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EMBEDDING 2-COMPLEXES IN R*

MAaRrkO KRANIC

Using Freedman’s results it is not very hard to see that every finite
acyclic 2-complex embeds in R* tamely. In the present paper a relative
version of this fact is proved. We also study when a finite acyclic 2-
complex with one extra 2-cell attached along its boundary can be
tamely embedded in R*.

Introduction. In 1955 A. Shapiro found a necessary and sufficient
condition for the existence of embeddings of finite n-complexes in
R?" if n > 2 (see [14]) by defining an obstruction using the ideas of H.
Whitney ([15]). The obstruction is not homotopy invariant and is in
general quite hard to compute. It is well-known that any finite acyclic
n-complex embeds in R?" if n # 2 (see for example [8]). Not long ago
it was proved in [16] that any finite n-complex K with H"(K) cyclic
embeds in R?" if n > 2.

It is known that any finite acyclic 2-complex can be embedded in R*
(see [9], compare also with [11]). In the present paper the following
relative version is proved.

THEOREM 1. Let K be a finite 2-complex obtained from a 2-complex
L by adjoining one 2-cell e along its boundary. If H*(K) = 0 then any
n1-negligible tame embedding of L into R* can be extended to a m,-
negligible tame embedding of K into R*.

REMARK. This result is the best possible in the following sense:
there exists a 7;-negligible embedding of a finite acyclic 2-complex
into R* which cannot be extended over an additional 2-cell (see §3).

In §2 the following is proved:

THEOREM 2. Let L be a finite acyclic 2-complex. Suppose K is ob-
tained from L by attaching one additional 2-cell ey along its boundary.
If a regular neighborhood of some complex K which carries the second
homology of K can be embedded in some orientable 3-manifold then
K can be tamely embedded in R*.

Note. K C K carries the second homology of K if the inclusion K C
K induces an isomorphism H,(K) ~ H,(K). A regular neighborhood
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of K is the union of all simplices in the second barycentric subdivision
of K which intersect K (compare with [13], page 33).

The author believes that this theorem is true without the condition
on K.

The above results give only tame embeddings because the proofs
use the disc embedding theorem (see [6]). To our best knowledge it
is not even known if every finite contractible 2-complex embeds in R*
smoothly (i.e.: by an embedding which is smooth on the interior of
each cell).

1. Embedding acyclic 2-complexes in R*. In what follows all 2-
complexes will be finite simplicial or cell complexes. Everything will
be smooth or PL except when the results of [S] will be used. All im-
mersions will be regular (i.e.: self-intersections will be transverse and
there will be no triple points). Familiarity with the basic work of
Freedman and Quinn ([6]) is assumed. We are going to use the disc
embedding theorem in the following form:

THEOREM (Disc Embedding Theorem). Let M be a simply-connected
4-manifold with boundary, and let f: (D?,0D?) — (M, dM) be a framed
regular immersion which restricts to an embedding on dD?*. Suppose
there exists a transverse sphere S for f(D?) such that the homological
intersection number S - S is even. Then there is a topologically framed
disc in M with the same framed boundary as f(0D?); furthermore, the
resulting tame disc has a transverse sphere.

Note. If F is a connected surface immersed in a 4-manifold then
a transverse sphere for F is an immersed sphere which intersects F
transversely in a single point.

A proof of the disc embedding theorem can be found in [5]. How-
ever, since our formulation is slightly stronger, a Casson tower has
to be constructed more carefully to ensure the existence of the trans-
verse sphere. This can be achieved by using recent techniques of 4-
dimensional topology which are described for example in [2] and in
[6] (see [11]).

LEMMA 1. If f: K — R* is a regular immersion of a 2-complex K
then H?(f(K)) is isomorphic to H?*(K).

Proof. Since f is a regular immersion, the singular set of f is
finite, say {y,...,y:} and so is each set f~1(y;). Clearly f(K) is
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homeomorphic to K/f~!(y)/---/f'(y;). Let K; be the set
K/f~Y(»1)/---/f~' (). Then K; = K;_;/f~'(y;). From the exact
sequence of the pair (K;_,, f~!(y;)) we get the isomorphism H?(K;_;)
= H?*(K;), since HS(f~1(y;)) is trivial for s > 0. It follows that H?(K)
= H(K,) = H*(K,) = H2(f(K)).

