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ALTERNATIVE ALGEBRAS HAVING SCALAR
INVOLUTIONS

R. A. KϋNZE AND S. SCHEINBERG

An involution of an algebra over a field of characteristic different
from two is called scalar if the sum of each element and its involute is a
scalar (multiple of the unit). Certain algebras having scalar involutions
have played an important role in the construction of metaplectic repre-
sentations and the applications of that theory to problems in number
theory and automorphic forms. They also arise in an analytic context
related to homomorphic discrete series and in questions about invariants
of classical groups. This paper deals with determining the structure of the
most general algebras having scalar involutions.

1. Non-singular subalgebras and the radical.
1.1. Singular composition algebras. We shall classify all algebras,

including the infinite-dimensional ones, that admit a particularly restric-
tive type of involution. By "algebra" we mean an alternative algebra A
with unit 1 over a commutative field F of characteristic different from 2.
An ^-linear involution a -> a' of A is called scalar if a + a' e F\ for
every a ^ A. This is equivalent to the condition: a = a' precisely for
a e Fl. It is also equivalent to the condition: aa' ^ Fl for all a e A; a
is invertible if and only if aa' Φ 0, in which case a'1 = {aa')~ιa\ We
normally abuse the notation to the extent of identifying F\ with F. With
this convention, the formula

(1) (a\b) - HaV + ba')

a —> a' being a scalar involution, defines a symmetric bilinear form an A
which satisfies the law of composition

(2) (ab\ab) = (a\a)(b\b).

In [7], Jacobson defines a composition algebra as an algebra with
scalar involution for which the associated form (1) is nondegenerate. We
shall call such algebras non-singular composition algebras. Their structure
has been the subject of many investigations, e.g., [1], [2], [6], [9], and is
well known. They are necessarily semisimple and finite dimensional, in
fact, of diffeomorphism 1, 2, 4 or 8 over the ground field. Here we drop
the nondegeneracy condition and study the possibly singular case, i.e.,
arbitrary algebras with scalar involutions.
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Some comments on our assumptions are in order. The classical

Hurwitz problem was to determine all finite dimensional algebras (not

necessarily alternative) with a non-singular symmetric form satisfying (2).

Such an algebra is necessarily alternative and is in fact a non-singular

composition algebra as defined above. In [8] Kaplansky proved that there

are no infinite dimensional algebias, alternative or not, with non-singular

symmetric forms admitting composition. If one drops the non-singularity

assumption in the context considered by Kaplansky, it cannot be con-

cluded that the algebra is alternative. We have constructed a non-alterna-

tive algebra of infinite dimension with a non-zero singular quadratic form

that satisfies (2).

In contrast to the non-singular case, the more general composition

algebras that we study need not be semisimple and may well have a

radical of infinite dimension, the radical being the union of all 2-sided

nilpotent ideals. The radical may also be characterized as the radical of

the associated form and also as the orthogonal complement of any

maximal non-singular subalgebra.

THEOREM 1.2. Let A be an algebra with scalar involution, R the radical

of the associated form, and B a maximal non-singular subalgebra of A. Then

B± = A1- = R, A = B Θ R a vector space direct sum, R is a 2-sided ideal

of skew-symmetric elements of A and B is isomorphic to A/R.

Proof. Much of the proof can be lifted from [7, Chap. IV, Sect. 3] and

will only be sketched.

Standard arguments show that the form (1.1.1) associated with A is

such that

(1) (a\b) = {b'\a')

(2) (ab\c) = {b\a'c) = (b\ca')

(3) (ac\bc) = (a\b)(c\c)

for all a, b, c in A. Since B is finite dimensional, A = ί Φ i i where

(4) Bx = {c<=A: bc + d>'= 0 for all 6 e 5 } .

Taking b = 1 in (4), one sees that B x is a linear space of skew-symmetric

elements. By (2)

(5) BB±QB±.

