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UNIFORM RANK OVER DIFFERENTIAL
OPERATOR RINGS AND

POINCARE-BIRKHOFF-WITT EXTENSIONS

A. D. BELL AND K. R. GOODEARL

This paper is principally concerned with the question of when a
generalized differential operator ring T over a ring R must have the
same uniform rank (Goldie dimension) or reduced rank as R, and with
the corresponding questions for induced modules. In particular, when R
is either a right and left noetherian Q-algebra, or a right noetherian right
fully bounded Q-algebra, it is proved that Tτ and RR have the same
uniform rank. For any right noetherian ring R, it is proved that Tτ and
RR have the same reduced rank. The type of generalized differential
operator ring considered is any ring extension T D R generated by a
finite set of elements satisfying a suitable version of the Poincare-
Birkhoff-Witt Theorem.

Although modules over differential operator rings have been exten-

sively studied for some time, not much attention has been paid to

questions of (uniform) rank, perhaps because the most natural relation-

ship (that a differential operator ring should have the same rank as its

coefficient ring) is not in general true. For polynomial rings, the relation-

ship does hold, as proved by Shock [21, Theorem 2.6; 7, Theorem 3.23, p.

89]. Later partial results for a differential operator ring T = R[θ; 8]

include the facts that if M is a compressible right i?-module then M ® RT

is a compressible right Γ-module [10, Lemma 2.1], that if M is a critical

noetherian right i?-module then M ®R T is a uniform right Γ-module [9,

Lemma 4.6] and that if R is a semiprime right noetherian ring then Tτ

has the same rank as RR [22, Lemma 2.4].

The only previous general result along these lines of which we were

initially aware is a recent result of Quinn [19, Theorem 15], who showed

that if R is a Q -algebra and δ is locally nilpotent, then Tτ and RR have

the same rank. That such a result cannot hold in positive characteristic is

shown by the old example of R = k[x]/(x2) and δ = d/dx, where k is a

field of characteristic 2, in which case RR has rank 1 while Tτ has rank 2

[9, p. 851]. After our paper was first submitted, we saw a paper of

Grzeszczuk, who proves that Tτ and RR have the same rank if R is right

nonsingular, or if R is a Q-algebra with the d.c.c. on right annihilators

[12, Corollary 4].
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In this paper, we show that various kinds of techniques yield suffi-

cient conditions under which passing from R to T preserves the rank. For

example, if M is a nonsingular right i?-module, or if each nonzero

submodule of M contains a nonzero element whose annihilator in R is

δ-invariant, then M ®RT has the same rank as M. The latter result

allows us to unify and slightly generalize the two steps in a result of Quinn

[19, Theorem 14] and show that for any right module M over any ring i?,

the induced module M ®RAX(R) over the Weyl algebra Aλ(R) has the

same rank as M. When R is a right noetherian ring with no Z-torsion

which is tame as a right module over itself, we prove that Tτ has the same

rank as RR; in particular, this holds when R is a right noetherian right

fully bounded Q -algebra, or when R is a right noetherian Q-algebra with

the d.c.c. on right annihilators. To go along with the characteristic 2

example mentioned above, we construct a noetherian Q -algebra R with

cyclic modules M of rank 1 such that the induced modules M ®R T have

arbitrarily large finite rank, and we construct a commutative Q -algebra R

of rank 1 for which T has rank oo.

In order to study more general differential operator rings, including

those smash/skew/twisted constructions in which a Lie algebra acts via

derivations on a coefficient ring, without carrying around a large amount

of notation and special conditions, we introduce the notion of a Poincare-

Birkhoff-Witt extension of a ring R, meaning a ring extension T D R

generated by a (finite) set of elements for which a suitable PBW Theorem

holds. Not all of the techniques used in the R[θ; 8] case seem applicable

here, but, roughly speaking, those that are sufficiently noetherian can be

adapted to PBW extensions. Thus we are able to prove that when R is a

right noetherian ring with no Z-torsion which is tame as a right module

over itself (and hence in the particular cases mentioned above), every

PBW extension of R has the same rank as R.

Finally, we consider the question of reduced rank, which is only

defined in the noetherian case. Here we prove that any induced module

M ®RT over a PBW extension T of any right noetherian ring R has the

same reduced rank as M.

All rings and algebras in this paper are associative with unit, and all

modules are unital right modules. The research of the second author was

partially supported by a grant from the National Science Foundation.

0. Preliminaries. Let M be a module over a ring R. The rank of

M (also known as the uniform rank, uniform dimension, Goldie rank, or

Goldie dimension of M) is the supremum of those nonnegative integers n

such that M contains an independent family of n nonzero submodules.
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We denote the rank of M by rank Λ (M). Since by convention all our

modules are right modules, rankΛ(i?) means the rank of RR. Finite ranks

may be computed using uniform submodules, for M has finite rank if and

only if M contains independent uniform submodules Ul9...,Un such that

Uλ θ θ Un is essential in M, in which case rank Λ (M) = n [7, Proposi-

tion 3.19, p. 86].

Given a ring R and a derivation δ on i?, the formal linear differential

operator ring R[θ\ δ] is the overring of R generated by R and an element

θ subject to the relations θr = rθ + 8(r) for all r e i?. To abbreviate the

condition that i?[0; δ] has been constructed from i? and δ in this fashion,

we just write "let JR[0; δ] be a differential operator ring".

In a differential operator ring T = R[θ\ δ], the powers of θ form a

basis for T as a free left (or right) Λ-module. Hence, any nonzero operator

/ e T may be uniquely expressed in the form

for some ti e i? with /Λ # 0. The integer n is called the order of ί,

denoted ord(ί), and the element /„ is called the leading coefficient of /,

denoted λ(/). The zero element of T is considered to have order — oo and

leading coefficient 0.

Note that T may be filtered by order, and that then the associated

graded ring gr(Γ) is a polynomial ring in one indeterminate over R. Thus

if R is right (left) noetherian, so is T.

As RT is free, it is faithfully flat. Hence, given any right i?-modules

N < M, we may identify N ®RT with its image in M ® R T. Observe that

M <8>R T is, as an abelian group, the direct sum of the subgroups M ® θι

for / = 0,1, Thus any nonzero element x e M <8>R T may be uniquely

expressed in the form

x = ( x o 0 1) + ( * ! 0 f i ) + ••• +(xn <S> θn)

for some JC, G M with xn # 0. Following the established pattern, n is

called the order of JC, denoted ord(x), and JCW is called the leading

coefficient of JC, denoted λ(x). The zero element of M ®R T is considered

to have order — oo and leading coefficient 0.

The induced module M <8>R T may be filtered by order, making it a

filtered Γ-module, and its associated graded module is the gr(Γ)-module

induced from M. Thus if M is a noetherian right i?-module, M ΘΛ T is a

noetherian right Γ-module

If {Mi} is any independent family of nonzero i?-submodules of M,

then [Mι ®R T) is an independent family of nonzero Γ-submodules of
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M ®RT. Consequently,

rank r(M ®R T) > rankΛ(M),

and in proving the reverse inequality M may clearly be assumed to have
finite rank.