LEMMA 2. If K is a 2-complex and if e is a 2-cell of K then any em-
bedding of K —e in R* can be extended to an embedding of
(K —e) U (a collar of de in e).

Proof. Let f: K —e — R* be an embedding. We can extend f to
a regular immersion g: K — R*. g(e) intersects g(K — e) in finitely
many points xj, ..., Xs. Let X be the set (U{_; g7!(x;))Ne. Then X is
again a finite set and g|K — X is an embedding. Since X is contained
in the interior of e, there is a collar 4 of de in e which does not contain

any point of 4. Therefore g|(K — e) U A4 is an embedding.

LEMMA 3. Let K be a 2-complex obtained from a 2-complex L by
adjoining a single 2-cell e to L along its boundary. Suppose H2(K) = 0.
If A is a collar of de in e then any n,-negligible embedding f: LUA —
R* can be extended to a n|-negligible embedding g: K — R*.

Proof. Let a = f(0A—0e). Let N be a regular neighborhood of f(L)
in R containing f(LU A) and such that o = 8N N f(LU 4). Since the
embedding f is 7;-negligible, R*— N is simply-connected and therefore
a bounds a regularly immersed disc D such that N Nint(D) = &.

Since N UD retracts to LUAUD, and since LU AU D is the image
of K by a regular immersion, H2(N U D) is isomorphic to H2(K), by
Lemma 1. Therefore, by Alexander duality, H;(R*—(NUD)) is trivial.
Let M = R*— N. Since H,(M — D) = 0, there is an orientable surface
F embedded in M such that it intersects D transversely in one point
(a meridian u of D bounds an embedded orientable surface in M — D,
because H;(M — D) = 0; if we glue to it the disc lying in the fiber of
a tubular neighborhood of D, and having u for its boundary, we get
F). Choose a collection of simple closed curves a;, b; on F such that
aiNaj =@, biNnbj =, for all i, j, and such that a;Nb; = G, for
i # j, and a single point if i = j, and which generate H;(F). Since
each of these curves bounds an immersed disc in M (M is simply-
connected), we can perform a sequence of double surgeries to change
F to an immersed sphere S. Move D — F off of S by finger moves of
D to get a new immersed disc D which has S for its transverse sphere
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(see [2], page 226). Since S C R*, the intersection number S - S is
zero,; therefore we can apply the disc embedding theorem to replace D
by a tamely embedded disc which still has a transverse sphere. This
defines a 7;-negligible extension of f in the obvious way.

Theorem 1 clearly follows from the above lemma. We also get the
following two corollaries.

COROLLARY 1. If K is a 2-complex such that H*(K) = O then there
exists a m;-negligible embedding of K in R*.

Proof. Let ey, ..., e, be the 2-cells of K, and let
Ki=KWDue U---Ue,.

Since H3(K, K;) = 0, it follows from the cohomology sequence of the
pair (K, K;) that H%(K;) = 0, for every i.

Let f5: K() — R* be some embedding. Clearly f; is 7;-negligible.
It is enough to show that any =;-negligible embedding f;_;: K;—; — R*
can be extended to a m;-negligible embedding f;: K; — R4, if i < r+1.
By Lemma 2 it is possible to extend f;_; over a collar of de; in e¢;. Then
use Lemma 3 to get f;.

COROLLARY 2. Any acyclic 2-complex can be embedded in R*.

REMARK 1. Any contractible 2-complex K can be embedded in
R* so that the embedding is 7;-negligible and so that the transverse
spheres are embedded: Let N be an abstract 4-dimensional regular
neighborhood of K. Let D; be a disc transverse to the 2-cell ¢; of K
such that D; C ON. By [5] the double D(N) is homeomorphic to S4.
The double D(D;) is an embedded transverse sphere to e;.

REMARK 2. Corollary 2 has a simple proof which was told to the
author by Robert Edwards: If K is an acyclic 2-complex let N be an
abstract 4-dimensional regular neighborhood of K. dN is a homology
3-sphere, therefore it bounds a contractible 4-manifold A (see [5]).
Glue A to N along AN. The resulting manifold is homeomorphic to
S4, K is contained in it. (Compare with [9].)

