1)—
= Cf,/l;inlu(y’ t)l kﬂ,e(ys t)qt (a=D ldydt
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for any B > 0, any q € (n/(n + B),1], any p € [¢q, + ©0) and any ¢ €
(0, 1), where C depends only on B, g, p, € and n. (The second inequality
follows from Holder’s inequality and from the fact that

f fkﬁ,e(y, "D dydr < + 00

provided g > n/(n + B).) This is the reason why we regard Theorem 1.1
as a weak extension of the inequality (1.1).

If we replace the condition (I.a) by the condition (II.a), then we have
the following.

THEOREM 1.2. Let (1.4) hold. Let { @, 9,,..., 05} C A (R") satisfy
the condition (IL.a). Let k € #g'(R")andf €U, _,_ , ,, L?(R"). Then

D) |f 1) as

1/q

N
<CY (ffkl I *(0) (D) kg y, ) 1" D ayar|
i=1 +

where kp  is defined by (1.6) and where C is a constant depending only on
a, 9, B, &, q, N and n. (For the definition of 8 recall (1.3).)

We prove Theorems 1.1 and 1.2 in §§4-6. In §§2 and 3 we give
applications of these theorems to real Hardy spaces. In §2 using Theorem
1.1 we give another proof of the estimate of grand maximal functions in
terms of radial maximal functions. In §3 using Theorems 1.1 and 1.2 and
using the ideas suggested by Robert Fefferman we give another proof of
the estimate of the Lusin S-functions in terms of the Littlewood-Paley
g-functions. Since we do not need harmonicity at all in Theorems 1.1 and
1.2, we can develop these arguments in general setting.

NortaTION. Forg > 0,f € L} (R") and x € R" let

M) = s (187 [ yl'w)

where the supremum is taken over all balls B (C R") that contain x. f(x)
denotes f(—x). For a measurable set E, x z(x) denotes the characteristic
function of E. For (x, s) € R"*! let

O(x,s)={(y,t) eR":0<rt<s,|x—y[<s)
Q'(x,s)={(y, 1) e R :5/2 <t <25, |x — y| < 5/2}
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and
Q"(x,s)={(y,1) ER"":3s/4 <t < 3s5/2, |x —y| < 5/6}.
The letter C denotes various positive constants.

Acknowledgment. The author would like to thank Professor Robert
Fefferman at the University of Chicago for very inspiring conversations to
whom the author owes the fundamental ideas in §3.

2. Grand maximal functions from radial maximal functions. In this
section we give an application of Theorem 1.1. Let @ > 0 and let ¢ satisfy
the condition (L.a). We fix . Forf€e U, _,_ . ,, L?(R") we define a radial
maximal function f; (x) by

fo(x) = sup |f * (@) (x)].
>
Forfe U LP?(R") and B > 0 we define a grand maximal function
Jg(x) by

l<p<+o

fF(x) = sup{|f * (k) ,(x)|: £ > 0, k € By(R")}.

As an application of Theorem 1.1 we get

THEOREM 2.1. Let 0 < B < a. Let @ satisfy the condition (1.a). Let
g>n/(n+ B),x €R"andf€VU,_,_,,L"(R"). Then

1 (x) < eM(f3)(x),
where C is a constant depending only on a, B, q, #p(0) and n.

Proof. We may assume x = 0. Let k € %p(R") and ¢ € (0,1). By
Theorem 1.1 we get

1/q
s O ¢ [ [ KOV hpulr 0 dya|

+ o0 1/q
=C fR"fi,?(y)"lflyf0 k,s,s(y,t)"t”“’“"ldt)

1/q

<l [ £+ dy) bygq >

< CM,(f})(0).
By the argument of dilation we get

If * (k) (0)] < CM,(£)(0)
for any ¢ > 0. Since k € %(R") is arbitrary, we have
12(0) < M (f;)(0). O

n
n+ B8
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As a consequence of Theorem 2.1, using the Hardy-Littlewood maxi-
mal theorem we get the following which was originally proved by C.
Fefferman and E. Stein [6].

COROLLARY 2.A. Let a,B and ¢ be as in Theorem 1.1. Let p >
n/(n+ B)andf €U, _, ., LP(R"). Then

“fﬁ*”u = C”f; ”LP’
where C is a constant depending only on a, B, p, #¢(0) and n.

REMARK 2.1. Theorem 2.1 had been proved by Uchiyama [13] in a
somewhat different method. (See also [12].) Theorem 2.1 for the case g is
the Poisson kernel had been proved by C. Fefferman and E. M. Stein [6]
p- 170 by using the inequality (1.1). The above proof of Theorem 2.1 is a
generalization of their argument.