If there is no non-isotropic vector in Bx , then the form is trivial on Bx ,

and this implies B± = Ax= R. On the contrary, assume Bx contains a
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non-isotropic vector c. Then by (5), Be c B1. Hence, B + Be = B Θ Be.
By (3)

(ac\bc)~(a\b)(c\c)

for all α, Z> in B. Because the form is non-singular on 5, it follows that Be
is a non-isotropic subspace of B x of the same dimension as B. At this
point, more complicated arguments in [7] which involve the alternative
assumption and the Moufang identities imply that B Θ Be is a non-singu-
lar subalgebra of A and that B is necessarily associative. But since B is
already maximal, it follows that every element of Bx is isotropic and
hence that B± = Ax = R. Now (2) and the observation after (4) imply
that R is a 2-sided ideal of skew-symmetric elements. Hence, A/R is
again an algebra with scalar involution, and from the decomposition
A = B Θ R it follows that B and A/R are isomorphic as algebras with
scalar involutions.

Next we turn to the problem of showing that the geometric radical R
in (1.2) is the radical of the algebra.

THEOREM 1.3. If A is an algebra with scalar involution, then the radical
of the associated form is the union of the nilpotent ideals of A.

Proof. Let A be an algebra with scalar involution and R = A ̂  . Then
for r in /?, r' = -r, and

(1) ar = ra'

for all a e A. In particular, for all r e R

(2) r 2 = 0.

Consider a nilpotent element b; b is not invertible; therefore bbf =
b'b = 0. Thus, b2 = (b + b')b, and by induction bn = (b + b')n~ιb.
Since />" = 0 for large w, and b + V e Fl, we conclude that 6 + V = 0
for nilpotent b. Now if every element of a left ideal Ab is nilpotent, then
for every a we have 0 = ab + (#6)' = ab + b'af = ab — baf. That is,
2(α 16) = a// + ba' = -ab + ba' = 0. Therefore, b^A±=R.ln partic-
ular, if Ab is a nilpotent left ideal, Ab c i?. It follows that R contains the
union of all nilpotent (left) ideals of A.

Next we observe, as in [7], that the alternative law and a + ar e F l
imply a(a'b) = (a \ a)b. Thus, by linearization,

(3) a(cfb) + c{afb) = 2(a\c)b = (ba)c' +(bc)a'

for all a, b,c in A.
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Now suppose c e R. Then c' = —c and (3) implies (be)a' = (ba)c
for all a, b in A. Because be e i?, it follows from (1) that

(4) fl(6c) = (ba)c

for all #, b in A. Hence, Ac is a left (and automatically right) ideal in A.
Moreover, by (4), the alternative law, and (2), (ac)(bc) = (b(ac))c =
((ab)c)c = (ab)c2 = 0 for arbitrary a, b in A. Thus, (Ac)2 = 0 and R is
the union of the nilpotent ideals of A.

COROLLARY 1.4. For each r e R , Ar is a 2-sided ideal in A such that
(Ar)2 = 0.

The results obtained and used in the proof of (1.3) may be extended
to show that the radical R is itself a nilpotent ideal; in fact, R4 = 0. But
the exponent 4 is best possible only when A/R = Fl and A is not
associative. For example, R = 0, at the opposite extreme, when
dim(A/R) = 8. In qualitative terms, the exponent required to annihilate
R decreases as the dimension of A/R increases. The precise result is the
following:

THEOREM 1.5. Let A be an algebra with scalar involution and R the
radical of A. The dimension of A/R is 2n where 0 < n < 3. For this n,
R4n = {0}. In the case that A is associative, 0 < n < 2, and R3~" = {0}.

To prove this it is convenient to proceed in relatively easy stages with
some preparatory results.

LEMMA 1.6. Let B be a subalgebra of A and c an element of A
orthogonal to B. Then B is orthogonal to Be, B + Be is a subalgebra of A
and multiplication in B + Be is such that

bι(b2c) = (b2bι)c

(bλc)(b2c) = c2{b'2bλ)

for all bv b2 in B.

Proof. This follows from (1.3.3), the alternative law, and the Moufang
identities just as in the non-singular case [7].

