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UNITARY EQUIVALENCE OF INVARIANT
SUBSPACES IN THE POLYDISK

KEIJI IZUCHI

Invariant subspaces M and N of H2(T") are called unitarily
equivalent if M = ψN for a unimodular function ψ on Tn. In this note,
it is given a complete characterization of pairs of invariant subspaces M
and N of H2(T") such that M = φN for an inner function <#>. This is a
generalization of Agrawal, Clark and Douglas' results. As an application,
if M is an invariant subspace of H2(T") and if M is unitarily equivalent
to S(f), an invariant subspace generated by an outer function /, then
M = φS(f) for some inner function φ.

It is well known that Beurling [4] showed that every invariant sub-
space M of H2(T) can be written by M = ψH2(T) for some inner
function ψ. Although it is easy to see that a Beurling-type characterization
is not possible for invariant subspaces of H2(Tn), n > 2, it is very
difficult to determine all invariant subspaces of H2(Tn) for n > 2. In [3],
Ahern and Clark studied an invariant subspace which has finite codimen-
sion in H2(Tn). These invariant subspaces are not Beurling-type. Re-
cently Agrawal, Clark and Douglas [2] studied pairs of invariant sub-
spaces of H2(Tn) which are unitarily equivalent. Here two invariant
subspaces Mx and M2 are called unitarily equivalent if there is a unimodu-
lar function ψ on Tn with M2 = ψMx. In [1, Corollary 3], they showed
that distinct invariant subspaces having finite codimensions in H2(Tn)
are not unitarily equivalent. In [9], Rudin gives two examples of unitarily
equivalent invariant subspaces of H2(T2) answering problems posed in
[2]. In [6], Nakazi gives a characterization of invariant subspaces M of
L2(T2) with M = FH2(T2) for some unimodular function F. From the
view point of the Beurling theorem, it is interesting to characterize pairs of
unitarily equivalent subspaces Mx and M2 of H2{Tn) such that M2 = ψMx

for some inner function ψ. In [2], they give some sufficient conditions of
these pairs. One of these conditions is M2 c Mv

In §2, we shall show a theorem which contains Schneider's lemma as a
corollary (Corollary 1). Also our theorem gives us a complete characteriza-
tion of pairs of invariant subspaces Mγ and M2 of H2(Tn) such that
M2 = ψMx for some inner function ψ (Corollary 2). Of course this
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theorem covers Propositions 1, 2, 3, and 4 in [2]. In §3, we shall study

invariant subspaces which are unitarily equivalent to the one generated by

an outer function.

1. Notations and Theorems. For a positive integer n, let Tn denote

the cartesian product of n unit circles. The usual Lebesgue spaces, with

respect to the normalized Haar measure mn on Tn

9 are denoted by

LP(T")9 1 < p < oo. Let Hp(Tn) be the space of all / in Lp(Tn) whose

Fourier transforms

Jγn

vanish outside ( Z + ) Λ , the n-ίo\ά product of nonnegative integers. A

function ψ in L°°(Tn) and H°°(Tn) is called unimodular and inner if

|ψ| = 1 a.e. dmn, respectively. A closed subspace M of L2(Tn) is called

invariant if z, M c M for every i = 1,2,..., n. We note that if M is an

invariant subspace then H°°(Tn)M c M. A function / in H2(Tn) is

called owter if

log|/(0)|= ί \f(z)\dmn(z).
Jjn

We denote by S(f) the invariant subspace generated by a function / in

L2(Tn). [8] is a convenient reference for the function theory in the

polydisk.

To state our theorem, we use the following notations. Let Hk and J(?k

denote the closure in L2(Tn) of the algebra generated by

{l,z f ; I = 1 , 2 , . . . , Λ } U{zk) and

{l,z,.,z,.:z = l,2,. . . , ,2}\{z,},

respectively. Let L{ denote the closure in Lp(Tn), weak*-closure if

p = oo, of the algebra generated by

{ l ^ z , . : i = I929...9n}\{zk9zk).

