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UNITARY EQUIVALENCE OF INVARIANT
SUBSPACES IN THE POLYDISK

KEeni IzucHi

Invariant subspaces M and N of H?(T") are called unitarily
equivalent if M = YN for a unimodular function y on 7. In this note,
it is given a complete characterization of pairs of invariant subspaces M
and N of H*(T") such that M = ¢N for an inner function ¢. This is a
generalization of Agrawal, Clark and Douglas’ results. As an application,
if M is an invariant subspace of H>(T") and if M is unitarily equivalent
to S(f), an invariant subspace generated by an outer function f, then
M = ¢S(f) for some inner function ¢.

It is well known that Beurling [4] showed that every invariant sub-
space M of H?*(T) can be written by M = yH?*(T) for some inner
function ¢. Although it is easy to see that a Beurling-type characterization
is not possible for invariant subspaces of H*(T"), n > 2, it is very
difficult to determine all invariant subspaces of H*(T") for n > 2. In [3],
Ahern and Clark studied an invariant subspace which has finite codimen-
sion in H?(T"). These invariant subspaces are not Beurling-type. Re-
cently Agrawal, Clark and Douglas [2] studied pairs of invariant sub-
spaces of H?(T") which are unitarily equivalent. Here two invariant
subspaces M, and M, are called unitarily equivalent if there is a unimodu-
lar function ¥ on T” with M, = ¢ M,. In [1, Corollary 3], they showed
that distinct invariant subspaces having finite codimensions in H*(T")
are not unitarily equivalent. In [9], Rudin gives two examples of unitarily
equivalent invariant subspaces of H2(T?) answering problems posed in
[2]. In [6], Nakazi gives a characterization of invariant subspaces M of
L*(T?) with M = FH*(T?) for some unimodular function F. From the
view point of the Beurling theorem, it is interesting to characterize pairs of
unitarily equivalent subspaces M, and M, of H*(T") such that M, = Y M,
for some inner function ¢. In [2], they give some sufficient conditions of
these pairs. One of these conditions is M, C M,.

In §2, we shall show a theorem which contains Schneider’s lemma as a
corollary (Corollary 1). Also our theorem gives us a complete characteriza-
tion of pairs of invariant subspaces M; and M, of H?(T") such that
M, = yM, for some inner function ¢ (Corollary 2). Of course this
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theorem covers Propositions 1, 2, 3, and 4 in [2]. In §3, we shall study
invariant subspaces which are unitarily equivalent to the one generated by
an outer function.

1. Notations and Theorems. For a positive integer n, let 7" denote
the cartesian product of n unit circles. The usual Lebesgue spaces, with
respect to the normalized Haar measure m, on T”, are denoted by
LP(T"),1 < p < . Let H?(T") be the space of all f in L?(T") whose
Fourier transforms

fa)= [ f(a)zpzg - Zirdm, (2)

vanish outside (Z.)", the n-fold product of nonnegative integers. A
function ¢ in L®(T") and H*(T") is called unimodular and inner if
|¢| =1 a.e. dm,, respectively. A closed subspace M of L*(T") is called
invariant if z,M C M for every i = 1,2,...,n. We note that if M is an
invariant subspace then H®(T")M C M. A function f in H*(T") is
called outer if

log| f(0)|= [ 17(2)|dm,(2).

We denote by S(f) the invariant subspace generated by a function f in
L*(T"). [8] is a convenient reference for the function theory in the
polydisk.

To state our theorem, we use the following notations. Let H, and 5%
denote the closure in L?(T") of the algebra generated by

{1,z;;i=1,2,...,n} U{Z,} and
(1,z,,2:i=1,2,...,n}\{Z,; },

respectively. Let L/ denote the closure in L?(T"), weak*-closure if
p = oo, of the algebra generated by

(1,z,,z;:i=1,2,...,n}\{ 2,2, }.

Then H, and J#, are invariant subspaces, N}_, %, = H*(T"), and 5,
coincides with the closed linear span of { z;"L2; m = 0,1,2,...}.

For an invariant subspace M (generally not closed), let (M), denote
the closure of LYM in L*(T"). Then (M), is an invariant subspace and
LP(M), = (M),. We note (H*(T")), = #,. A closed subspace N of
L*(T") is called reducing if z, N = N for every i =1,2,...,n. If N is
reducing, then L®(T")N = N, hence N = x,L*(T"), where x, is a
characteristic function for a Borel subset U of T". We note that 5, does
not contain any reducing subspaces.
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Our main results are

THEOREM 1. Let M, be an invariant subspace of H*(T") and ¢ €
L®(T"). Let M, denote the closure of M, in L*(T"). Then ¢ € H*(T")
if and only if (M,), C (M,), foreveryk =1,2,..., n.

COROLLARY 7. Let f € H*(T") be an outer function, and M be an
invariant subspace of H*(T") which is unitarily equivalent to S(f). Then
M = yS(f) for some inner function .