3. S-functions from g-functions. The author owes the fundamental
idea in this section to Robert Fefferman.

For a> 0, r€ R, x € R" and for a continuous function u(y, t)
defined on R"*! let

G1) S @& =a [ fuy, ol dyar
T'(x,a)

and
+ 00

(3:2) So(w)(x) = [ [u(x, )’ Lat,
0

where

I'(x,a)={(y,t) € R |x — y| < at}.

Note that if u is harmonic, then Sy;(D,u)(x) and S,,(D, u)(x) are the
Littlewood-Paley g-functions and S, ;(D,u)(x) and S, (D, u)(x) are the
Lusin S-functions. Our concern is to get the estimates of S, ,(u) in terms
of S, ,(u).

First we explain the idea suggested by R. Fefferman, which is also
implicit in R. Fefferman and Stein [7], for the case when u is harmonic.
The following is crucial.

THEOREM 3.A. Let u(y,t) be a complex-valued harmonic function
defined on R"*'. Letr € R,q > 0,a > 0 and x € R". Then

S, (u)(x)* < cf0+°° M, (u(-, ) (x)20> i,

where C is a constant depending only on'r, q, a and n.
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Proof. We give a proof only for the case a = 1. We may assume
q < 2. Applying the inequality (1.1) with dilation we get that if (y, t) €
I'(x,1), then

ju(y, ' < cit [

B(y,1t)

3
dz [ |u(z, )| ds
t/2

3t/2
< Ct‘”“f dzf Y lu(z, s)|" ds
B(x,2t) t/2

< Cf,j;ﬂ M (u(-, 5))(x) "2

Thus
[ luly,ofetayar
T'(x,1)
+00 312 ds \ >/
2r—1 . a2
<[ dt(C/;/z M, (u(-, $))(x) s)
+ 3/2 ds 2/q
= 2r—1 . 9
[ dt(Cfl/z M, (u(-, st))(x) s)
e 2.2r-1
< Cfo M, (u(-, 1)) (x)’ > dr
by 2/q = 1 and by Minkowski’s inequality. O

COROLLARY 3.A. Let 0 < p < +o0. Let u, r and a be as in Theorem
3.A. Then

”Sa,r(u)“L’ =< C”S().r(u)"L”’

where C is a constant depending only on r, p, a and n.

Proof. Take q € (0, min( p,2)). By the continuous version of the
vector maximal theorem of C. Fefferman and Stein [5] we get

(3.3) {/;(fom M, (u(-, t))(x)thf—ldt)p/z dx}l/p

(a/p)/q
dx}

_ {fR (77 mlluCe )y e

+ 00 (a/2X(p/q)
< ([T e o e a) T as
R" \Y0

= Cl\So. ()| .-
Combining Theorem 3.A and the inequality (3.3) we get Corollary 3.A. O

)(4/2)(p/q)

}(q/p)/q
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The above clever idea to use the result of [5] is in R. Fefferman and
Stein [7].
COROLLARY 3.B. Let u, a and p be as in Corollary 3. A. Then

”Sa‘l(D:“)”u =< C”SOJ(DI“)”LP
and

S,1(D.u)|,, < C|Sos(D,u)

where C is a constant depending only on p, a and n.

i=1,...,n,

Lr = Le’

Since D,u and D, u are harmonic, Corollary 3.B is a direct conse-
quence of Corollary 3. A. Corollary 3.B means that the integrals of the pth
powers of g-functions dominate those of S-functions.

The argument we have explained so far was suggested by R. Feffer-
man. In the following part of this section, replacing the inequality (1.1) in
the above argument by Theorems 1.1 and 1.2, we extend the above results
to the functions of the form u(y, t) = f *(¢),(y), which are no longer
harmonic. We define

Sa. (f*(x):)(x)
by the formulae (3.1) and (3.2) with
u(y,1) = 1+(x).(3).

(Two dots : mean two variables y and ¢.) Our results are the following.

THEOREM 3.1. Let 0 < B <a and -1 <r <. Let ¢ satisfy the
condition (L.a). Let k € B4(R"), ¢>n/(n+ B—7r), a=20, f€
Ui<p<+wL?(R") and x € R". Then

+ 00
(34) S, (f()F < Cf 7 Mf (o) (NG,
where C is a constant depending only on a, F¢(0), B, r, q, a and n.

COROLLARY 3.1. Let o, B, 7, @, k, a and f be as in Theorem 3.1. Let
pE€(n/(n+ B —r),+x). Then

"Sa.r(f*("):)”LP < C”SO.r(f*((P):)"L”’
where C is a constant depending only on a, #¢(0), B8, r, p, a and n.