2. Proof of Theorem 2.

LEMMA 1. Suppose V is an orientable 3-manifold such that H\(V)
is free and Hy(V) = 0. If a simple closed curve C C 0V is null-
homologous in OV then a basis for H\ (V') can be represented by disjoint
simple closed curves ay, ..., oy contained in 3V — C.
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Proof. Suppose we constructed disjoint simple closed curves oy, ...,
aj_1 COV-C, j < k. We are going to define ;. Let W be the mani-
fold obtained by attaching 2-handles to V" along the curves oy, ..., aj_|
so that the attaching annuli miss C. Thus C c dW. Clearly H, (W)
is free and Hy(W) is trivial. Since C is null-homologous in 9V, it
is also null-homologous in dW. Therefore it separates W into two
components with closures F and F, (i.e.. F{UF, =oW, FinF, =C).

Since C bounds in W, H (W C) is isomorphic to H{(W). The
Mayer-Vietoris sequence of the pair {(W F}), (W F,)} gives us the iso-
morphism H;(W C) = H\(W F,) ® H;(W F,), because Hy(W W) —
H; (W, C) is the zero homomorphism and since H; (W oW) = H*(W) =
0. Because H(W/C) is free (being isomorphic to H;(W)), so are
H\(W Fy) and H|(W F3).

Let is: Hi(F;) — H{(W) be the homomorphism induced by the
inclusion F; C W. Since C is zero in H{(0W), H{(W) is isomorphic
to im(i;) 4+ im(i;). Without loss of generality we can assume that
im(i;) # 0 (because H;(W) # 0).

Let x be a non-zero element of im(i;). Suppose that x = nu for
some primitive element u € H;(W). Since H;(W F;) has no torsion,
it follows from the short exact sequence

0 — im(iy) — H\(W) — H\(W F) — 0

that « has to lie in im(7;), for example u = i;(v), for some v € H(F}).
Since v is primitive and not homologous to dF; in Fj, it can be rep-
resented by a simpie closed curve o in F; which can easily be made
to lie in OV (see [11], page 13 or [12]).

LEMMA 2. Let V be an orientable 3-manifold such that H (V) is free
and Hy(V) = 0. Suppose C;,..., Cy are disjoint simple closed curves
in V representing a basis for H\ (V).

If Cy is a simple closed curve in dV which separates OV then it
is possible to choose framings of C,, ..., Cy so that Cy is slice in the
homology 3-sphere X obtained from the double D (V') by surgery along
the framed curves C,, ..., Cx. More precisely. X bounds a contractible
4-manifold A such that Cy bounds an embedded disc D in A.

Proof. By Lemma 1 it is possible to represent a basis of H;(V)
by disjoint simple closed curves A4;,...,A; in 9V — C. Let W be
the 3-manifold obtained by attaching 2-handles to V' along the curves
Ay,..., Ay. Since OW = §2? (W is acyclic), Cy bounds a disc D in 0W.
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FIGURE 1

D(W) is a homology 3-sphere. We can think of D(W) as being gotten
from D(V') by a sequence of surgeries along the curves Ay, ..., 4.

Let £ be a homology 3-sphere obtained from D(V') by a sequence
of surgeries along the framed curves Ci,..., C;. The framings will be
chosen later.

Since both X and D(W) are obtained from D(V') by surgery, there
are cobordisms X and Y from D(V) to £ and to D(W), respec-
tively. We can construct X by attaching 2-handles to D(V') x I along
Ci,...,Cr Cc D(V)x1 and Y by attaching 2-handles along 4, ..., 4,
respectively. Let uy,..., u; be the meridians of A4,,..., 4, respec-
tively. If Y is turned “upside-down” it becomes a cobordism from
D(W) to D(V). Y is constructed from D(W) x I by attaching 2-
handles along u,,..., 4, C D(W) x 1. If X and Y are glued together
along D(V') we get a cobordism Z from D(W) to . To construct Z
from D(W) x I we have to attach 2-handles to D(W) x I along the
curves Cy,...,Cp, 1, ..., . CD(W) x 1. Co € D(V) x 1 C Z bounds
adisc D in Z: D is the union of CyxI c D(V)xI and D c D(W)x0.