The notation N < eM is used to mean that N is an essential
submodule of M. For any x e M, the annihilator of x in the ring R is
denoted annΛ(jc). Given an ideal / in R, we denote by ^(/) the set of
those r e i? for which r 4- / is a regular element (non-zero-divisor) in
R/I.

1. Nonsingular modules. The main result of this section is that for
an arbitrary differential operator ring R[θ; δ] and an arbitrary nonsingu-
lar right Λ-module M, the induced module M ΘΛ R[θ; δ] has the same
rank as M. In the noetherian case, this will be used to deal with
torsionfree modules over prime factor rings of R. When working with
nonsingular modules, we may use the following sort of extensions in place
of essential extensions.

Recall that an Λ-module M is a rational extension of a submodule N9

denoted N < rM, provided that HomR(L/N, M) = 0 for any submodule
L of M that contains N. Equivalently, if these are right modules, N < rM
if and only if whenever x, y e M with x Φ 0, there exists r e R such that
xr Φ 0 and yr <Ξ N [7, Proposition 2.25, p. 55].

Clearly any rational extension is also an essential extension, but the
converse fails. For instance, Z/4Z is an essential extension of 2Z/4Z but
not a rational extension. Our interest in rational extensions stems from the
fact that any essential extension of nonsingular modules is a rational
extension [7, Lemma 2.24, p. 55].

LEMMA 1.1. Let T = R[θ; 8] be a differential operator ring. IfN<rM
are right R-rnodules, then N <8>R T < r M <8)R T as R-modules and hence
also as T-modules.

Proof. C o n s i d e r x,y ^ M ®RT w i t h x Φ 0, a n d w r i t e

x = (x0 0 1) +(Xl 0 θ) + +(xm 0 0"O,

where xi9 y G M and xm Φ 0. For k = n,n — 1 , . . . ,0, we show that

there exists rk e R such that xmrkΦ 0 and

0 * " 1 ) + ( J V ® 0*) + ••• + ( J V β 0 Λ ) .
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First, since N < rM9 there exists rn e R such that xmrn Φ 0 and j w r π e TV,

whence

yrn G ( M ® 1) + ••• +(M<8> 0"" 1) + (#<£> 0").

Now let 0 < /: < n and assume that there exists rk ^ R with the

required properties. Write

y r k = { z 0 9 Ϊ ) + ( z 1 < 8 > θ ) + --- + ( z l l ® 0 « )

with z 0 , . . . , zk_x G M and z*,. . . , zΛ G Af. There exists 5 G i? such that

x m r ^ Φ 0 and ẑ .-pS e N. Then the element rk_λ — rks has the required

properties, completing the induction step.

Thus xmr0 Φ 0, whence xr0 Φ 0, and yr0 ^ N ® R T. Therefore

N ®R T < r M ®R T as i?-modules. It follows immediately that

N ®RT <r M®R T as Γ-modules. D

LEMMA 1.2. Let N < rM be right R-modules. Given xl9x29y G M with

each JC/ Φ 0, /Aere exώ/Λ1 r G R such that each xtr Φ 0 and yr G Λ7 .̂

Proof. There exist rvr2 ^ R such that */,. # 0 and j r,. e JV. If

x 2 r x Φ 0 set r = r l 5 while if xxr2 Φ 0 set r = r2. If jc2rx = jcxr2 = 0, set

r = rx + r2. D

PROPOSITION 1.3. Let T = R[θ; δ] be a differential operator ring, and

let M be a right R-module. If M is a rational extension of each of its nonzero

submodules, then M ®R T is a rational T-module extension of each of its

nonzero T-submodules.

Proof. It suffices to show that zT < r M ®R T for each nonzero

z e M ®R T. Hence, given x9 y e M <8>R T with x Φ 0, we need to find

s,t G T such that xs Φ 0 and ys = zt. Of course if y = 0 we may use

s = 1 and ί = 0. Thus it suffices to prove that for any nonzero x, y9 z e

M ®RT, there exist s9t e T such that xs =£ 0 and JΛS = zt. We actually

prove the following stronger property:

(*) Given any nonzero x9 y9z G M ®R T, there exist s,t G 71 such

that λ ( x ) λ ( s ) ^ 0 and j5 = zί, while also ord(^) — ord(/) >

ord(z) — oΐd(y). (Here s must be nonzero, whence ord(s) > 0. We allow

the possibility that / =* 0, in which case ord(^) - ord(/) = oo.)

Set m = ord(y) and n = ord(z); we induct on m + n.

If m + n = 0, then y = y0 0 1 and z = z 0 ® 1 for some nonzero

y09 z 0 G M. Since λ(x) Φ 0 and z0R < r M, there exist s9t e R such that

λ ( x ) s Φ 0 and >>os — zot. Then ^ = zί and ord(s) - ord(/) > 0 =

n — m.
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Now let m + n > 0, and assume that (*) holds in all cases where

oτά(y) + ord(z) < m + n. Since λ(x), λ( j ) , λ(z) are nonzero elements

of M and λ(z)R < r M, Lemma 1.2 provides us with elements p,q e i?

such that λ(x)p Φ 0 and λ(y)p Φ 0 while λ(jμ)/? = λ(z)q. Hence, x/?,

jμ/7, zg are all nonzero, ord(yp) = m and ord(zg) = n, and λ(j/?) = \{zq).

If there exist s\ t' e Γ such that λ(jc/?)λ(.y') ^ 0 and j /λy' = z ^ ' while

also ovά(sf) - ord(/r) > n - m, then λ(x)pλ(sf) Φ 0 and so λ(ps') =

pλ(s'). Consequently, λ(x)λ(ps') Φ 0 and

oτd(ps') - oτd(qt') > oτd(s') - ord(//) >n-m,

proving (*).

Thus we may assume, without loss of generality, that λ(y) = λ(z).

First, suppose that m > n. If y = zθm~n, we may use s = 1 and

/ = θm~n. Otherwise, jμ — zθm~n is nonzero and has order less than m.

By the induction hypothesis, there exist s, tf e Γ such that λ(x)λ(s) Φ 0

and (y - zθm~n)s = zt\ while also

ord(s) - ord(ί') > ord(z) - ord(j; - zθm~") > n - m.

Then ys = z ( β m ~ ^ + t'). Since ord(θm-f1s) = m - n 4- ord(^) > ord(/'),

we see that

ovd{em~ns + t') = m- n + ord(s),

whence ord(5) - oτd(θm~"s + t') = n — m.