COROLLARY 3.2. Let 1 < B < a. Let ¢, k and a be as in Theorem 3.1.
Letp € (n/(n+ B — 1), +00)andlet f € S(R"). Then

Soa(D, (£ *(x)2)],, = C||Son( D (£ *()2)

where C is a constant depending only on a, #¢(0), B8, p, a and n.

e i=1,...,n,
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ReMARK 3.1. By Remark 1.1 we can substitute k = ¢ in the above
three results.

REMARK 3.2. If r > -1 and if u(y, ¢) is a harmonic function defined
by f* P(-,t)(y) with fe U, _, ., L?(R"), then Theorem 3.A follows
from Theorem 3.1 by substituting

¢(x) = k(x) = P(x,1)
and by taking a and B so that max(0,r,r — n + n/q) < B < a, where
P(x, t) is the Poisson kernel in Example 1.1. Similarly, if » > -1 and if
u(y,t) =f*P(-,t)(y) with feU,_,_,,LP(R"), then Corollary 3.A
follows from Corollary 3.1. If u(y,t) = f * P(-, t)(y) with f € #(R"),
then the latter half of Corollary 3.B follows from Corollary 3.2.

THEOREM 3.2. Let 0 < B < aand -1 <r < B. Let { ¢;,...,py} satisfy
the condition (Il.a). Let k € B3'(R"), g>n/(n+B—r), a=0, fe
Ui<p<+0L?(R") and x € R". Then

(35) S, (f*(x):)(x)" < Cg fo+°° M(f*(9,),(-))(x)2e>1at,

where C is a constant depending only on a, 9, B, r, q, a, N and n. ( For the
definition of & recall (1.3).)

COROLLARY 3.3. Let a, B, 7, { ¢y,...,9n}, K, a and f be as in Theorem
32.Letp € (n/(n+ B —r), +0o0). Then

N
IS, (f % ()Mo < C X IS0, (f % (@) ) rs
i=1
where C is a constant depending only on a, 8, B, r, p, a, N and n.

COROLLARY 34. Let a > 0. Let {@,,...,py} satisfy the condition
(ILa). Let f €U, _,c 1 o L?(R"). Let p € (n/(n + @), +o0). Then

N

(3.6) Il < € 22 (1So0(f * () )l s
i=1

where C is a constant depending only on a, 8, p, N and n.

REMARK 3.3. In Corollary 3.4 || f|| ;» means

([ s 1 PG00 a

>0

1/p

There are several characterizations of H?( R"). See [6] and [2] for details.
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REMARK 34. If {¢;,...,9y} is as in Example 1.3 or 1.4, if fis as in
Corollary 3.4 and if p € (0,+00), then the inequality (3.6) had been
shown by [6] p. 172 Remark.

REMARK 3.5. If { ¢;,...,9y} is as in Example 1.5, p € (0, + c0) and if
f € HP(R"), then the inequality

N
Ifller < 2 1S10(f *(@):) 10
i=1
had been shown by Calder6n and Torchinsky [1] and the inequality (3.6)
had been shown by [14].

REMARK 3.6. The converse inequality of (3.6) (with another constant
C > 0) is known to hold for p € (n/(n + a), +©). Let #=
L3, (0, + ). Let T be the operator that assigns (p,), * f(x) € L*(R", )
to f € L>(R"). If p € (1, + o0), then the argument of Hilbert space valued
singular integral operators ([9] p. 83) gives || Tf || Lo rn¢y < CIf Il Lo (7
provided f € L>(R") N LP(R"). If p € (n/(n + «),1], then it is easy to
show that ||Tf|| .o g, ) < CIIf || g»(r») Provided f is a p-atom. (For the
definition of p-atoms see [2].) The converse inequality of (3.6) follows
from the above two inequalities and Fatou’s lemma.

From now we prove the above results. For the proof of Theorem 3.1
we need the following.

LEMMA 31. Let0 < B<a,0<e<landn/(n+B+1—-¢)<g=<
1. Let @, k and f be as in Theorem 3.1. Then

BN [ fx)e(x) dx

< o[ M@ (DO Ry ) L],
where
(3.8) hB,q,s(t) = th+nq—n(1 + t)(—-n—B—1+s)q+n

and where C is a constant depending only on a, #¢(0), B, ¢, q and n.