Let Q be a contractible 4-manifold with boundary D (W) (Q exists
by Theorem 1.4’ of [5]). Let P be the 4-manifold obtained by gluing Z
to Q along D(W). The curves Cy,...,Cy, Ui,..., 4 C D(W) bound
immersed discs Ey, ..., Ey, Ej, ..., E, respectively, in Q (see Figure
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1). These discs together with the cores of the 2-handles of Z form a
collection of immersed spheres S, ..., S, S},...,S; in P such that S;
corresponds to C; and ] to u;, I = 1,..., k. The spheres §i,..., S}
intersect D with zero intersection numbers. All intersections arise
from intersections of the meridians y,, ..., 4; with D. By a series of
pipings along disjoint arcs in D each S7 can be changed to an immersed
surface F; disjoint from D, and such that F; intersects F; only in
int(Q). Fi,..., F; represent the same homology classes in H,(P) as

{»---»S;. It is possible to represent half of symplectic generators of

H\ (U, F;) by simple closed curves lying in D(W) = Q.

S! F;

D D

- a basis element for H,(F; N Z)
—_—

Since Q is contractible, each of these curves bounds an immersed
disc in Q, missing D. Using these discs we can change each F; into
a new immersed sphere S] by performing a sequence of surgeries.
Clearly the intersection numbers were not affected by going from the

old S7’s to the new ones. The spheres Si,..., S, S},...,S; represent
a basis for Hy(P).
Choice of framings for Cj,..., Cy: Choose them in such a way that

S;-8;=0,foralli=1,..., k.

Finding the intersection numbers S; -S}: Suppose C; = E’j?:l xijA;j
in H{(V). Let G; be an oriented surface in V' such that 9G; = C; —
Y xijA;in H{ (V). In D(W) each A; bounds a disc D; such that D; -
Us = djs. Capping off the boundary components of G; corresponding
to the curves 4;, we get a surface G; with boundary C;. Obviously
G;- 1j = x;j. Therefore Ik(C;, u;) = x;j, and thus S; - S = x;;.

We are going to show next that S - S} =0foralll <i j<k. By
Poincaré duality H,(D(V)) is isomorphic to H2(D(V)). Let Fy, ..., F,
be closed surfaces dual to A4y,..., A, respectively, i.e.: F;- A; = J;j.
By a series of pipings on each F; along the curves 4, ..., 4; we can
achieve that 4; N F; = @ for i # j, and 4; N F; ={point}. Each F;
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defines a null-homology of u; in D(V)—N (Ui;l A;), where N (Uf;l A;)
is a regular neighborhood of Uﬁ;, A;in D(V). Since u; can be made to
miss F;, the linking numbers 1k(u;, u;) are all zero. Therefore S - S =
Oforall1 <1,j<k.

Let now A’ be a regular neighborhood of QUS;U- - -USUS U- - -US;,
in P — D. Since all the singularities of Uf;l S; U (U’;=l S") lie inside
Q, A’ is simply-connected.

Let (y;;) be the inverse of the matrix (x;;). Pipe together (in A')
copies of the spheres S; with suitable orientations to get for each i
a 2-sphere S; realizing the element Zlf':l y:i;Sj of Hy(A"). Then S -
S_; = E{;:l yl‘ijs = 5;5, and S,' . Sj = 2Zj<s y,-jyiSSj . Ss. Thus S,' .
S; is even for all 1 < i, j < k. Let S” be the immersed sphere
representing the element S; — (1/2)(S; - S’,~)S§ — 35si(8i - S5)S!. Then
Sy -S;. =S; -S} = d;j, and also S}'-S7 = 0, for every i, j. Therefore the
conditions of Theorem 1.2 of [5] are satisfied and A’ can be changed
into a contractible manifold A” by a series of surgeries which do not
affect 9A’. By gluing A” to P—A’ along dA' = 9 A" we get a contractible
manifold A with boundary X. D is the desired slice.