Finally, suppose that m < n. If z = yθn~m, we may use s = θn~m

and t = 1. Otherwise, z - j/0'7~m is nonzero and has order less than n. By

the induction hypothesis, applied to the elements x, z — yθn~m, y, there

exist t,s' e T such that λ(jc)λ(ί) Φ 0 and (z - yθn~m)t = ys\ while

ord(/) - ord(^/) > ord(^) - ord(z - yθ"~m) > m - n.

Then y(θ"-'nt + s') = zt. Since ord(^"- m O = n - m + ord(/) > oτd(s')9

we see that

oτd(θ"~mt + s') = n - m + o r d ( ί ) ,

whence oτd(θ"~mt + s') - ord(/) = n — m. In addition,

λ(x)λ(θ"-mt + 5r) = λ(jc)λ(ί) Φ 0.

This verifies the induction step, and therefore (*) is proved. D

Observe that a nonzero module M is monoform (i.e., every nonzero

homomorphism between submodules of M is a monomorphism) if and

only if M is a rational extension of each of its nonzero submodules.

Hence, to rephrase Proposition 1.3, if M is a monoform right i?-module

then M ® R T is a monoform right Γ-module.
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As an immediate application of Proposition 1.3, we can remove the

noetherian hypothesis from [9, Lemma 4.6].

COROLLARY 1.4. Let T = R[θ\ 8] be a differential operator ring. If M

is a critical {in the sense of Krull dimension) right R-module, then M <8>RT

is a uniform right T-module.

Proof. Since M is nonzero, so is M ®RT. If N < L are nonzero

submodules of M, then L/N has smaller Krull dimension than any

nonzero submodule of M, whence Horn R (L/N,M) = 0. Thus M is a

rational extension of each of its nonzero submodules, and Proposition 1.3

applies. In particular, all nonzero Γ-submodules of M ®R T are essential

in M <8>R Γ, whence M <E>Λ T is uniform. D

PROPOSITION 1.5. Let T = R[θ\ δ] be a differential operator ring. If M

is any nonsingular right R-module, then rank Γ (M ®Λ T) = rank Λ (M).

Proof. We may assume that rank Λ (M) = n < oo. Then M contains

independent uniform submodules Ul9...9Un such that Ux θ θ Un < e

M. Since M is nonsingular, Ux θ (BUn < rM9 and each \Ji is a

rational extension of all its nonzero submodules. By Lemma 1.1 and

Proposition 1.3,

{υx®Rτ)® • • • ®{υn®Rτ)<eM%Rτ

and each Ui %R T is a uniform right Γ-module. Therefore r a n k Γ ( M ®Λ T)

= n. D

COROLLARY 1.6. Lei Γ = i?[0; δ] be a differential operator ring. IfR is

a semiprime right Goldie ring and M is a torsionfree right R-module, then

r a n k Γ ( M ®R T) = rank Λ (M). D

Using different methods, the case M = R of Proposition 1.5 has also

been proved by Grzeszczuk [12, Corollary 4], and the case M = R with R

right noetherian of Corollary 1.6 was proved by Sigurdsson [22, Lemma

2.4].

The case of Proposition 1.5 in which R is right noetherian may be

proved without the use of Proposition 1.3, as we will see in a more general

setting in the proof of Proposition 5.4.

2. Tame modules and the noetherian case. In this section we prove

that the uniform rank of a ring and its differential operator ring are the

same if the ring is (right and left) noetherian and has no Z-torsion. We
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prove this by first proving some more general results about induced

modules.

Let R be a right noetherian ring and let U be a uniform right

i?-module. Then there is a unique prime ideal P of R which is the largest

annihilator of any nonzero submodule of U. This prime ideal is called the

assassinator of £/, and we say that U is tame if it contains a copy of a

nonzero right ideal of R/P. Alternatively, U is tame if and only if the

submodule ann ί /(P) is torsionfree as an (jR/P)-module. An arbitrary

right i?-module M is tame if all of its uniform submodules are tame, and

we denote the set of assassinator prime ideals of uniform submodules of

M by ass(M). It is not hard to see that neither the tameness of M nor the

set ass(M) is changed by passing to an essential extension or an essential

submodule of M.

PROPOSITION 2.1. Let T = R[θ; δ] be a differential operator ring,

where R is a right noetherian ring, and let M be a tame right R-module such

that each member of ass(Λf) is 8-invariant. Then

= rankΓ(M ΘΛ T) .

Proof. Let E be the injective hull of M. Then we know that

rankΛ(£) = rankΛ(Af) < rank r(M ®R T) < rankΓ(£ ®R T)9

and so we need only show that rankτ(E ΘΛ T) = rankΛ(£I). As noted

above, E is tame and all of its assassinator prime ideals are δ-invariant.

As R is right noetherian, E is a direct sum of uniform injective modules;

since the tensor product respects direct sums, it is clearly enough to do the

case where E is uniform.

Our hypotheses now imply that there is a δ-invariant prime ideal P of

R such that EQ = annE(P) is a torsionfree uniform right (R/P)-module.

Note that PT is an ideal of T and that T/PT = (R/P)[θ\ δ'] where δr is

the derivation induced on R/P by δ. Thus Corollary 1.6 implies that the

Γ-module

E0®RT=E0®R/P(T/PT)

is uniform. To finish the proof, we must show Eo ®R T is an essential

submodule of E ®R T.

If this is not true, there is a nonzero a G E <8>R T such that

aTΠ(Eo®RT) = 0. Pick such an a of the form

a = (a0 0 1) + ( f l l 0 f l ) + + ( f l ^ ί n )
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with minimal order n, and so an Φ 0. Since Eo is essential in E, there
exists an r e i? such that anr ^ Eo and βrtr =£ 0. We may replace α by
ar, and hence without loss of generality we may suppose that an is in Eo.
Thus anP = 0, and since P is δ-invariant, it is easy to see that (an ® 0")P
= 0. Since aPT Π ( £ 0 ΘΛ Γ) = 0, the minimality of n implies aP = 0.
Thus (a — (an ® θn))P = 0 and so an_λP = 0. Using the δ-invariance of
P and repeating the above arguments, it is now easy to see that each
atP = 0. But this implies that a e EQ®RT, which contradicts our as-
sumption that tf ^ 0. D

In order to use the last result to determine the ranks of differential
operator rings, we make the following observation. We thank the referee
for a simplification of our original proof.

LEMMA 2.2. // R is a ring with no ϊ-torsion and with the a.ex. on
annϊhilator ideals, and 8 is a derivation on R, then any prime annihilator
ideal in R is δ-invariant.

Proof. Let P be a prime ideal in R such that P = r-ann( X) for some
subset X of R. (The proof is essentially the same if P = /-ann( X).) Since
R has the a.c.c. on annihilator ideals, there is a positive integer n such
that

/-ann(P") = /-ann(P" + 1) = .