The following is an immediate Corollary of (1.6).
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COROLLARY 1.7. Let x andy be elements of A such that 1, x, andy are
mutually orthogonal. Then x andy anticommute in the sense that xy = — yx;
the elements \9 x9 y9 xy are mutually orthogonal', and their linear span is the
subalgebra F[x, y] generated by x andy.

The next result is a direct consequence of (1.6) and (1.7).

COROLLARY 1.8. Let x andy be as in (1.7) and z orthogonal to F[x, y].
Then

l,x,y9xy,z,xz9yz9(xy)z

are mutually orthogonal, and their linear span is the subalgebra F[x, y, z]
generated by x, y and z.

LEMMA 1.9. / / 1, a, b, ab and c are mutually orthogonal elements of A,
then a, b and c anti-associate; that is

a(bc) = —(ab)c.

Proof. By (1.3.3), a(cb) + c(ab) = 0. By (1.7), cb = -be and c(ab)
= —(ab)c. Hence, a(bc) = —{ab)c.

Now we can prove the key combinatorial lemma required for the
proof of (1.5)

LEMMA 1.10. Let x, y and z be as in (1.8) and w orthogonal to
F[x, y9 z\. Then every product of the four elements x9 y, z, w in any order
and any grouping by parentheses is 0.

Proof. By (1.8), if a, b, c are any three of x9 y, z9 w, then the elements

(1) l9a9 b,c,ab,ac, be, (ab)c

are mutually orthogonal. Hence, by (1.7) any two of (1) other than 1
anti-commute. Therefore, any product of the four elements equals + a
product in which, reading from left to right and ignoring parentheses w is
last. Thus, since x, y9 and z are interchangeable, it is enough to show that

x(y(zw)) = x((yz)w) = (xy)(zw) = ((xy)z)w = 0.

For this we shall use anti-associativity repeatedly. By assumption w is
orthogonal to F[x, y9 z\ Hence, by (1.6), (1.7), and (1.8) the elements

\9x9y9xy9z9xz9yz9{xy)z9w9zv>
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are mutually orthogonal. Thus, by (1.9),

x(y(zw)) = -(xy)(zw) = {(xy)z)w = -(x(yz))w

= x((yz)w) = - x ( . y ( ^ ) ) = 0.

Proof of 1.5. Let x9 y9 z, and w be skew elements selected sequen-
tially, starting with x9 to satisfy the hypotheses of (1.10) and with as many
as possible non-isotropic, as in (1.2). The non-isotropic vectors (if any)
generate a maximal non-singular subalgebra B, and since R = A x = B x ,
the remainder of the list belong to R. From (1.10) we have that the
product of x, y, z, and w in any order and with any grouping by
parentheses in 0.

In case B = F9 all of x9 y9 z, w belong to R and any product of the
four elements is 0; if A is associative, (1.9) implies that any product of
three of them is 0.

In case dim B = 2, B = F[x] and y9 z, and w belong to R. Let /? be
any product of y, x and w. Then x/? = 0. Since xxf = — x 2 # 0 and 4̂ is
alternative, we can cancel x to find that p = 0. That is, i?3 = {0}. By
(1.9) x(yz) = -(xy)z so if A is associative, x(j>z) = 0 and, cancelling
x, we have yz = 0. That is, when A is associative, R2 = {0}.

When dim B = 4, 5 = F[x, >>], and z and w belong to R. x(y(zw))
= 0. Cancel x, then j ; (since y2 Φ 0) to obtain zw = 0. Thus, i?2 = {0}.
As earlier anti-associativity of x, 7, z and associativity of A would imply
x( j>z) = 0; hence z = 0. So in this case, if A is associative, R = {0}.

Finally, if dim£ = 8, B = F[x,y,z] and w e R. x(y(zw)) = 0;
cancelling x, then j>, then z (since z2 ^ 0), we obtain w = 0. That is,
i? = {0} when dim 2? = 8. A = 5, which is not associative.

2. Structure analysis. At this point we have shown that A = B Θ i?,
with 5 a maximal non-singular subalgebra and R the radical. As in the
proof of Theorem (1.5) B has the form F (= Fl), F[x]9 F[x9 y]9 or
F[x, j>, z], according to the dimension of A/R, which is 2" for Λ = 0,1,2,
or 3, respectively. We have seen that R4~" = {0} (R3n = {0} in case Λ
is associative.) The structure of A is, of course, determined by the
structure of B, the structure of i?, and the interaction of B and R. In this
section we make these things more explicit and thereby complete the
classification of A.