Proof. By Theorem 1.1 it is enough to show that the right-hand side of
(1.5) is bounded by the right-hand side of (3.7).
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Since kg (y,?) in (1.6) is radial and decreasing as a function of y
variable for each fixed # > 0, we get

@) s (3, 1) "y

< M(£*(9) (O [ kg (. 1) dy

< CM(---)(0)*Pa(1 + r) ATt Tetn

= CM,(---)(0) 't h, . (1).
Hence the right-hand side of (1.5) is bounded by the right-hand side of
3.7. a

Proof of Theorem 3.1. We may assume x = 0 and ¢ < 1. First we give
a proof for the case a = 0. Applying Lemma 3.1 with ¢ € (0, min(1,1 + r))

and with dilation we get
+ oo
0

So (f2(0))OF = [ If *(x), ()] > 1dr

<cf T a7 M0N0 ) £)

2/q

< ([ hpo ) E( [T M@ DO )

by Minkowski’s inequality

= e st ) [T M @O
Since

+ 00 1
j(; hg o (s)s77 lds < + 0

byg>n/(n+ B —r)and by e <1+ r, we get (3.4) for the case a = 0
and x = 0.
Next we show the case a > 0. Put 7,k(y) = k(y + z). Then

(39 S (oW =a7f S (f+(nx):)(0) de.

If z € B(0, a) and if ¢ > 0 is small enough depending on a, B and », then
c7,k € Bg(R"). Thus by the result of the case a = 0 we get

(3110 S, (£ +(n0))0) = €[ M, (7 +(9) (O a.

Substituting (3.10) into (3.9) we get (3.4) for thecasea > 0and x = 0. O
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The way Corollary 3.1 follows from Theorem 3.1 is the same with the
way Corollary 3.A followed from Theorem 3.A. Corollary 3.2 is obtained
by applying Corollary 3.1 not to the function f but to the function D, f.

For the proof of Theorem 3.2 we need the following Lemma 3.2,
which can be proved in exactly the same way with Lemma 3.1 just by
replacing Theorem 1.1 by Theorem 1.2. We omit the proof.

LEMMA 32. Let 0 < B<a,0<e<landn/(n+B+1—-¢)<g<
1. Let {@,,..., 9y}, k and f be as in Theorem 3.2. Then
dr\"

[ 1) a5 € X ([ 0,040,000 4]

where hy . is defined by (3.8) and where C is a constant depending only on
a, 8, B,¢ q, N andn.

The way Theorem 3.2 follows from Lemma 3.2 is the same with the
way Theorem 3.1 followed from Lemma 3.1. The way Corollary 3.3
follows from Theorem 3.2 is the same with the way Corollary 3.A followed
from Theorem 3.A.

Proof of Corollary 3.4. Put
k(x) = D,P(x,1),
where P(x, t) is the Poisson kernel. By the result of [6] we have
”Sa,()(f*("):)”L” ="Sa,1(Dt(f* P(” )))”1" = C”f"H"-

(Recall Remark 3.4.) Thus, putting r = 0, taking 8 € (max(0, n/p — n), a)
and applying Corollary 3.3 to the above k we get (3.6). a

4. Proof of Theorem 1.2.

LEMMA 4.1. Let 0 < B <a and 0 <e <1. Let {@(x),...,pN(x)}
satisfy the condition (Il.a). Let k € BJ'(R"). Let 0 < a < C,;. Let §C
R”*! be a measurable set that satisfies

n+1
(4.1) '['/;’(\Q"(x,s) dydt < as

for any (x, s) € R"*L. Then, there exist measurable functions k,(y, t),. ..,
kn(y, t) defined on R"** such that

(4.2) ke, (y,1)| < Caskg(y,1), i=1,...,N,
for any (y, t) € R"*! and that

(4.3) f(x)= [ [ T @)lr - 0kin 0 &
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for any x € R", where kg, is defined by (1.6) and where C,, and C,, are
positive constants depending only on a, B, &, 8, N and n. ( For the definition
of Q”(x, s) and 8 see §1.)

Since the proof of Lemma 4.1 is lengthy, we postpone it to §5.
Accepting Lemma 4.1 temporarily we prove Theorem 1.2. For (x, s)
€ R"*!let

wi) = [ [ (3 yete o) wa)

i=1
Let A > 1 and let

@0) €= {(xs) <R X o)) > ).

Let(y, t) € Q"(x, s). Since Q'(y, t) D Q”(x, s), we have

(4.5) Wq()’,t)qZ(—)" - lff, (Zlf (9:)., (z)|) dz du.

Therefore

/fgnQ (% 5) dy dt <ff Z'f (@), (D)) 47 w,(p, 1) dy dt

by the definition of &
< (3/2)"*!s"* 41 by (4.5).
So, the set & defined by (4.4) satisfies (4.1) with
(4.6) a=(3/2)""4"
Let A > 1 be so large that (4.6) < C,,. Applying Lemma 4.1 with
(4.6) and (4.4) gives k,(y, t),...,ky(y, t) that satisfy (4.2) and (4.3). Thus

S FGx(x) ax

"(x,s)

(4.7)

=|fRnf<X>dxf [ X -x)k,-<y,z)dy%| by (4.3)