Set / = /-ann(P"), and observe that

8{l)Pn+ι c 8{IPn+ι) - I8(Pn+ι) c 8{IPn+ι) - IPn = 0,

whence δ(7) c /, and consequently r-ann(7) is δ-invariant. Since X c /,
we have

Pn c r-ann(J) c r-ann(X) - P,

and thus P is the unique prime ideal minimal over r-ann(/). As R has no
Z-torsion, it is clear that i?/r-ann(7) has no Z-torsion. Therefore [11,
Proposition 1.3] implies that P is δ-invariant. D

The main result of this section is an immediate corollary of the two
preceding results.

THEOREM 2.3. Let T = R[θ; 8] be a differential operator ring, where R

is a right noetherian ring with no Z-torsion. If R is tame as a right module

over itself, then rank^(i?) = rankΓ(Γ). D
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COROLLARY 2.4. Let T = R[θ; 8] be a differential operator ring, where
R is a right noetherian ring with no Z-torsion. If either R is right fully
bounded or R has the d.c.c. on right annihilators, then rankΛ(iϊ) =
rankΓ(Γ).

Proof. In each case, we observe that the ring R is tame as a right
module over itself and hence the theorem applies. Tameness is immediate
in case R is right fully bounded, since a finitely generated torsion module
over a bounded prime ring is always unfaithful, and hence all right
i?-modules are tame in this case.

Alternatively, one can handle both cases at once by first noting that if
/ is a right ideal of i?, there exist xl9..., xn e / such that

r-ann(/) = r-ann(x1) Π Πr-ann(jcw).

This is well-known to hold (for any right /?-module /) in the fully
bounded case. In the other case, we take {xv...,xn} to be a finite subset
of / whose right annihilator is as small as possible.

Now suppose / is a uniform right ideal of R such that P = r-ann(7)
is prime, and let xι,...,xn be as in the last paragraph. If / is not
torsionfree as an (R/P )-module, then it is torsion and so each xf is
annihilated by some element of #(P) . Using the right common multiple
property of the elements of ^ ( P ) in R/P, we find that there is an
element c e ^(P) such that x(c = 0 for each i. Thus Ic = 0, which
contradicts r-ann(/) = P. This shows / must be torsionfree as a right
(i?/P)-module, and so I is tame. D

Since the d.c.c. on right annihilators is equivalent to the a.c.c. on left
annihilators, and either condition is inherited by subrings, it follows that
mnkR(R) = rank r(Γ) if R is a right noetherian ring with no Z-torsion
which embeds in either a right artinian or left noetherian ring. In
particular, the rank equality holds for a right and left noetherian ring with
no Z-torsion.

The second case of Corollary 2.4 holds even if R is not right
noetherian [12, Corollary 4].

3. Non-noetherian methods. In [19, Theorem 14], Quinn showed
that the Weyl algebra Aλ{R) over any ring R has the same rank as R,
using Shock's proof of the polynomial ring case [21, Theorem 2.6; 7,
Theorem 3.23, p. 89] to get from R to R[x] and a modified version of
Shock's argument to get from R[x] to i?[jc][#; d/dx]. Here we develop a
generalization which covers both of these steps simultaneously.
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LEMMA 3.1. Let T = R[θ; 8] be a differential operator ring, let M be a

right R-module, and let A be a nonzero T-submodule of M <8> R T. If x is a

nonzero element of A of minimal order, then ann Γ (x) = annR(λ(x))T.

Thus xT = λ(x)R ®R Tas right T-modules.

Proof. This is a standard minimal order argument. For details, see for

example the proof of [9, Lemma 4.1]. D

LEMMA 3.2. Let T = R[θ; 8] be a differential operator ring, and let N

be a right R-module. Assume that each nonzero submodule of N contains a

nonzero element whose annihilator in R is invariant under 8 + a for some

a G R.

(a) // M is any essential extension of N, then M ®R T is an essential

T-module extension of N <8R T.

(b) If N is uniform, then N ®R T is a uniform right T-module.

Proof, (a) If not, there is a nonzero element x G M ®R T such that

xT Π (N ®R T) = 0, and we may assume that n = ord(x) is minimal for

this. Since N < eM, there exists r G ϋ such that λ(x)r is a nonzero

element of N, and we may replace x by xr. Thus there is no loss of

generality in assuming that λ(x) e N.

By hypothesis, there exist s,a^R such that λ(x)s Φ 0 and

ann^(X(x)5) is invariant under 8 4- a. Since we may replace x by xs,

there is no loss of generality in assuming that

(δ + α)(ann Λ (λ(x))) c a n n Λ ( λ ( x ) ) ,

whence (θ + a)(axmR(λ(x))) c annΛ(λ(x))Γ. As xtT Π (N ®R T) = 0
for all / G T, the minimality of n implies that all nonzero elements of xT

have order at least n. Hence, ann Γ (x) = annR(λ(x))T, by Lemma 3.1.

Thus

(θ + α){annτ{x)) c annΓ(x) =

Set z = x - (λ(x) ® (^ 4- fl)Λ), and note that z # 0, because JC ί

TV <8>R T. Since z has order less than n, we have zT Π (TV ®R T) Φ 0 by

the minimality of «, and so there exists p e Γ such that z/? is a nonzero

element of N <8>R T. Then xp ^ N <8> R T, whence x/? = 0. Now p G

ann Γ (x) , and consequently

(0 + tf)> G annR(λ(x))T.

However, from λ(x) <8> (θ + #)"p = Owe obtain zp = 0, a contradiction.
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Therefore N®RT<eM®RT.

(b) If not, there exist nonzero x, y <Ξ N <8>RT such that xT Π yT = 0.

Set n = ord(x) and m = oτd(y). We may assume that n + m is minimal,

and that n > m. As JV is uniform, there exist r,s ^ R such that λ(x)r =

λ( j ) ^ Φ 0, and we may replace x, y by jtr, ys. Thus we may assume,

without loss of generality, that λ(x) = λ(y).

As in the proof of (a), we may also assume that there exists a G R for

which

(θ 4- tf)(annr(jt)) c a n n Γ ( x ) = annR(λ(x))T = a.nnτ(y).

Now let z = x - y(θ + a)n~m, and note that z Φ 0, because x £ >>Γ.

Since z has order less than n9 we have zT Π 7Γ ̂  0 by the minimality of

n + m, and so there exist p,q ^ T such that zp = yq Φ 0. As a result,

x/7 G j Γ, whence xp = 0. However, we then obtain

(θ + α ) " mp G a n n Γ ( j )

and hence zp = 0, a contradiction.

Therefore N ®RT is uniform. D

PROPOSITION 3.3. Lei Γ = i?[β; δ] be a differential operator ring, and

let M be a right R-module. Assume that each nonzero submodule of M

contains a nonzero element whose annihilator in R is invariant under 8 + a

for some a e R. Then rank Γ (M ΘΛ T) = rank Λ (M).