The structure of the non-singular algebra B is known; the following
summary will suffice for the moment.
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THEOREM 2.1. Let B be a non-singular alternative algebra with scalar

involution over a field F (commutative of characteristic Φ 2). Then dim B

= 1,2,4, or 8, and we have the following

(a) J / d i m 5 = 1, then B = F.

(b) // d imB = 2, either B is a (commutative) field or else B is

isomorphic to the algebra F2 = F Θ F with coordinate-wise algebraic opera-

tions and involution (α, /?)' = (β>ά).

(c) // d imB = 4, either B is a (non-commutative) division ring (a

so-called quaternion ring) or else B is isomorphic to the algebra F2x2 of

2 x 2 matrices over F, with (a

c

 b

d)' = (_d

c "j7).

(d) // dim 2? = 8, either B has no divisors of zero or else B is isomorphic

to the Cay ley extension of F2x2 by an element whose square is 1.

Next, let us consider the possible algebraic structures on i?, the

radical.

PROPOSITION 2.2. Let R be an alternative algebra (without unit) over F

in which r2 = 0 for every r. Then multiplication in R is anti-commutative

and anti-associative. The map r -> —r is an F-linear involution of R, and

every product of four elements ofR is 0.

Proof. Because all squares are 0, 0 = (r + s)2 = r2 + rs + sr + s2 =

rs 4- sr; so multiplication is anti-commutative. Then for /% s, and f in R,

because R is alternative,

0 = (r + tfs = (r + t)[(r + t)s] = (r + t)(rs + ts)

= r(rs) + r(ts) + t(rs) + t(ts) = r2s + r(ts) + t(rs) + t2s

= r(ts) + t(rs) = -r(st) -(rs)t

so multiplication is anti-associative. The F-linear map r -> -r is an

involution by anti-commutativity. The proof of (1.10) shows that in an

algebra with anti-commutative anti-associative multiplication every prod-

uct of four elements vanishes.

COROLLARY 2.3. Let R be an alternative algebra over F in which r2 = 0

for every r. Then R is associative if and only if every product of three

elements is 0.

The most general R in Proposition (2.2) can be analyzed as follows.

Let W= [r. rR = {0}}, let V be any vector space complement to

R2 + W in R2, and let U be any vector space complement to V + W in
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R. Select a basis {ut\i G /} for U9 and for i9j9k in / let vi} G F,

wι; ^ W a n d w/7A: G ^ b e determined by the equations;

(1) ŵWy = vιJ + w,j and w ^ = wl)k. Because R4 = {0}, we have

(2) V V= R W= {0}, by definition of F and W. Because multi-

plication in R is anti-commutative and anti-associative,

(3) υιj9 wij9 and w/yA: are anti-symmetric as functions of the indices

z, 7, /:. For example,

Wβk = uλvιk) = uJ{uιuk - wιk) = Uj(u,uk)

= -{uιuk)uj = UiiutUj) = -uAujUk)

= -ut{UjUk- w/k) = -wljk.

From the definitions of [/, F and Ŵ  and the fact that F c R2 and

t/ F c W it is easy to verify that

(4) the collection {u^} spans F, and

(5) for λJk G F, whenever ΣλJkυ-k = 0, we have Σλy^w//λ = 0 for all i.

Finally, by definition of W, if r G C/ 4- F and r ^ O there is w G U SO

that rw ^ 0.

Conversely, if U9 F, and W are any three vector spaces, possibly

including {0}, with elements ui9 collectively a basis for U9 υ%J in F, and

wι} and w,.̂  in W9 define the vector space R as J7 θ F θ ίF. If (3), (4),

and (5) are satisfied, we can define a multiplication in R by (1) and (2)

and their anticommutative analogues and the linear extensions of all of

them. Because of (4) and (5) the multiplication is well-defined, and

because of (1), (2), and (3) all squares r2 are 0.