Let L be a simplicial 2-complex, and let L" be its second barycentric
subdivision. If v is a vertex of L let f, be a regular immersion of the
link Ik(v) of v in L” into S2. Thus for every vertex ¥ of Ik(v) N L{),
£+(¥) has disc neighborhood Dy in S? such that f,|f;!(Dy) is one-to-
one. Since the star st(v) of v in L” has a natural cone structure over
1k(v), and since B3 is also a cone over S2, f, can be extended to a map
fv: st(v) = B, ~ B3 in a natural way.

For each edge s of L with vertices vy and v; attach a 1-handle A;
along Dy, U Dy,, where 7; = st(v;) N L(), to get (an orientable) han-
dlebody H. The mapping f' = [Iycro0 /i Lyero Bv — H can be
extended over the 1-handles as follows:

If s is an edge of L with vertices vy and v, let Z; be the star of
its barycenter in L", and let X; = Z; Nst(v;). There exists a home-
omorphism ¢;: Xy x I — Z; which is identity on X x 0 and which
carries Xy x 1 onto X;. Let ys: D2 x I — hg be a homeomorphism
such that y,! f/(X;) is a union of straight rays from the origin to the
boundary of D% x i. f' can be extended over Z;. For example, if
vl f'os(z, 1) = (xi(2), i), z € Xo, define a map f;: Zs — hs by

fs9s(z, 1) = ys(exp(ia(2)t) - xo(2), 7)

where ¢ € I, z € Xy, and 21(2)/|x1(2)| = exp(ie(z)) - 20(2)/|x0(2). S5
is an extension of f’ over Z;.
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Any such family of maps {f,},cro and {f;}serm_ro defines a map-
ping f of a regular neighborhood U of L)) to a handlebody H such
that f|Fr(U): Fr(U) — 0H is a regular immersion and such that
fILW is an embedding (Fr(V) denotes the frontier of U in K). Fur-
thermore, by slight adjustments, Fr(U) can be made a union of smooth
circles, and f|Fr(U) a smooth regular immersion. f can also be made
smooth on U — L(!) and on the interior of each edge of L.

Both U and H have a natural mapping cylinder structure over L(!)
(i.e.: U and H are homeomorphic to mapping cylinders of natural pro-
jections Fr(U) — L) and 0H — L) = (L"), respectively). These
structures can be made compatible with f in the following sense. If
p: Fr(U)x1I — U and q: 0H x I — H are the projections induced
by the two mapping cylinder structures such that p(Fr(U) x 0) =
g(0H x 0) = L) then q(f(x),t) = f(p(x, 1)), for x € Fr(U).

Let ey,...,e; be the 2-cells of L. Denote by a; the intersection
e;NFr(U). Thus L is obtained from U by attaching discs along U5_, o;
via homeomorphisms.

The immersion f|Fr(U): Fr(U) — H can be changed to an embed-
ding F: Fr(U) — H, by pushing parts of f(Fr(U)) slightly inside H
near the intersections. F in turn defines an embedding F: U — H x I
as follows:

F(p(x 1) = (q(F(x),t), (t+1)/2), telxeFr().

Clearly F(Fr(U)) ¢ H x 1, and F(int(U)) C int(H) x [1/2,1) C
int(H x I). Denote by C; the curve F(o;) C H x 1. If we choose
a framing for each C;, and attach 2-handles along Ci,..., C; we get
a 4-manifold N. F can be extended to an embedding #: L — N by
mapping e; N (L — U) onto the core of the corresponding 2-handle.

ON is obtained from 9 (H x I) = D(H) (=the double of H) by a
sequence of surgeries along the framed curves Ci, ..., Cy.