Proof. We may assume that rankΛ(Λ/) = n < oo. Then Λf contains

independent uniform submodules Uv...,Un such that UΎ θ θ ί7w < e

M. By Lemma 3.2, each U:®RT is uniform, and 0 ( £ / ® Λ Γ) < ^

M ®RT. Therefore rank Γ (M ®RT) = n. D

As an application of Proposition 3.3, we obtain the following gener-

alization of Quinn's result [19, Theorem 14].

THEOREM 3.4. Let T = Aλ(R) for some ring i?, and let M be any right

R-module. Then rank Γ (M ®R T) = rank Λ (M).

Proof. We may write Γ = S[θ; d/dx] where 5 = R[x] is a polynomial

ring over R. Since S may be viewed as a differential operator ring formed

using the zero derivation, the hypotheses of Proposition 3.3 are trivially

satisfied, and hence r a n k s ( M <8>ΛS) = rank^(M). To use Proposition 3.3

to obtain r a n k Γ ( M ®Λ T) = r a n k s ( M ΘΛ 5), it suffices to show that any
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nonzero S-submodule A of M ®R S contains a nonzero element whose

annihilator in S is invariant under d/dx.

Just choose a nonzero element y G A of minimal degree (order),

remembering that M ®R S = M ®R R[x]. By Lemma 3.1,

a n n s ( j ) = a n n * ( λ ( 7 ) ) S = anaR(X(y))[x]9

which is clearly invariant under d/dx. D

Proposition 3.3 may also be used in case R is a commutative

noetherian ring with no Z-torsion, in place of Corollary 2.4. For if / is

any nonzero ideal of R and x E / is chosen with aimR(x) prime, then

ann Λ (x) is δ-invariant by Lemma 2.2. Hence, the equality of rank Γ (Γ)

and τΆnkR(R) in this case follows from the proposition.

A final, easy case in which the hypotheses of Proposition 3.3 hold is

that in which δ 2 = 0 and 1/2 G R. It follows easily that 8(r)8(s) = 0 for

all r,s G R. Given a nonzero submodule N < M, choose a nonzero

element x G N. If ann Λ (x) is δ-invariant, fine. If not, there exists r £ i ?

such that xr = 0 but jcδ(r) # 0. Then jcδ(r)δ($) = 0 for all s G Λ,

whence ann Λ (xδ(r)) is δ-invariant.

4. Examples. The easiest examples of differential operator rings

which have greater rank than their coefficient rings occur in characteristic

p > 0. For instance, let k be a field of characteristic /?, let R = k[x]/(xp),

and let y denote the coset of x in R. Then rankΛ(i?) = 1. Since

(d/dx)(xp) = 0 in characteristic p, the derivation d/dx induces a /c-lin-

ear derivation δ on R such that δ( y) = 1. In the differential operator ring

T = i?[0; δ], one easily checks that the operator yp~ιθp~ι/(p - 1)! is a

nontrivial idempotent, whence rank Γ (Γ) > 2. [Actually, rank Γ (Γ) = p:

this will follow from Theorem 6.4, which says that Tτ has the same

reduced rank as RR, namely p. For R is δ-simple, whence T is prime, and

thus the reduced rank of Tτ is just rankΓ(Γ).]

In characteristic zero, we first construct examples of modules whose

ranks enlarge when induced up to differential operator rings.

EXAMPLE 4.1. Let R = k[x] and T = Aλ{k) = k[x][θ; d/dx] where k

is a field of characteristic zero. For each positive integer /?, the k[x]-module

Mn = k[x]/(xn) has rank 1, whereas the T-module Mn <&R T = T/xnT has

rank n.

Proof. Obviously rank^(M,2) = 1 for all n. Since Mx is a simple

A:[x]-module, Corollary 1.4 shows that Mι®RT = T/xT is a uniform

T-module. (Actually, it is easy to check that T/xT is a simple T-module.)
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We shall prove that T/xnT = {T/xT)n for all «, from which it is
immediate that rankΓ(Mw ®RT) = n.

For n = 1, there is nothing to prove. For the induction step, we show
that

T/xn + 1T= {T/xT)

for which it suffices to see that the short exact sequence

0 -> T/xT(^>T/xn + lT^> T/xnT'-> 0

splits, where (xn)* is the map induced by left multiplication by x'\ and π
is the quotient map. By [8, Lemma 2.9], this sequence splits if and only if
there exist u9υ e T such that ux" + xv = 1. However, such elements are
easy to find: observing that θnxn = n\ -f xw for some ιv e Γ, we con-
clude that

(θ"/n\)xn + JC(-W/Λ!) = 1. D

To build a ring example, we incorporate the polynomial ring k[x] and
all the modules k[x]/(xn) within one ring, as follows.

EXAMPLE 4.2. There exists a commutative Q-algebra R with a deriva-
tion δ such that RR has rank 1 whereas the differential operator ring
T = R[θ; δ] has infinite rank over itself.

Proof. Set S = k[x] where k is a field of characteristic zero, and let
M denote the S-module k[x, x~ι]/S. Then let R be the trivial extension
of S by M, that is, R = S X M as an abelian group, with multiplication
given by the rule (s, m)(s\ mr) = (ss\sm' -f s'm). Observe that R is a
commutative Q-algebra, and that / = 0 X M is an ideal of R. Since M is
a faithful uniform 5-module, / is an essential uniform ideal of R, whence
rank^i?) = 1.

Let d denote the derivation d/dx on both S and k[x,x~1]. Then d
induces an additive endomorphism dM on M, and we observe that
dM(sm) = d(s)m + sdM(m) for all s e S and m e M. Set δ(s,m) =
(d(s), dM(m)) for all (s, m) e /?, and observe that δ is a derivation on R.

Now / is a δ-ideal of i?, whence IT is an ideal of T and

Since I2 = 0, we similarly have

IT=I®RT= I ®R/I{T/IT) s Af
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As M contains copies of the S-modules S/xnS9 for all n e M, Example

4.1 shows that M ^>sAλ(k) has rank oo as an ^41(A:)-module. Therefore

r a n k r ( / Γ ) = oo, whence rankT(T) = 0 0 . D

We know of no example of a right noetherian Q-algebra R with a

derivation 8 for which R[θ; 8] has greater rank than R.

5. Poincare-Birkhoff-Witt extensions. A number of generalized

differential operator rings in the literature, with names like smashed/skew

enveloping rings, are formed from a Lie ring L acting as derivations on a

ring R. A common feature of these constructions is that under suitable

hypotheses, such as a projective module structure on L compatible with

the action of L on R, a version of the Poincare-Birkhoff-Witt Theorem

holds. Since much of the work on such rings follows from the form given

by the PBW Theorem, we find it much more convenient to take the PBW

form as our starting point, thus avoiding the necessity of carrying along

the notation of L, /?, the action of L on i?, etc. in all later results.