=lfL };,f*(%),(y)k.-(y,t)dy%l byse U LA(R")

l<p<+o

dt
1/q9 at
S»[./I‘21+1A Wq(y, t)Ckﬁ,e(y7 t) dy P

by (4.2) and by the definition of &.
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Putw = n"Y2 For(y,t) € R"*!let
Sy, 1) = {(jrse- v i) € Z" 1 1/2 < 27 < 21, |y — 020 < 2771},

where Z is the set of all integers and wherej = (ji,...,J,) € Z”". Note that

oy, U 0(e2j,2)

(U, DESy,

and that if (j, i) € S(y, t), then
ckg (y,1) < kﬁ,e(w2"j,2") < Ckg (y,1).
So

(4'8) Wq(y, t)kﬂ,s(y’ t) <C Z wq(wzy’ zi)kﬂ,s(wzf]" 21)
U,NES(y, 1)

Note that
dt .
(4.9) dy— < C2™
f j;(y’t)ER1+1: Sy, t)B(wZ'j,Z')}
for any (j, i) € Z"*! and that
(4.10) 2 XQ'(w2),2) <C.
U,nez L=

Therefore,

s i is i dt
(4.7) < CAl/qff Y ow(025,2)k, (025,2) dy T

R (j,)eS(y,0)
by (4.8)
<cAYr Y w(w2),2)k, (02,27)2" byg<1

G.ezr

q
(,hez"!

1/q
sCAV"( Y w(---)qkp’g('--)qZ‘"") by (4.9)

N q 1/q
< CAV"(ffRM ( X If*(<p,~),(Y)|) kp,s(y,t)"t”"t‘""‘dydt)
+ i=1

by (4.10)
which implies Theorem 1.2.
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5. Proof of Lemma 4.1.

LEMMA 5.1. Let a > 0 and let £C R"*! be a measurable set that
satisfies (4.1) for any (x, s) € R"*'. Let b > 1 and let K(y, t) be a positive
measurable function defined on R"*! such that
(5.1) K(y,t) < bK(x,s)
for any (x, s) € R"*Yand any (y,t) € Q'(x, s). Let t, > 0. Let

T=0(0,12) or R*'\Q(0,2,) or Q(0,2,)\ Q(0, t,).
Then

anTK(y,t)dydtsCbaffTK(y,t)dydt,

where C is a constant depending only on n.

Proof. Let {(y,,t,)}2, € R"*! be maximal with respect to the prop-
erties

(yot;)ET and |y, —yl+|,—1]=001(s, +¢;) ifi+].

Then geometric observation gives

o0
(5.2) TcUQ"(yt),
i=1
(5.3) dydt < C dy dt
f fQ”(y.,t.) / anQ"(yi,t,-)
and
o0
(5.4) Y X =G
i=1 L>

where the constant C in (5.3)—(5.4) depends only on n. Then

anTK(y,t)dydt

<y [/ K(y,t) dydt by(5.2)
i=1 ENTNQ"(y;s t;)

stfo dydt  inf  K(x,s) by(5.1)
{nTnQ”(yivti) (x!s)EQ”(ynti)

< CbaZf[T K(y,t)dydt by (4.1)and (5.3)

nQ”"(y,»t)

< Cbaff K(y,1)dydt by (5.4),
T

which implies the desired result. a
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We can extend Lemma 5.1 to more general 7, but we do not need it
in the sequel.

LEMMA 52. Let 0 < B <a and 0 <& <e<1. Let a> 0 and let
& C R"*1 be a measurable set that satisfies (4.1) for any (x, s) € R"*1, Let
(y,t) € R"*. Then

-n —-x t ds
(55) [ [halx o) ko T 5 ) a5 < Caky (3.1),

where kg , is defined by (1.6) and where C is a constant depending only on
a, B, e, € andn.

Proof. Put
u(y, t) = the left-hand side of (5.5)

= tﬂf f Sﬁ"s'(l +l_x| + S)—"—-B—1+s(|y _ xl +14 s)—n—a-1+g’dxds.
&
If (y, 1) € Q(0,1), then
)2 [ Al )
€N 0(0,2)
v e
&N Q(0,2)°
<cCacf [ By - xl+r+s)" T dxds
00,2)

+Cat"ff 1 sB=(|x| + s)_znﬁz_a_ﬁﬂﬂ’dxds
RTTINQ(0,2)

by Lemma 5.1

2 , o — ’
sCat"‘f sBe(t+5) 7 ds
0

+ 00 Y ¢
+Cataf sB—-e(l + s)-n 2—a—B+e+ ds
0

< Cat® byB<a.
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If (», t) & O(0,1) and if # > |p|, then

u(y,t) < t"‘ff sBE(1 + x|+ )R T a1 gy g
&N Q(0,21)