Proof of Theorem 2. Let ey, €y, ..., ez be the 2-cells of K, and let
e, ..., e be the remaining 2-cells of K. Let U be a regular neighbor-
hood of K in K. Suppose U is contained in an orientable 3-manifold
M. Let H be a regular neighborhood of K1) in M such that A n U
is a regular neighborhood of K1) in K. The inclusion HNU c H
defines mappings f,, v € K© and f;, s € K) — KO For the rest
of the vertices and edges of K define maps f, and f; in any way as
described above.
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As above, these maps define a mapping f: U — H of a regular
neighborhood U of K(!) in K into a handlebody H. f restricts to an
embedding on ag U (Uf_,, , @;) such that

(e 9,2)) e (U) -2

(a; are as above). As above f induces an embedding F: U — H x I.
Clearly C; = f(e;), for i =0, k+1,...,g. Since L is acyclic, and
since K carries H*(K), Cy = Y% k+12Ci in Hy(H). We want to
show now that C = Zl i+1 @iCi also in H;(OH). Suppose By, ..., Bg
is a basis of ker(i) (where i: H(0H) — H (H) is induced by the
inclusion 0H C H) dual to Cy,...,Cy, ie.: C;- Bj = 6;; in H (0H).
If CO = Ef:k-{—l a,-Ci + E}g:] ﬂ,’Bi in Hl(aH) then Co : Cj = _Bj =0
which proves the claim. Attach 2-handles to framed curves Cy, ..., Cg
in H x 1 to get a 4-manifold N and an extension of the embedding F
to an embedding F: LUU — N, F(ag) = Cy C ON. AN is a homology
3-sphere X. It is obtained from D(H) by surgeries along Cj, ..., C,.
Let V' be the 3-manifold gotten from H by attaching 2-handles along
the simple closed curves Cy,y,...,Cg C 0H. Since Cy = Zfzk +12iCi
in H;(0H), Cy separates dV. Clearly H|(V) is free and H,(V') = 0.
Let W = D(V). W can be obtained from D(H) by surgeries along
Ciy1,--., Cg. Therefore T can be obtained from W by surgeries along
Ci,...,Cx. By Lemma 2, the framings of Cj, ..., C; can be chosen so
that Cj 1s slice in X.

Let A be a contractible 4-manifold with boundary X, such that C,
bounds an embedded disc D in A. If we glue N to A along X we get a
homotopy 4-sphere which is therefore an S* (see [5]). The embedding
F can be extended to an embedding of K by sending e; — U onto D.

REMARK 1. If K is a generic 2-complex, i.e.: if it is locally homeo-
morphic to one of the following spaces

7

. .\
W

Q‘ N

%\\;l / xd
N v
S~—~ .

then it is possible to determine whether it can be embedded in some
3-manifold as follows: It is easy to embed a closed regular neighbor-
hood U of the intrinsic 1-skeleton G of K (i.e.: the set of non-manifold
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points of K—compare with [7]) in a (possibly nonorientable) handle-
body H so that Fr(U) c 0 H, and so that G is a spine of H. K is
obtained from U by attaching connected surfaces Fi, ..., F; to Fr(U)
along 0F;U- - -UAF, = UN(K — U). Let w; € H'(H) be the orientation
class: wy(C) is equal to 1 if C passes through nonorientable 1-handles
of H an odd number of times, otherwise it is 0. K can be embedded
in some 3-manifold if and only if w{(0F;) =--- = w(0F;) = 0.

REMARK 2. It is known that any finite 2-complex K such that its
intrinsic 1-skeleton embeds in R2 can be embedded in R*. A discussion
in this direction can be found in [7].

3. An example. In this section we give an example of a 2-complex
K obtained from an acyclic 2-complex L by adjoining one 2-cell ¢,
and a m;-negligible embedding f: L — R* which cannot be extended
to an embedding of K.

Let K be the complex obtained from a wedge of two circles by
attaching three 2-cells é;, e, and e, via immersions as follows:

/<D

K

Let U be a regular neighborhood of K(1) in K, and let L = UUe, Ue,.
If o9 = Fr(U) N &y then K is obtained from L by attaching a 2-cell
ey along its boundary to ag. Define an embedding of Fr(U) in a
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handlebody H with spine S! v S! (= K()) as follows:

o; =F({U)Ne;

FIGURE 2

As in §2 this defines an embedding f: U — H x I. Attach 2-handles
to f(y) and f(a,) with framings indicated in Figure 2 by the dotted
circles to get B4. The cores of the two 2-handles can be used to extend
f to a m;-negligible embedding f: L — B* Cc R*. f(ay) is the trefoil
knot in the boundary of B*. Therefore it is not slice and thus f cannot
be extended to an embedding of K.
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