2. Proof of Theorem 1 and its applications. The following lemma is
a corollary of the Merrill and Lal theorem [5] (see Remark after Lemma
1). In this case, we can prove it directly. For the sake of completeness, we
give its proof.

LEMMA 1. Let M be an invariant subspace of H*(T"). Then for each
k=12,...,n,(M), = F.J, for aunimodular function F, in 5,.

Proof. Let fix k. Since M C H*T"), (M), C 5#,. Hence
® ,zi(M), = {0}. Put
N=(M),e:z,(M),.
Then N # {0}. Since LY(M), = (M),, LYN = N. Thus we have
(1) (M), =N®&zN®z};N® ---.

Let g€ N.Since g L gzi fori=1,2,..., we get
2 .
[ lgl’zidm, =0
T"

for every nonzero integer i. This implies |g| € L2. Since |f| > 0 a.e. dm,
for f € H3(T"), by (1) there exists g, in N such that |g,| > 0 a.e. dm,,.
Put g, = F|g,, where F is unimodular. Since LN = N, N D Lig, =
FL?|g,|- Since LY|g,| is dense in L, we have FL; C N.

To show FL2 = N, let g € N. Since F € N,

Fzi 1 gzf

for every i, j > 0 with i # j. Hence

Fgzldm, =0
T"
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for every nonzero integer p. Thus Fg € L2, so that g € FL2. Conse-
quently FL; = N. By (1),

(M)k = FL% &3] FZkLi @ Fz,fLi ® - =Fx,.
Since F € (M), C 5,, this completes the proof.

REMARK. In [5], they showed the following (in more general form); if
M is an invariant subspace of L*(T") with zM = M for i = 1,2,...,n
with i # k, then M = x,F#, ® x,L*(T"), where F is unimodular. In
this case, it is easy to see that M = F#, if and only if M has no
reducing subspaces and there is a function f in M with |f| > 0 a.e. dm,,.
This fact is essentially pointed out, for the case n = 2, by Nakazi (see [6,
Theorem 6]). Using this fact, we can also prove Lemma 1.

Proof of Theorem 1. Let M, be an invariant subspace of H*(T"),
¢ € L*(T") and M, be the closure of ¢M,; in L*(T"). By Lemma 1,
(M,), = F,5#, for some unimodular function F, for k = 1,2,...,n.
First suppose that (M), D (M,), for k = 1,2,...,n. Then

F ot = (M), > (M), 2 ¢(M), =¢FH,.
Hence ¢#, C #,, so that ¢ € N§_, ¢, = H*(T"). Thus ¢ € H>(T").

Next suppose ¢ € H*(T"). We note that (M,), coincides with the
closure of ¢(M,), in L*(T"). Since $p#, C #,, we have

(M), = 9F, 0, C Ft, = (M)),.
Thus (M,), € (M,),. This completes the proof.

The following corollary is proved in [2, Proposition 3] using an idea of
Schneider [10]. We can prove this as an application of our theorem.

COROLLARY 1. Let ¢ € L®(T") and f € H*(T") such that f # 0 and
¢"f e HXT") form=1,2,.... Then € H*(T").

Proof. Let M, denote the invariant subspace of H*(T") generated by
{¢"f; m=1,2,...}. Let M, denote the closure of ¢, in L*(T™). Then
M, C M, C H*(T"), so that (M,), € (M,), for k =1,2,...,n. By The-
orem 1, ¢ € H*(T").

The following is a direct corollary of our theorem. This answers the
question posed in the introduction.
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COROLLARY 2. Let M, and M, be unitarily equivalent invariant sub-
spaces of H*(T"). Put M, = Yy M,, where  is unimodular. Then + is inner
if and only if (M,), D (M,), foreveryk =1,2,..., n.

COROLLARY 3. Let M, and M, be invariant subspaces of H*(T") such
that (M,), = (M,), for k =1,2,...,n. Then M, is unitarily equivalent to
M, if and only if M, = M,.

Proof. Suppose that M, = M, and ¢ is unimodular. By Corollary 2,
¢ and ¥ are inner. Hence ¢ is constant, so that M, = M,.

COROLLARY 4. Let M, be an invariant subspace of H*(T™) such that
(M), =, fork=1,2,...,n. If M, is an invariant subspace of H*(T")
with M, = Yy M,, where  is unimodular, then y is inner.

Proof. Since M, ¢ HX(T"),

(MZ)k c (Hz(T"))k =X, = (Ml)k'
By Corollary 2, ¢ is inner.

An invariant subspace M of H*(T") has full range if the closed linear
span of {zZ"M; m = 1,2,...} coincides with H, for k =1,2,...,n (see
(2, p- 5)).

By the following lemma, we can consider that Corollary 4 is a
generalization of both Propositions 1 and 2 in [2].

LEMMA 2. Let M be one of the following invariant subspaces of H*(T").
(1) M has full range.
(2) M contains a nonzero function independent of z, for each k =
1,2,...,n.
Then (M), =5, fork =1,2,...,n.

Proof. (1) Suppose that M has full range. Then by the definitions,
H, c (M), for i # k. Since 5, coincides with the linear span of { H,;
i=1,2,...,nand i # k}, we get #, C (M),, so that 5, = (M),.