We say that an overring Γof a ring R is a (finite) Poincare-Birkhoff-

Witt extension of R (hereafter called a PBW extension, for short) if there

exist elements θl9...9θn e T such that

(a) The ordered monomials θiil)θ£2) β*n) (for nonnegative in-

tegers i ( l ) , . . . , ι(w)) form a basis for T as a free left iί-module;

(b) [θi9 R]Q R for each z = 1,...,«;

(c) [θi9 θj] e i? + Rθx+ +Rθn for all /, j = 1,. . ., n.

(An infinite PBW extension would be formed in a similar manner, using a

well-ordered set of elements #,.) It follows from (a), (b) that the ordered

monomials Θ^Ψ^ θι

n

{n) also form a basis for T as a free right

i?-module, and it follows from (b) that

R + Rθx + +Rθn = Λ + fliΛ + + # „ # .

Thus our definition is left-right symmetric.

To abbreviate conditions (a), (b), (c), we shall just write "let T =

R[θv . . . , θn] be a PBW extension".

As examples of PBW extensions, we mention: (a) the enveloping

algebra of any finite-dimensional Lie algebra; (b) any differential operator

ring R[θl9..., θn; δl9..., 8n] formed from commuting derivations δ l 5 . . . , 8n

on R; (c) any Weyl algebra An(R) (viewed as an extension of R by 2n

elements); (d) those differential operator rings V(R9L) introduced by

Rinehart [20, p. 197] (see also [13, p. 396], [4], [5]) where L is a Lie algebra

which is also a (finitely generated) free ϋ-module equipped with a suitable

Lie algebra map to derivations on R (a more general PBW Theorem is
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obtained here after assuming that L is a projective i?-module [20, Theo-

rem 3.1]); (e) the twisted or smash product differential operator ring

R#σU(Q) studied by McConnell [16, Theorem 2.8; 17, p. 190], Chin [2],

and others, where g is a finite-dimensional Lie algebra acting on R by

derivations, and σ is a Lie 2-cocycle with values in R; (f) the universal

enveloping rings U(V9 R,K) recently introduced by Passman [18], where

K is a field, R is a AΓ-algebra, and V is a ^-vector space which is also a

Lie ring containing R and K as Lie ideals with suitable relations. (The

enveloping ring U(V,R,K) is a finite PBW extension of R when

dimκ(V/R) is finite.) Conversely, a PBW extension R[θl9...,θn] is a

universal enveloping ring provided R contains a central subfield K,

invariant under each [θi9 - ] , such that each [θt,θj] lies in the X-vector

space V = R + Kθx + +Kθn. In fact, if we amend Passman's defini-

tion to allow K to be any central subring of R while also requiring that

V/R be a free left ^-module, then one can show in general that

R[θl9...,θn] = U(R + Kθλ+ . . . +Kθn,R,K)

where K is the center of R.

Returning to a general PBW extension T = R[θl9..., 0J, we denote

an ordered monomial 0{(1)^(2) β£n) by 0 7 where / = (/(I),.. ., I(Λ)),

and we define the total order of such a monomial in the usual way, namely

as |/ | = /(I) + +/(fl). Thus we can define the total order of any

element of T. Using (b) and (c), it is not hard to check that for any / and

any r e i ? w e have

θ V = rθ1 -f (terms of lower total order).

The ring T can be filtered by total order, and the associated graded ring of

T with respect to this filtration is the ordinary polynomial ring

R[θl9..., θn]. It now follows from standard arguments that if R is either

right or left noetherian, so is T. (See for example [14, Chapter V, §3]).

More generally, if M is any JR-module, then M is noetherian as an

i?-module if and only if M ®R T is noetherian as a Γ-module.

In order to define leading coefficients, we need a more delicate notion

of order, which requires us to order ^-tuples of nonnegative integers. We

do so via the Dixmier ordering, namely we order ^-tuples first by total

order, then among ^-tuples of the same total order we order them

lexicographically, with the convention that θλ> > θn. This ordering

on ( Z + ) " gives an ordered set order-isomorphic to the natural numbers

with their usual ordering; in particular, any π-tuple of nonnegative

integers has only finitely many predecessors. (This ordering is discussed in

[3, §2.6].) We now define the monomial order of any nonzero element
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/ e Γ a s the largest «-tuple / such that the coefficient of θ1 in / is

nonzero, and we define the leading coefficient of / to be the coefficient

λ(t) of θ1 in /. We may define the monomial order of the zero element of

T as (— oo, . . . , — oo), and we may define its leading coefficient to be 0.

Monomial orders and leading coefficients are defined in the same manner

for induced modules M ®RT.

One can check that if s, t are nonzero elements of Γ, then either

λ(s)λ(t) = λ(st) or λ(s)λ(t) = 0, and in the former case the monomial

order of st is the sum of the monomial orders of s and t, while in the

latter case it is strictly less than this sum. It is now easy to see that we can

duplicate the proof of Lemma 1.1 to obtain the following result.

LEMMA 5.1. Let T = R[θv..., θn] be a PBW extension of a ring R. If

N < r M are right R-modules, then N <8>R T < rM <8>R T as R-modules and

hence also as T-modules. D

Since a minimal order argument is all that is involved in the proof of

Lemma 3.1, it can be extended to the following result.

LEMMA 5.2. Let T = R[θv ...,θn]bea PBW extension of a ring R, let

M be a right R-module, and let A be a nonzero T-subrnodule of M ®R T. If

x is a nonzero element of A of minimal monomial order, then ann Γ (x) =

annR(λ(x))T. Thus xT = λ(x)R ®Λ Tas right T-modules. D

Recall that a nonzero right i?-module M is compressible if every

nonzero submodule of M contains an isomorphic copy of M. If M is

compressible and either M is a noetherian module or R is a right

noetherian ring, then M contains a uniform submodule, from which it

follows that M is uniform. Lemma 5.2 enables us to extend the result of

[10, Lemma 2.1] for an ordinary differential operator ring to the case of a

PBW extension.

COROLLARY 5.3. Let T = R[θv ...,θn] be a PBW extension of a ring

R and let M be a compressible right R-module. Then M ®R T is a com-

pressible right T-module. Thus if either R is a right noetherian ring or M is a

noetherian module, M <8>R T is a uniform right T-module.

Proof. If A is a nonzero submodule of M ΘΛ T and x e A is as in the

statement of Lemma 5.2, then A contains an isomorphic copy of the

module λ(x)R ®R T. As M is compressible, λ(x)R contains a submod-

ule isomorphic to M. Thus A contains an isomorphic copy of M <8>R T. D
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We can now generalize Proposition 1.5, provided we add a noetherian

hypothesis.

PROPOSITION 5.4. Let T = R[θλ, . . . , 0 J be a PBW extension of a ring

R and let M be a nonsingular right R-module. If either R is a right

noetherian ring or M is a noetherian module, then

rank Λ (M) = r a n k Γ ( M ®R T).