+Ct"‘ff sB=(|x| + 5) 2" B ax ds

€N Q(0,21)¢

, [2t , _g—
< Cat-"-“ff sB=¢(1 + 5) P10 ds
0
a too B—¢ -n—2—a—B+e+¢e

+Catf sP7¥(t + 5) ds by Lemma 5.1

0

< Cat™" ** bye <e.
If (y,t) € Q(0,1) and if t < | y|, then

u(y,t) < Ct"ff sB=(1 +|x| + s)’"—ﬁ—lﬂlyrn‘a_lﬂ,dx ds
CENQO, 1yl/2)

+Ctaf/ sB-—s’|y|—n—B—1+e
&N(Q(0,2]yD\Q(O; |¥1/2))

X(ly — x|+ ¢+ s)_"_a_lﬂ,dxds
+Ct°‘ff s (|x| + 5) 2" 2T dx ds
N Q(0,2]yD°
4 2 ’ -_— _
< Cat"‘lyl"""““"‘flyv A1+ 5) P s
0

2')" , —a— 4
+Cat"‘|y|""'ﬂ"”"f B (t 4+ 5) " ds
0

)—n—2——a—B+s+s’

+o0
+ Cat"‘f sB=¢(ly| + s ds by Lemma 5.1
0 .

-n—B—1+¢

< Catf)y| byB <aandé <e.

Thus in all cases we get u(y, t) < Cakg (y, ). O

LEMMA 5.3. Let a > 0. Let {@,,...,py} satisfy the condition (Il.a).
Then there exist Y, ..,y € L*(R") N C*(R™) such that

+0 N dt
(5:6) [ L Fe)Fy.)T =1
0 i=1
for any § # 0,
(5.7) suppFy, 20, i=1,...,N,
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and that
(5.8) DX (x)| < c(1 +]x)™" ™72, i=1,...,N,

for any multi-index y with I(y) < 1, where C is a constant depending only on
a,8, N and n.

Proof. Let € € (0,1). Let § € C*~(0, + o0) be a nonnegative function
such that (¢z) = 1 if # € (¢,1/¢) and that supp 8 C (¢/2,2/¢). By (1L.a.1)
and (IL.a.2) we have |F,(§)| < min(|£], C|§|"%) and |D}Fo(§)| <1 if
I(vy) = 1. Hence if ¢ > 0 is small enough dependmg on a, 8, N and n, then

o 1f Z EXCIN 0(:) L s Capnn> 0.

For this small ¢ take v,bl,. ..,¥y € L*(R") so that
-1

(gfloe]”

i=1,...,N.
(This is due to [1].) Then (5.6)—(5.7) are easy. (5.8) follows from (Il.«.2). O

FY,(£) =F. ()6 lsl){ f Z

REMARK 5.1. Similarly we can show that if ¢ satisfies (I.«), then there
exists Y € L2(R™) N C*(R") satisfying

, + o0 dt
(5.6) fo Fo(1§) Fp(t5) =1 forany£ +0,
(5.7) supp F¢ ? 0
and

(5.8) |D(x)|< (1 +|x])"? foranyywith/(y) <1,
where C is a constant depending only on a, #¢(0) and n.

LEMMA 5.4. Let a > 0. Let ¢ € L*(R™) N C®°(R") satisfy (5.7)" and
(58)” DA (x) < (1 +[xl)" 72

Then, there exists a sequence of functions {v;}?2, C L*(R") such that

for any y with I(y) < 1.

59 $x) = X 270920 (x),
(5.10) supp v; € B(0,1),

(5.11) lodl- < €
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and
(5.12) _/v,-(x)dex =0

for any multi-index y with I(v) < [a] + 1, where C is a constant depending
only on o and n.

Proof. Let h € £ (R") be a nonnegative function such that
supph € B(0,1)\ B(0,1/4)
and that
Y h(27x) =1 if|x|>1.
j=1

Let {m(x)} f‘=1 be an orthonormal basis for the Hilbert space of poly-
nomials of degree < [a] + 1 with norm

1PI={f PCoraCe ax]

Put
V(x) = (1 - f h(z-fx>)¢(x) " gh(z-fxw(x)
— By(x) + 55 6,(x)
and

L) =27F [ % 0,0)m@) dya @) ).

j=1" k=i+1

Note that by (5.8)” and by deg 7, < [a] + 1 the above integrands are
integrable and that

(5.13) Il = < €277,
Put

Y= 20i=(00+§0)+ E (0i—§i—1+§i)
i=1

i=0

o0
=y, + ), 271D (y)),.

i=1
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Then (5.10) is clear. (5.11) follows from (5.8)" and (5.13). Since {¥X%_,. 0,
— {;}32, are orthogonal to all the polynomials of degree < [a] + 1, (5.12)
for i > 1 is easy. Since [ Y(x)xY = 0 for any y with /(y) < [a] + 1 by
(5.7)" and (5.8)", (5.12) holds for the case i = 0, too. O

REMARK 5.2. In a similar way with Lemma 5.4 we can show that if
B >0,k € B(R") and if [ k(x)dx =0, then cx € Bg'(R") with ¢ > 0
small enough depending only on 8 and n.