An immediate consequence is this portion of the structure theorem.

THEOREM 2.4(a). An alternative algebra with scalar involution and F as

its maximal non-singular subalgebra is precisely an algebra F θ i?, in which

r2 = 0 for all r in R and r' = —r. Such an R has a description in terms of

subspaces £/, F, and W as given above, and R4 = {0}. The algebra is

associative if and only if R3 = {0}.

REMARKS.

(1) R is associative if and only if F = {0}, i.e., W D R2.

(2) The simplest R for which R3 Φ {0} is the 7-dimensional algebra

in which U is spanned by {rl9r29r3}9 V is spanned by {r1rl9 rxr29 r 2r 3},

and W is spanned by {fi(r2r3)}, with the obvious anti-commutative,

anti-associative multiplication.



ALTERNATIVE ALGEBRA HAVING SCALAR INVOLUTIONS 167

Next consider dim B = 2. R3 = {0}; so the algebraic structure of R
is determined by an anti-commutative pairing U X U -> W9 where W is
the multiplicative annihilator of R and U is a vector space complement to
W in R. However, the action of B on R must be taken into account. As
in Theorem 2.1b there are two cases. First consider the case that B is a
degree 2 field extension of F. B = F[x]9 where x is a skew element; let
x 2 = a G F. Because J? is field, α is not a square in F. Recall that if r
and 5 are elements of R, the elements x, r, and s anti-commute in pairs
and anti-associate as a triple (in any order).

Observe that if S is any subspace of R which is invariant under (left)
multiplication by x, and if r £ S, the span of {r, xr} meets S in {0}. For
if λr + μxr G j w e could conclude r G 5 if λ + μx were invertible; so
0 = (λ + μx)(λ + μx)' = (λ + μ*)(λ - μx) = λ2 - μ2x2 = λ2 - μ2α.
Since α is not a square in F, μ2 = 0. Thus, λ2 = 0 also; so λr + μxr = 0.

The equation rx(xr2) = —(xr2)rι = x(r2rλ) = — x{rλr2) shows that
the subspace W defined earlier is invariant under multiplication by x. By
the observation in the preceding paragraph and an argument based on
Zorn's Lemma we can select a maximal linearly independent set of the
form {rh xη: i G /} with span disjoint from W, except for {0}. Call U the
span of the set {r^xη: i e /}. Define wtj by ηη = wtJ ^ W; as a
function of i and j wtj is anti-symmetric, (xr,)^ = -x(ηrj) = -xwιy ,
(xηXxη) = -(xrjirjx)** -x(r/ 7 )x = x 2(r/ ;) = αwf.y, where the sec-
ond equality is a Moufang law; this can also be seen as in the proof of
Theorem 1.3.

Conversely, let U and W be arbitrary vector spaces, each of which
has an automorphism X (for convenience we use the same symbol) such
that X2 is a times the identity. Select a basis for U of the form {un Xuf.
1 G /} and choose any elements w/y G W, subject to the condition wjΊ =
— wif. The vector space A = F[x]Θ U Θ W becomes an alternative
algebra with radical R = U Θ W if we define multiplication by these
rules and their linear extensions: uιu)r = w/y-, xw = — wx = Xw for

£/, xw = -wx = ΛV for w ^ W, (Xui)u/ = -u^XUj) =
^XUj) = αw/y, i?ίF= Ŵ ? = {0}. Note that W is the multiplicative

annihilator of R if and only if the multiplication U X t/ -> W is nonsin-
gular in the sense that for every u Φ 0 there is a w* so that uu* Φ 0.