Then Hk and Jίfk are invariant subspaces, Γ\n

k=1Jίfk = H2(Tn), and Jί?k

coincides with the closed linear span of {z™L\\ m = 0,1,2,...}.

For an invariant subspace M (generally not closed), let (M)k denote

the closure of L™M in L2(Tn). Then (M)k is an invariant subspace and

Lf(M)k = (M)k. We note (H2(T"))k = Jίfk. A closed subspace N of

L2(T") is called reducing if ztN = N for every i = 1,2,...,«. If N is

reducing, then L°°(Tn)N = N9 hence TV = χvL
2{Tn), where χ^ is a

characteristic function for a Borel subset U of Γ". We note that Jίfk does

not contain any reducing subspaces.
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Our main results are

THEOREM 1. Let Mx be an invariant subspace of H2(Tn) and φ e

L°°(Tn). Let M2 denote the closure of φMγ in L2(Tn). Then φ e H°°(Tn)

if and only if (M2)k c (Mι)k for every k = 1,2,..., n.

COROLLARY 7. Let / e H2(Tn) be an outer function, and M be an

invariant subspace of H2{Tn) which is unitarily equivalent to S(f). Then

M = ypS(f) for some inner function ψ.

2. Proof of Theorem 1 and its applications. The following lemma is

a corollary of the Merrill and Lai theorem [5] (see Remark after Lemma

1). In this case, we can prove it directly. For the sake of completeness, we

give its proof.

LEMMA 1. Let M be an invariant subspace of H2(Tn). Then for each

k = 1,2,...,«, {M)k = FkJ^k for a unimodular function Fk in 2^k.

Proof. Let fix k. Since M c H2(T"), (M)k c jpk. Hence

N=(M)kezk{M)k.

Then N Φ {0}. Since L™{M)k = (M)k9 L™N = N. Thus we have

(1) (M)k = N Θ zkN Θ z2N Θ

Let g G N. Since g _L gz[ for / = 1,2,..., we get

for every nonzero integer i. This implies \g\ e L\. Since | / | > 0 a.e. dmn

for / G H2(Tn), by (1) there exists g0 in N such that |go | > 0 a.e. dmn.

Put go = F\go\, where i 7 is unimodular. Since LfN = N, N D L^g0 =

|go |. Since L^|go | is dense in L^, we have FL\ c iV.

To show JFL^ = iV, let g e TV. Since F e iV,

for every /, y > 0 with / ¥= y. Hence
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for every nonzero integer p. Thus Fg e L\, so that g e FL2

k. Conse-

quently FL\ = N. By (1),

(M)k = FL\ θ FzkL\ θ i^L* Φ

Since F G (M)k c J ^ , this completes the proof.

REMARK. In [5], they showed the following (in more general form); if

M is an invariant subspace of L2(Tn) with z,M = M for i = 1,2,..., n

with / Φ Ic, then M = χvF^k θ χvL
2(Tn), where F is unimodular. In

this case, it is easy to see that M = FJ4fk if and only if M has no

reducing subspaces and there is a function / i n M with | / | > 0 a.e. Jmw.

This fact is essentially pointed out, for the case n = 2, by Nakazi (see [6,

Theorem 6]). Using this fact, we can also prove Lemma 1.

Proof of Theorem 1. Let Mλ be an invariant subspace of H2(Tn),

φ G L°°(Tn) and M 2 be the closure of φΛ^ in L2(Tn). By Lemma 1,

( M ^ = FkJίfk for some unimodular function Fk for k = 1,2,...,«.

First suppose that (Mι)k D (M2)k for /: = 1,2,..., n. Then

Hence φ ^ c J ^ , so that φ G Π J β l ^ = H2(Tn). Thus φ G H°°(Tn).

Next suppose φ G H°°(Tn). We note that (Af2)A coincides with the

closure of φ(Mx)k in L2(Tn). Since φ ^ c 3^k, we have

Thus (M2)k c (M X ) A . This completes the proof.

The following corollary is proved in [2, Proposition 3] using an idea of

Schneider [10]. We can prove this as an application of our theorem.