(2) Suppose that f, € M is a nonzero function independent of z,.
Then

(M)k = the closure of L(/)(OM in Lz(Tn)
D the closure of LYf, in L*(T") = L2,

the last equality follows from |f,| > 0 a.e. dm. Since z, (M), C (M),,
we get #, C (M),, so that ¢, = (M),.
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The following example shows that Corollary 4 is not covered by the
work of Agrawal, Clark and Douglas {2].

ExaMPLE. For cases n > 3, there is an invariant subspace M of
H?(T") such that

(a) M does not contain a function independent of z,,

(b) M does not have full range, and

(o) (M), =, fork=1,2,...,n.

We shall show the existence of M as above for n = 3. Let {{,}%, be
a sequence of nonconstant inner functions in H*(T) satisfying the
following conditions.

(i) ¢,H*(T) G ¢, . H*(T) for every i, and

(i) U o, H*(T) is dense in H*(T).
Let M denote the invariant subspace of H?*(T?) generated by

U U zizgy, () H*(T?).
i=0 =0

Then every nonzero function in M is not independent of z;. Hence M
satisfies (a). By (i), ¥,(z;) HX(T?) ¢ H*(T”). Hence by the definition of
M, the linear span of {Z]’M; m = 1,2,...} does not contain H*(T?),
because it does not contain nonconstant functions. Thus M satisfies (b).
By (i1), (M), = ;. Since the linear span of {zé‘z,b_,(23); k is an integer}
coincides with L*(T), we have (M), = 5, for k = 1,2. Thus M satisfies
().

COROLLARY 5 [2, Proposition 4]. Let M and M, be invariant subspaces
of H*(T") such that M > M, and M, has finite codimension in M. If M, is
an invariant subspace of M with M, = yM,, where { is unimodular, then ¢
is inner.

Proof. Since M © M, has finite dimension, it is easy to see (M), =
(M), for k=1,2,...,n. Since M D M,, (M,), C (M), =(M,),. By
Corollary 2, ¢ is inner.

COROLLARY 6. Let M, and M, be invariant subspaces of H*(T").
Suppose that both of M, © M, and M, © M, have finite dimensions. Then
M, and M, are unitarily equivalent if and only if M, = M,.

Proof. Let M denote the invariant subspace generated by M; and M,.
Then M, and M, have finite codimensions in M. Put M, = yM, for
some unimodular function . By Corollary 5, ¢ is constant, so that
M, = M,.
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3. Outer functions. Rudin [7] showed the following.

(i) If S(f) = H¥(T")and f € H*T"), then f is outer.

(ii) There is an outer function f such that S(f) # H*(T").
If M is an invariant subspace of H*(T") such that M is unitarily
equivalent to H%(T"), then M = yH*(T") for some inner function ¢ [2,
Corollary 1]. In this section, we shall show that the above assertion is true
if H*(T") is replaced by S(f) for outer functions f.

THEOREM 2. Let f € H*(T™") be an outer function. Then (S(f)), = H#,
foreveryk =1,2,...,n.

By Corollary 4, we get

COROLLARY 7. Let f € H*(T") be an outer function and let M be an
invariant subspace of HX(T"). If M is unitarily equivalent to S(f), then
M = YS(f) for some inner function .

Proof of Theorem 2. Let f € H*(T") be an outer function. Without
loss of generality, we may assume k = n. By Lemma 1, (S(f)), = F, %,
for some unimodular function F, in 5#,. We shall show that F, is
independent of z,. We can write f = F,h, where h € 5. Write

z=(z',z,) € T", wherez' € T" 1.

Since f, F, and h are contained in J%,, there is a Borel subset E of 777!
with m,_,(E) = 1 such that for every fixed z’ € E,

(2) f(z',z,,), Fn(z’,z"), h(z’,zn)EHz(T)
and F,(z’, z,) is inner. Since f(z’,0) € H*(T" 1),

log| £(0)| = log| [ 7(2",0)dm, (=)

= fT log| f(z',0)|dm,_,(z") by [8,p.47].

Hence, by our assumption,

L. (ol 12 0)| = [ 1ogl(.,)

Tll‘l

dml(zn)} dm, _(z’) > 0.
Since log|f(z’,0)| < [log|f(z’, z,)|dm(z,) for 2’ € E,

log| f(z’,0)| = leog(f(z’, z,)|dm(z,) ae. z €E.
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Thus f(z’,z,) is outer for a.e. z’ € E. Since f= F,h, for ae. fixed
z’ € E, we have

f(z’, z,) = F,,(z’, z,,)h(z’, z,) ae.z,€T.

By (2), an inner function F,(z’,z,) is constant for a.e. z” € E. Then for
nonzero integers i,

[ E(@)zdm,(2) = [ dm, () [ F(22,)z;dmi(z,) = 0.

This implies that F,(z) is independent of z,. Hence F, is invertible in £,
so that we get (S(f)), = J,. This completes the proof.
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