Next, suppose a is a square in F. Replacing x by x/ Vα" we may
suppose x 2 = 1. Then left multiplication by x has two (potential) eigen-
values, + 1 and —1, it is completely diagonalizable on every invariant
subspace, and every invariant subspace has a complementary invariant
subspace. If xS c S for a space S, then S = S+® S_, where 5+= {5:
5 6 S and xs = 5} and S_= {5: s ^ S and xs = -5}. Therefore, if we
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select W as before and U an jc-invariant complement to W in R, we can
write R = C/+θ ί/_θ JF+Θ W_. Consider the equation (xrι)r2 =
— •*(rir2) = x(r2r\) = ""( x r2) r i = rι(xri)' Let rx e ί/+ and r2 e ί/_ and
compare the first and last terms; we obtain rxr2 = 0. So U+- U_= U_-
U+= {0}. Let rx and r2 both belong to ί/+; {xrλ)r2 = — ̂ ( r ^ ) shows
that r ^ G W_. That is t/+ t/ + c W_; similarly, £/_• t/_c W+.

Conversely if t/±, W± are any four vector spaces and U+X ί/+-> W_
and U_X ί/_-> W+ are arbitrary anti-commutative multiplications, de-
fine i? = ί/+θ ί/_θ W+θ PΓ_ and ^ = JP[X] θ R as vector spaces. ,4
becomes an alternative algebra with radical R if we define multiplication
on A by utilizing the given multiplications U+ X U+ -> W_ and ί/_ X £/_
-> JF+, by putting i?(W++ Ŵ _) = (ΪΓ++ W_)R = 0, and by defining
U+ U_= U_- U+= {0}, rx = -ΛT for all r, xw = +w for u e ί/±, and
xw = i w f o r w G PF±. The vector spaces U = [/++ ί/_ and W = Ŵ + +
Ŵ_ have the roles assigned in the preceding paragraph if and only if the
multiplications on U+ and on U_ are non-singular.

Summarizing the foregoing we have the next portion of the structure
theorem.

THEOREM 2.4(b). An alternative algebra with scalar involution and
maximal non-singular subalgebra of the form F[x] is precisely an algebra
F[x] θ I?, where the description is one of those given just above. The algebra
is associative if and only if R1 = {0} (i.e., U = {0}).

Now consider the case that B is of the form F[x, y\ where x and y
are orthogonal skew elements. In this case R2 = {0}; so we need only
describe the vector space structure of R and the endomoφhisms given by
left multiplication by elements of B. Recall 1.3(4): a(br) = (ba)r for a
and b in B and r in R. Thus a'{b'r) = (b'a')r = (abyr. In other words
b -> left multiplication by b' is a representation of B by endomoφhisms
of R.

In the case that B is a division ring, it is well known that every
representation φ of B on a vector space R (Φ 0) can be decomposed: R is
a direct sum of copies of the vector space B, and on each copy of B each
<p(b) acts by left multiplication by b. Thus, A = B θ Σ y θ JBy (each
2?y = B), where multiplication in Σ y θ B- is trivial and b(Σj θ &y ) =
Σ 7 θ b'bj = ~~(Σ7 θ fy)^- Conversely, if we define R = Σ θ i?7, each
2?y = 5, and we let A = 5 θ R with the multiplication just given, we
easily verify that the result is an alternative algebra with radical R and
maximal non-singular subalgebra B.
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In the other case for dim B = 4 B is isomorphic to F2x2, the algebra
of 2 X 2 matrices over F. As is well known, every representation φ of B
by endomorphisms of a vector space R decomposes: R = Σ Θ Wj (each
jy,. = F2X1 = the 2 x 1 column vectors over i7), and on each W. each
φ(6) is left multiplication by b. This means that A = F2x2 ® Σ (B Wj
(each Wj = F 2 x l ) , where multiplication on ΣWj is trivial and b(Σ Θ w7)
= Σ θ fc'w,. = - ( Σ θ v»j)b e F 2 x 2 . Conversely, any such ,4 = F 2 x 2 θ
Σ θ WJ9 with the above multiplication, is clearly an alternative algebra
with B = F2x2 as maximal non-singular subalgebra and Σ θ Wjas
radical.

Summarizing this, we have

THEOREM 2.3(C). An alternative algebra A with scalar involution and
maximal non-singular subalgebra B of diffeomorphism 4 is one of the
following:

(i) B is a division algebra; A = B θ (Σ θ B) with multiplication as
given above, or

(ii) B has divisors of zero; A = F 2 x 2 θ (Σ θ i ? 2 x l ) , with multipli-
cation as given above.