COROLLARY 1. Let φ G L°°(Γ") and f ^ H2{Tn) such that f Φ 0 and

φmfe H2(T") form = 1,2,.... Then φ ̂  H°°(Tn).

Proof. Let Mi denote the invariant subspace of H2(Tn) generated by

{φm/; m = 1,2,...}. Let M 2 denote the closure of φA^ in L2(Tn). Then

M 2 c Mx c H2{Tn), so t h a t ( M 2 ) A c (A^)* for A: = 1,2,..., Λ. By The-

orem 1, φ G H°°(Tn).

The following is a direct corollary of our theorem. This answers the

question posed in the introduction.
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COROLLARY 2. Let Mx and M2 be unitarily equivalent invariant sub-

spaces of H2(Tn). Put M2 = ψM1? where ψ is unimodular. Then ψ is inner

if and only if (M1)k D (M2)k for every k = 1,2,..., w.

COROLLARY 3. Le/ Λ/x and M2 be invariant subspaces of H2(Tn) such

that (Mx)k = (M2)k for k = 1,2,...,«. 77zβw Mx w unitarily equivalent to

M2 if and only if Mx = Λf2.

Proof. Suppose that M 2 = ψMx and ψ is unimodular. By Corollary 2,

ψ and ψ are inner. Hence ψ is constant, so that Mx = M2.

COROLLARY 4. Le/ Mx be an invariant subspace of H2(Tn) such that

(Mι)k = Jίfk for k = l,2,...,n. If'M2 is an invariant subspace of H2(Tn)

with M2 = ψM l 5 where ψ is unimodular, then ψ is inner.

Proof. Since M2 c H2{Tn\

By Corollary 2, ψ is inner.

An invariant subspace M of H2(Tn) has /w// ra/7ge if the closed linear

span of {zn

kM\ m = 1,2,...} coincides with Hkΐoτk = l,2,...,n (see

[2, p. 5]).

By the following lemma, we can consider that Corollary 4 is a

generalization of both Propositions 1 and 2 in [2].

LEMMA 2. Let M be one of the following invariant subspaces ofH2(Tn).

(1) M has full range.

(2) M contains a nonzero function independent of zk for each k =

1 , 2 , . . . , Λ .

Then (M)k = JίTk for k - 1,2,..., n.

Proof. (1) Suppose that M has full range. Then by the definitions,

Ht c (M)k for / Φ k. Since 3tfk coincides with the linear span of {H;,

i = 1,2, . . . , Λ and / Φ k}, we get Jίfk c (M)k, so that ^ = (M)k.

(2) Suppose that fk G M is a nonzero function independent of z/t.

Then

= the closure of L^M in L2(Tn)

D the closure of V£fk in L2(Tn) = L\,

the last equality follows from |/Λ | > 0 a.e. dm. Since zk(M)k c (Af)Λ,

we get Jfk c (Af ) Λ , so that $fk = (M)k.
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The following example shows that Corollary 4 is not covered by the

work of Agrawal, Clark and Douglas [2].

EXAMPLE. For cases n > 3, there is an invariant subspace M of

H2(Tn) such that

(a) M does not contain a function independent of zk,

(b) M does not have full range, and

(c)(M)k=Jfk forλ: = l,2,...,/ι.

We shall show the existence of M as above for n = 3. Let {φξ}%0 be

a sequence of nonconstant inner functions in H°°(T) satisfying the

following conditions.

(i) ψ,H2(T) c ψι + 1H
2(T) for every /, and

(ii) U?loΨ/#2(3Γ) i s d e n s e i n #2<T)
Let M denote the invariant subspace of H2(T3) generated by

00 00

U \jz[zi^(z3)H2(τη.
i=Q7=0

Then every nonzero function in M is not independent of z3. Hence M

satisfies (a). By (i), ψ o (z 3 )// 2 (Γ 3 ) c H2(T3). Hence by the definition of

M, the linear span of [z™M\ m = 1,2,...} does not contain H2{T3),

because it does not contain nonconstant functions. Thus M satisfies (b).