LEMMA 5.5. Let0 < v < [a] + 1 and let 0 < e < 1. Let € L%(R") N
C*(R") satisfy (5.7) and (5.8)". Let k € B%(R"). Then

(5.14) le*(¥),(¥) < Ck, (v, 1),
where k, , is defined by (1.6) and where the constant C depends only on

V,e

a, v, eandn.

Proof. First we assume
(5.15) k€ B°(R").
Lemma 5.4 gives { v,(x)}2, that satisfy (5.9)—(5.12). Thus

(5.16) li*(9),(y)] < i 271D [y~ x)(0,)(x)

< i::o 2-M@+D it f lk(y — x) = P(x)]|(v,)5,(x)]dx

by (5.12)
< Y 27D (2i)” < Cr”.
If (y, t) & Q(0,2), then
5:17) e () =| [ {0 = 1) (@)} x(x)
by / k=0

<C sup |[(¥).(y—x)-(¥).(»)

x€B(0,1)
< Y1 +yl/) 7T by (5.8)”

Since [a] + 1 > », (5.16) and (5.17) imply

(5.18) lex(¥).(y)] < Ck,o(y, 1)
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Next we remove the restriction (5.15). Let k € ZY(R"). By its
definition « can be decomposed into the sum X%_,27/(«;),s with k; €
2)(R™). Applying (5.18) with dilation to each k; gives

(5.19) [279(x;),, *(¥)(y)| < C27* Dk, (v /27, 1/27)

-n—v—1

= Ct’(27 +|y| + ¢)
Summing up (5.19) with respect toj gives (5.14). O

LEMMA 5.6. Let 0 < B <a and 0 <& <e<1. Let {@y,...,py}
satisfy (ILa). Let ¥y,...,¥y € L*(R") N C=(R") satisfy (5.6)~(5.8). Let
K € Bg'(R"). Let a > 0 and let & C R’;*" be a measurable set that satisfies
(4.1) for any (x, s) € R"**. Let

(5-20) ki,j(y’ t) = ‘i’i*(‘pj)t(J’)a

(5-21) k}(y’t) = "*(‘Li)t(y)

and

(5.22) k’”(y,t)—ff Zk'" '(x,5)s™"k;, ( )d s

wherei, j € {1,...,N},m € {2,3,4,...} and (y,t) € R"*'. Then

(5.23) ki (3, D) < Chy o3, 0),
624 e(0=f] Z(qo, (z = Xk, ,(2.5) d= 2,

(5.25) k"(y, 1) < €(Ca)™ 'k o (p, 1)

and

626 x0=[[ T (o)r- 0Lk T

b4

2

[ X (@) =0k &7

for any i, jE€(1,...,N}, any m€ {1,2,3,...}, any x € R" and any
(y,t) € R, where k, , and kg, are defined by (1.6) and where C is a
constant depending only on a, B, €, €', 8, N and n.
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(5.23) follows directly from Lemma 5.5 (with » = a). (5.24) follows
from (5.6).

Proof of (5.25). We prove this by induction with respect to m. The
case m = 1 is clear from Lemma 5.5 (with » = B8). Suppose that (5.25)
holds for some m. Then

y—xt
K ( s ’S)

N
|k;"+1(y,t)lsf/;jglikj’-"(x,sﬂs'"
sffgC(Ca)m_lkﬁ’e(x,s)s"’kaysf(y—

A

d)cé
s

ot

by (5.23) and by the hypothesis of induction
< (Ca)"kg (y,t) byLemma5.2.

Thus the induction is completed. a

Proof of (5.26). We prove this by induction with respect to m. The
case m = 1 is clear from (5.6). Suppose that (5.26) holds for some m. Note
that applying translation and dilation to (5.24) gives

oy =0 = [ [ (o) (e =0, (52, 8) s,

t N

Thus, the second term on the right-hand side of (5.26)
al N dr
=/ fg (@) (y = x)k(y. 1) dy—
i=1

ud d
=fLi§1k?(y,t) dyTt

X'/"II;"“ % (qJJ)S(Z - x)t_nki,f(z ;y’ j) dzfl£

j=1 §
). L
< [ Erroorn (S ) o

(9,) (z —x) dz%

2 \Mz

t

2

—f./;g,.ﬂ Z’ ((p/ (Z_x)kmﬂ(z S) dz—

j=1
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Substituting this into (5.26) gives