In either case A is associative if and only if A = B (i.e., R = {0}).

The last portion of the structure theorem needs no further elabora-
tion.

THEOREM 2.3(d). An alternative algebra with maximal non-singular
subalgebra B of diffeomorphism 8 is simply B itself. R = {0}, and the
algebra is not associative.

As we have seen in Theorem 2.1 and Theorem 2.3 there is a dichot-
omy in the description of the structure of a non-singular composition
algebra B (and of any A = B θ Jfί), according to whether B has divisors
of zero. This can be characterized by whether a certain quadratic form
represents 0 or 1 in F. The case B = F is completely trivial; so assume
dim B = 2,4, or 8. As in the proof of Theorem 1.5, let B = F[x], F[x, y]9

or F[x, y, z], where the elements x, y, z are chosen successively, each
orthogonal to the algebra generated by the preceding ones and each
nonisotropic. That is, x2, y2, and z2 (as many as exist) are nonzero
elements of F.

For completeness we state the next, well-known proposition.
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PROPOSITION 2.4. Let B = F[x] be a non-singular composition algebra,

and define a = x2 Φ 0. Then B is a (commutative) field if and only if

aX2 Φ 1 for all X in F.

The essential features of the next proposition are known. We include

a proof because we need certain details later.

PROPOSITION 2.5. Let B = F[x, y] be a 4-dimensional non-singular

composition algebra, with a = x2 Φ 0 and β = y2 Φ 0 The following are

equivalent.

(a) B is a division algebra

(b) aX2 + βY2 Φ 1 for all Xand Yin F

(c) aX2 + βY2 Φ 0,1 for all X and Y in F other than X= 7 = 0 .

Proof.

(a) -> (b): If (b) fails, then aX2 + βY2 = 1; so

(1 + Zx + 7y)(l - Xx - Yy) = 0.

(b) -> (c): If (b) holds while (c) fails, then aX2 + /372 = 0 for some

(X,Y)Φ (0,0). Since β Φ 0, X cannot be 0, for that would imply 7 = 0 .

Now a(Xλ)2 + β(Yμ)2 = aX2(λ2 - μ2). This will equal 1 if λ =

(1 + c Γ 1 ^ - 2 ) ^ and μ = λ - 1, contradicting (b).

(c) -> (a): If (c) holds while (a) fails, we shall obtain a contradiction

as follows. There z e F[JC, >>] for which zz' = 0 while z =£ 0. Write

z = λ + μx + vy + πxy and w = λ — πjcy. Now if w = 0, 0 = zzf = aμ2

4- βj>2, contrary to (c). Thus, n> # 0. Now aww' = a(λ2 + aβπ2) = aλ2

+ β(aπ)2, which is not zero, by (c). Therefore, w"1 exists. Put w = zv̂ ;

ι / ^ 0 , while w*/ = 0. We calculate u = (λ2 + αj8ττ2) + δx 4- ε_y = γ -f

δx 4- ε^, for γ, δ, ε in F, with γ =£ 0. However, 0 = uuf = γ 2 — aδ2 — βε2,

or α ( δ / γ ) 2 -f β(ε/y)2 = 1, contrary to (c).

PROPOSITION 2.6. Let B = F[x, ̂ , z] te α« ^-dimensional non-singular

composition algebra with a = x2 Φ 0, β = y2 Φ 0, and γ = z 2 Φ 0. 77*e

following are equivalent:

(a) 5 Λαs wo divisors of zero;

(b) α * 2 4- i87 2 4- γ Z 2 4- α^βγίF2 # 1 if X, 7, Z, β«J Wbelong to F;

(c) aX2 + )872 4- γ Z 2 4- aβyW2 = 0,1 /or a// X, 7, Z, W in F except

X=Y=Z=W=Q.