Proof. Either noetherian hypothesis implies that every nonzero sub-

module of M contains a uniform noetherian submodule. This in turn

implies that M contains an essential submodule N which is a direct sum

of uniform noetherian submodules. Since M is nonsingular, N < r M, and

so by Lemma 5.1, N®RT<rM®RT. Hence, mnkτ(N ®R T) =
r a n k Γ ( M ®R T).

Thus we need only show that if M is a nonsingular uniform noetherian

module, then M ®Λ T is uniform. We know that M ®R T is noetherian,

and so it contains a uniform submodule A. Let x be a nonzero element of

A of minimal monomial order. Then by Lemmas 5.1 and 5.2 we see that

xT = λ(x)R ®RT < rM ®RT.

Since xT is uniform, this implies that M ®R T is uniform. D

We next use Lemma 5.2 to show that nonsingularity is preserved for

induced modules. Note that the example in the introduction to §4 gives a

ring R with nonzero singular ideal and a differential operator ring

T = R[θ; δ] which is a prime noetherian ring, and hence is nonsingular,

which shows that the complete converse to this is false.

PROPOSITION 5.5. Let T = R[θv . . . , θn] be a PBW extension of a ring

R and let M be a right R-module. If MR is nonsingular, then (M <8>R T)τ is

nonsingular. Conversely, if RR is nonsingular and (M ®R T)τ is nonsingu-

lar, then MR is nonsingular.

Proof. Assume that MR is nonsingular, and let A be the singular

submodule of M <8>R T. If A Φ 0, let x e A be nonzero with minimal

monomial order. Then

and since M is nonsingular, there is a nonzero right ideal / of R with

ann Λ (λ(x)) Π / = 0. Therefore

ann Λ (λ( jc))ΓΠ IT = 0,
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and so annΓ(x) is not an essential right ideal of T, contrary to the
definition of A. Thus ^4=0.

Now suppose that RR and (M ®Λ T)τ are nonsingular, and let m be
an element of M with / = r-armR(m). If / is an essential right ideal of R,
then IR < r RR, and so ITT < r Tτ. Since (m ® 1)/Γ = 0, this implies that
m = 0. Thus ΛfΛ is nonsingular. D

We are now ready to carry over the results on rank from §2. Note that
since each [θi9 R] c i?, there is a derivation 8t on R such that [0,., r] = 8((r)
for all r e i?. Let Δ = {δ1,...,δΛ}. If / is an ideal of R which is
Δ-invariant (that is, invariant under each derivation in Δ), it is not hard to
see that IT = TI is an ideal of T with IT Π R = I. Thus i?// embeds in
T/IT9 and we observe that T/IT is a PBW extension of R/I.

PROPOSITION 5.6. Let T = R[θv..., θn] be a PBW extension of a right
noetherian ring R, let Δ be the set of derivations on R induced by θv..., θn,
and let M be a tame right R-module such that each member of ass(M) is
Δ-invariant. Then rankΛ(M) = rank r(M ΘΛ T).

Proof. As in the proof of Proposition 2.1, we may reduce to the case
where M = E is the injective hull of a uniform right ideal U of some
factor ring R/P, with P a Δ-invariant prime ideal of R. We set Eo =
ann^(P), so that Eo is the (i?/P)-injective hull of U. Thus Eo is
torsionfree and uniform as an (7?/P)-module, and so by Proposition 5.4,
the module

Eo ®R/P (T/PT) = E0®RT

is uniform as a right Γ-module.
Thus we need only show that E0®RT < eE ®RT. The proof is the

same as the last paragraph of the proof of Proposition 2.1. If Eo ®R T is
not essential in E ΘΛ Γ, we pick a nonzero a e E ®RT of minimal
monomial order such that aT Π (Eo ®R T) = 0. Since Eo < eE, we may
assume that the leading coefficient λ(a) of a is in Eθ9 so that λ(a)P = 0.
As P is Δ-invariant, it follows that for / the monomial order of a, we
have (λ(a) 0 θr)P = 0. Now one gets aP = 0 by minimality and from
this it follows that each coefficient of a is annihilated by P. Thus
a e Eo 0 Γ, contradicting our choice of α. D

THEOREM 5.7. Let T = R[θv..., 0J be a PBW extension of a right
noetherian ring R which has no Z-torsion. If R is tame as a right module
over itself, then rankΛ(i?) = rankΓ(Γ).
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Proof. This follows immediately from Lemma 2.2 and Proposition

5.6. D

As in Corollary 2.4, there are some cases in which RR is automatically

tame and so Theorem 5.7 immediately applies. As noted before, the

annihilator condition is satisfied if R is right and left noetherian.

COROLLARY 5.8. Let T = R[θv ...9θn] be a PBW extension of a right

noetherian ring R which has no Z-torsion. If R is right fully bounded or R

has the d.c.c. on right annihilators, then rznkR(R) = rank Γ (Γ). D

6. Reduced rank. When studying modules over a prime noetherian

ring, often one is interested only in the torsionfree rank of a module, as

opposed to its uniform rank. Over general noetherian rings, this leads to

the notion of reduced rank, which turns out to behave better than uniform

rank when inducing up to differential operator rings. We prove in this

section that the reduced rank of an arbitrary module M over a right

noetherian ring R remains the same when M is induced up to a PBW

extension of /?, even in positive characteristic.

Recall that if R is a semiprime right noetherian ring with right Goldie

quotient ring Q and M is a right i?-module, the reduced rank (or

torsionfree rank) of M is defined to be the uniform rank (equivalently, the

composition series length) of the right <2-module M <8>R Q. If R is an

arbitrary right noetherian ring with prime radical TV and M is a right

i?-module, the reduced rank, pR(M), of M is defined as follows. Let

M = M0>Mτ> > Mk = 0

be a chain of submodules of M such that M^^N c Λf for each i. (For

example, we may take Mi = MNι when Nk = 0.) Then pR(M) is the sum

of the reduced ranks of the (R/N)-modules Mi_ι/Mr One checks that

this definition is independent of the chain chosen, and that the reduced

rank is additive on short exact sequences. (See [1, Chapter 2].)

The following lemma gives some additional properties of reduced

rank that we will need.

LEMMA 6.1. Let R be a right noetherian ring with prime radical N and

let M be a right R-module.

(a) If C is a right Ore set in R which is contained in ^(N), then

(b) // / is an ideal of R such that all the prime ideals of R minimal over

I are minimal primes of R and such that MI = 0, then pR(M) = pR,r(M).
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Proof, (a) Since C is right Ore and is contained in #(iV), it is
well-known that NRC1 is the prime radical of RC~ι. Since localization
is exact, it is enough to show that if MN = 0, then

We may clearly assume without loss of generality that N = 0 and hence
that C consists of regular elements.

Let Q be the right Goldie quotient ring of R. Then Q is also the right
Goldie quotient ring of RC~1

9 and

M »RQ s (M 9RRC-1) 9Rζrι Q

(as right g-modules). The equality of the reduced ranks follows from this
isomorphism.