wx)=[ [ E(@)r- x)ékf(y’ 0
2 (9).(y - x)ki”'”(y")dy%{

+f ]
R =y

[ [ £ @)=

N

m+1

dt
2 ki(y, 1) dyT
=1

N
dt
_ m+1 hatdl
+[ [ Z @)y -0k (00 &7
Thus the induction is completed. O

Proof of Lemma 4.1. The assumptions in Lemma 4.1 give a, B, ¢,
{®1---,®Pn}, K, a and &. Lemma 5.3 gives {{,...,¥5}. Take &' € (0, ¢).
Then, applying Lemma 5.6 to these gives us {K"(y, )},=1.2.3, .i=1... N
that satisfy (5.25)—(5.26). If C,, in Lemma 4.1 is small enough, then by
(5.25) ¥2_,k"(y, t) converges everywhere. Put

0

ki(y, 1) = X k"(y,1).
m=1
Then (4.2) follows from (5.25). Since the second term on the right-hand
side of (5.26) goes to zero by (5.25), (4.3) follows from (5.26).

6. Proof of Theorem 1.1. The proof of Theorem 1.1 is very similar to
the proof of Theorem 1.2. All we need is the following Lemma 6.1, which
corresponds to Lemma 4.1. The way Theorem 1.1 follows from Lemma
6.1 is exactly the same with the way Theorem 1.2 followed from Lemma
4.1. We do not repeat this argument.

LEMMA 6.1. Let 0 < B < a and 0 < & < 1. Let o satisfy the condition
(I.a). Let k € B4(R"). Let 0 < a < Cy,. Let §C R',*' be a measurable set
that satisfies (4.1) for any (x, s) € R"*'. Then there exists a measurable
function k(y, t) defined on R"*' such that

(6.1) |k(y, )| < C6.2kﬂ,e(ya 1)
for any (y, t) € R"*! and that

(6.2) k(x) =fL (@):(y = x)k(y, 1) dyg,i
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for any x € R", where kg, is defined by (1.6) and where Cg, and C;, are
positive constants depending only on a, F¢(0), B, € and n.

Proof. By Remark 5.1 we get ¢ that satisfies (5.6)'—(5.8)’. Take

e € (0,¢).
Put
dt
L= Y
fo'(o,l)dy !
0) =L [ (o)(y-x) %
0'0.1) !
and
k(y,t)=(9 - 0)*(’}’):()’) + L—IXQ’(O,I)(y, 1).
Since

j $(x)—0(x)dx =0

and since c(¢ — 0) € #.(R") with ¢ > 0 small enough, Remark 5.2
implies that c(¢ — 0) € #Y(R") if ¢ > 0 is small enough. Applying
Lemma 5.5 (with » = a) gives

(= 8)* (). ()| < Cky (3, 1).
So,

(6.3) le(y, )| < Cky o(y, 1)
By (5.6)" and by the definition of 8 we get

69 [ @ - 0k 08T
= ($(x) ~ 8(x)) + 0(x) = p(-x).

Similarly put
-1, 1 dt
1(x) = Fx@FO L [ (@) -0 dT

and

KNy, 1) = (k = n)*($) () + Fx(0) Fo(0) "L x 0,1y (1 1)-

Since

f k(x)—n(x)dx=0
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and since c(x — 1) € B(R") with ¢ > 0 small enough (recall Remark
1.1), Remark 5.2 implies that c(x — 1) € B5'(R") if ¢ > 0 is small
enough. Applying Lemma 5.5 (with » = ) gives

(e = m)*(§).(»)| < Chp (7, 1)
Thus

(6.5) |k'(y, 1) < Ckg (3, 1).

By (5.6)’ and by the definition of n we get
dt
- 1 =
(6.6) J Joor @)y =0 &7
= (k(x) = n(x)) +n(x) = x(x).

(6.3) and (6.4) correspond to (5.23) and (5.24). (6.5) and (6.6) corre-
spond to (5.25) and (5.26) of the case m = 1. Then, the rest is the same
with the preceding section.

Inductively we define

k™ (y, 1) =kam"l(x,s)s‘”k(X;—)c—, f) dx

for m = 2,3,4,..., which corresponds to (5.22). Then by the same argu-
ment with the preceding section we get

ds

s

67) (3, 0)] < €(Ca)™ iy (3,1)
and
68 k=[] @0 0T8T

dt
+ffg(q>),(y = x)k"(y, 1) dy—
which correspond to (5.25)—(5.26). Put
k(y,t)= X k™(y,1).
m=1

If C,, is small enough, then by (6.7) this converges everywhere and
satisfies (6.1). Letting m — oo in (6.8) gives (6.2). O
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