Proof.

a -» b: If (b) fails, put u = 1 4- Xx + Yy 4- Zz 4- W(xy)z; then m/

= 0.
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b -* c: If (b) is true while (c) fails, then aX2 + βY2 + γZ 2 +
aβyW2 = -uu' = 0 for some u = Xx 4- Yy 4- Zz 4- W(xy)z Φ 0.
We may assume W Φ 0. (If not, we could replace M by u = u(yz),
u(xz), or w(xy), a linear combination of x, j , z, and (xy)z with coefficient
of (xy)z not zero, and υυ' = 0.) Note that a(Xμ)2 4- jS(Yμ)2 4-
γ(Zμ) 2 4- α/?γ(H^λ)2 = α/?γ^2(λ2 - μ2). This will be 1 if λ =
(1 4- (aβy)-ιW-2)/2 and μ = λ - 1.

c -» a: Suppose (c) holds and yet (a) fails. Then there is w in B with
0 Φ w but w ' = 0. Write w = a 4- bz, with α and b in ^[x, j ] . b cannot
be 0, because of (c) and Proposition 2.5, which show that a cannot be a
zero divisor (in F[x, y]). Now because of Proposition 2.5 and the fact that
b Φ 0, we have b~ι exists. b~ιw = b~ιa + z is then also a zero divisor,
fe^α Φ 0, since z is not a zero divisor. Write b^a = λ + μx + vy + nxy
and c = λ — πxy. If c were 0, v = b~ιa + z = μx + vy + z is a zero
divisor. However, 0 = υυ' leads to aμ2 + β*>2 + γl 2 = 0, contrary to (c).
So c =£ 0; as in the proof of Proposition 2.5 we obtain cc' = δ Φ 0. Let
d = c(b~ιa 4- z), which is another zero divisor. Direct computation yields
d = 8 + εx 4- p>> 4- σz 4- τ(.xy)z, where δ, ε, p, σ, τ are elements of i 7

and δ = cc' Φ 0. Finally, 0 = ddr = δ 2 - αε2 - βp2 - γσ2 - (αβγ)τ 2;
so α(τ/δ) 2 4- β(p/δ)2 + γ(σ/δ)2 + aβy{τ/δ)2 = 1, contrary to (c).

REMARKS. (1) The condition bbf Φ 0 for a (variable) element of a
non-singular non-commutative composition algebra B leads to a condi-
tion on a quadratic form in 4 or 8 variables, according to the dimension of
B. Propositions 2.5 and 2.6 reduce the number of variables and simplify
the form.

(2) One might expect by analogy with the cases of dimension 2 and 4,
where the forms are aX2 and aX2 4- βY2, that a valid test form for
dimension 8 might be aX2 + βY2 4- γZ 2. However, this is not the case.
Consider the algebra A = Q[x, y9 z], formed over the rationals Q in the
canonical fashion by adjoining elements x9 y, z, each orthogonal to the
algebra generated by the preceding elements and 1, with x2 = 2, y2 = 5,
and z2 = 10. Because [(xy)z]2 = 100, (10 + (xy)z)(10 - (xy)z) = 0; so
A has divisors of zero. However, we can see that 2X2 4- 5y 2 4- 10Z2 Φ 1
for rational X, Y and Z.

If we assume that 1 is represented by this form, we obtain

(*) 2X2 4- 57 2 4- 10Z2 = T2 for integers X9 Y, Z, Γ, with T > 0.

Let To be the smallest T > 0 for which (*) has a solution. For any integer
5, S2 = 0,1, or -1 (mod 5) and IS2 = 0,2, or - 2 (mod 5). From (*) we
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obtain 2X2 = Γo

2 (mod 5), which by the preceding sentence means X =

To = 0 (mod 5). Put X = 5X1? and Γo = 5TV Then (*) becomes 50Xx

2 +

5 7 2 + 10Z 2 = 257\2, or 10ΛΓ2 4- 7 2 + 2 Z 2 = 57\2, which modulo 5 is

Y2 + 2 Z 2 = 0. Thus Y = Z = 0 (mod 5). Write 7 = 5 ^ and Z = 5ZX.

(*) then becomes 1 0 * 2 + 257X

2 4- 50Z 2 = 57Ί2, or 2X2 + 5Y2 + 10Z 2 =

T\2. This contradicts the definition of Γo; so (*) has no non-zero solution

after all.
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