By (ii), ( M ) 3 = Jf3. Since the linear span of (z 3 ψ y (z 3 ); k is an integer}

coincides with L 2 (Γ), we have (M)k = tfk for k = 1,2. Thus M satisfies

(c).

COROLLARY 5 [2, Proposition 4]. Let M and Mx be invariant subspaces

of H2(T") such that M D Mi and Mι has finite codimension in M. If' M2 is

an invariant subspace of M with M2 = ψM1? where ψ is unimodular, then ψ

/5 inner.

Proof. Since M θ Mx has finite dimension, it is easy to see (M)k =

{Mι)k for k = 1,2,...,«. Since M D M 2, ( M 2 ) Λ C (M)k = (Mλ)k. By

Corollary 2, ψ is inner.

COROLLARY 6. Le/ Mx ^ J M2 be invariant subspaces of H2(T").

Suppose that both of Mx θ M2 and M2 θ Mλ have finite dimensions. Then

Mλ and M2 are unitarily equivalent if and only if Mx = M2.

Proof. Let M denote the invariant subspace generated by Mλ and M2.

Then Mλ and M2 have finite codimensions in M. Put M2 = ψM1 for

some unimodular function ψ. By Corollary 5, ψ is constant, so that

M x = M 2 .
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3. Outer functions. Rudin [7] showed the following.
(i) If S(f) = H\Tn) and / e H2(Tn), then / is outer.

(ii) There is an outer function / such that S(f) Φ H2(Tn).
If M is an invariant subspace of H2{Tn) such that M is unitarily
equivalent to H2(Tn\ then M = ψif 2 (Γ n ) for some inner function ψ [2,
Corollary 1]. In this section, we shall show that the above assertion is true
if H2(Tn) is replaced by S(f) for outer functions /.

THEOREM 2. Letf e H2{Tn) be an outer function. Then (S(f))k = 3^k

for every k = 1,2,...,«.

By Corollary 4, we get

COROLLARY 7. Let f e H2(Tn) be an outer function and let M be an
invariant subspace of H2(Tn). If M is unitarily equivalent to S(f), then
M — φS(f) for some inner function ψ.

Proof of Theorem 2. Let / e H2{Tn) be an outer function. Without
loss of generality, we may assume k = n. By Lemma 1, (S(f))n = FnJίfn

for some unimodular function Fn in Jίfn. We shall show that Fn is
independent of zn. We can write / = Fnh9 where h e Jίfn. Write

z = ( z ' ? Z J G Γπ, where z' e T"1"1.

Since /, Fn and A are contained in ̂ , there is a Borel subset £ of Tn~ι

with mA7_1(£) = 1 such that for every fixed zf e E,

(2) / ( z ' , z n ) , f ; ( z ' , 2 J , h{z',zn)^H

and Fn(z', 2,,) is inner. Since /(z',0) e H2{Tn-1),

log|/(0)|=log /
J 7--W - 1

< / log|/(z', 0 ) 1 ^ . ^ ' ) by [8, p. 47].

Hence, by our assumption,

/ (log|/(z',0) I - / log|/(z', zn) I dmι(zn)\ dmn^(z') > 0.

Since log|/(z',0)1 < /rlog|/(z', zn)\dmι(zn) for z' e £,

log|/(z',0)| = / rlog|/(z',zjμm1(zJ a.e. z' e £.
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Thus f(z\zn) is outer for a.e. zf e E. Since f = Fnh, for a.e. fixed
z' e 2?, we have

f{z',zn) = Fn{z',zn)h(z',zn) a.e.zn£Γ.

By (2), an inner function Fπ(z', zn) is constant for a.e. z' e £". Then for
nonzero integers z,

Fn(z)z<dmn(z)=j dmn_x{z')ί Fn(z> ,zn)z'ndmι{zn) = 0.

This implies that Fn(z) is independent of zΛ. Hence /^ is invertible in 3f?n,
so that we get (S(f))n = Jf?n. This completes the proof.
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