(b) Let K be the prime radical of /, that is, the intersection of all
prime ideals of R containing /. Then K/I is nilpotent in R/I9 so there is
a power of K contained in /. Since MI = 0, it follows that there is a chain
of submodules of M such that each factor is annihilated by K. Thus we
may reduce to the case where MK = 0.

Let Q be the right Goldie quotient ring of R/N. Note that Q/KQ is
the right Goldie quotient ring of R/K (because K is the intersection of
some of the minimal prime ideals of R). Since MK = 0, we have

M9R/NQsM9R/κ(Q/KQ)

(as right Q-modules). The required equality follows from this isomor-
phism. D

Since a right noetherian ring R has only finitely many minimal prime
ideals and their product is contained in the prime radical N, part (b) of
Lemma 6.1 implies that we may compute pR{M) by taking a finite chain

M = M0>Mλ> > Mk = 0

of submodules for which each Mi_1/Mi is annihilated by a minimal
prime P(i) and getting

We also need some information about prime ideals in a PBW exten-
sion T = R[θl9..., θn]. As in the previous section, we use 8t to denote the
restriction of the derivation [θi9 - ] to R, and we set Δ = {8V..., 8n}. We
define a Δ-invariant ideal / of R to be Δ-pήme if whenever a product of
two Δ-invariant ideals is contained in /, one of the ideals is contained in
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/. The first result below has been proved by Chin [2, Theorem 2.7] for a

class of rings close to our PBW extensions, and so we merely sketch the

main points of the proof—the reader is referred to Chin's paper for more

details.

PROPOSITION 6.2. Let T = R[θv...,θn] be a PBW extension of a ring

R and let I be a ^-invariant ideal of R. Then I is a Δ-prime ideal of R if and

only if IT is a prime ideal of T.

Proof. Since IT = TI is an ideal of T, we may pass to the PBW

extension R/I c T/IT, and hence we may assume that / = 0. If R is not

Δ-prime, then clearly T is not prime.

Thus we may assume R is Δ-prime and we need to show that if A, B

are nonzero ideals of T then AB Φ 0. Let n be any nonnegative integer.

We define Bn to be the ideal of R generated by all elements of R which

are coefficients of some monomial of total order n which appears as one

of the terms of an element of B of total order n. Bracketing such a

monomial rθ1 with a 0. will produce terms of the form δj(r)θr and/or

rsθJ where \J\ < \I\. Since the only derived coefficients occur with the

same monomial order / as the term they came from, the ideal Bn is

Δ-invariant.

Now let a be a nonzero element of A of minimal monomial order and

let n be a nonnegative integer such that Bn Φ 0. If aB = 0, Lemma 5.2

implies that

B c r-annΓ(α) = r-ann Λ (λ(α))Γ.

Thus \(a)Bn = 0 and so l-axmR(Bn) Φ 0. Since Bn is nonzero and Δ-in-

variant, this last fact contradicts R being Δ-prime. Therefore aB Φ 0 and

so AB Φ 0. D

We need one more set of facts about PBW extensions of right

noetherian rings.

P R O P O S I T I O N 6.3. Let T = R[θl9 ...,θn]bea PBW extension of a right

noetherian ring R.

(a) If T is prime, then R has a {unique) nilpotent prime ideal P.

Furthermore, if C = #Λ(0), then also C = VR(P) and C is a right Ore set

of regular elements in both R and T. The ring RC~ι is a right artinian ring

with unique prime ideal PRC~ι and TC~ι is a PBW extension of RC~ι,

with the same basis. Also, if we let Δr be the set of derivations on RC~ι

induced by δl9..., δw, then RC~ι has no nontriυial Δ''-invariant ideals.

(b) // T is prime and R has no Έ-torsion, then R is prime.
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Proof. The results about R follow from [6] or [15, Theorem 2.2 and
Lemma 2.1]. (The results in [15] are stated for a single derivation only, but
the proofs are easily generalized.) Using leading coefficients it is easy to
see that C consists of regular elements in T. The fact that C satisfies the
right Ore condition in T follows from the fact that T is generated as a
ring by the elements of R and θv...,θn and from the observation that for
any c e C w e have

c{dθi + r + e,.(rf)) = θfid,

where cr = δ-(c)d with r & R and d e C. Using the standard properties
of Ore localizations, one can now check that TC~ι is indeed a PBW
extension of RC~ι. D

We can now prove the reduced rank equality.

THEOREM 6.4. Let T = R[θv...,0J be a PBW extension of a right
noetherian ring R, and let M be a right R-module. Then ρR(M) =
pτ(M® dRT).

Proof. Choose submodules M = Mo> Mλ> > Mk = 0 such that
each Mi_ι/Mi is annihilated by a minimal prime ideal; then ρR(M) is the
sum of the values p^ί-M^/M,.). Since T is flat as a left i?-module,
ρτ(M ®Λ T) is the sum of the values p^M^^M^ ΘΛ T). Thus, we
may suppose that MP = 0 for some minimal prime ideal P of R.

Let / be the largest Δ-invariant ideal contained in P. It is easy to see
that / is a Δ-prime ideal, and so Proposition 6.2 implies that IT is prime
in T. Furthermore, Proposition 6.3 implies that some power of P is
contained in /, and so P is the unique prime minimal over /. If Q is any
prime ideal of T contained in IT, then / = Q Π R is a Δ-prime ideal
contained in /. By Proposition 6.3 there is a prime ideal Qo of R with
Qo Q J Q P for some n. Since P is minimal, this implies P = Qo, and so
j n c p n c /. Thus / = / (because / is Δ-prime), whence IT = Q. This
shows that IT is a minimal prime ideal of T.

Since M/ = 0 and / is Δ-invariant, ( M ® Λ Γ ) / Γ = 0 . By Lemma

p Γ ( M ®* Γ) = p r//Γ(AΓ ®R T) = p r//Γ(AT β Λ / / T/IT).

Thus we may pass to the PBW extension R/I c Γ/JT, and hence assume
that / = 0. Now T is a prime ring, and P is the prime radical of R.
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Using Proposition 6.3(a) and Lemma 6.1(a), we may localize at the set
C of regular elements of R and thus assume that R is a right artinian ring.
Since MP = 0 and R/P is a simple artinian ring, M is a direct sum of
simple right (i?/P)-modules, and hence we may reduce to the case where
M is simple. Then M is uniform and torsionfree as an (i?/P)-module,
and so pR(M) = 1. By Corollary 5.3, M ®Λ T is a uniform Γ-module.
Since M is (up to isomorphism) the unique simple right i?-module and R
is right artinian, M embeds in RR. This implies that M ®RT embeds in
the prime right noetherian ring Γ, and so is torsionfree as a Γ-module.
Thus ρτ(M ®R T) = 1, which completes the proof. D
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