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ASYMPTOTICS FOR SOLUTIONS
OF SYSTEMS OF SMOOTH RECURRENCE

EQUATIONS

WILLIAM C. BAULDRY, ATTILA MATέ AND PAUL NEVAI

It is shown that convergent solutions of a system of smooth recur-
rence equations whose Jacobian matrix satisfies a certain "nonunimodu-
larity" condition can be approximated by asymptotic expansions. An
application is given to approximate the recurrence coefficients associated
with polynomials orthonormal with respect to the weight exp(-β(x)),
where Q is an even degree polynomial with positive leading coefficients.

1. Introduction and the main results. The aim of these notes is to

generalize the results of [9] to systems of recurrence equations. As will be

discussed in §§4 and 5, the need for such a generalization arose in

connection with systems of recurrence equations describing certain coeffi-

cients connected with orthogonal polynomials associated with asymmetric

Freud weights on the real line. Our main result is

THEOREM 1.1. Let k > 0, N > 1, and r > 1 be integers, and for each

integer μ with 1 < μ < r let

Hμ(xo;xvj:l <v<r,0<j<k)

be a complex-valued function of (k + l ) r 4- 1 real variables x0, xvj, all of

whose partial derivatives of order < N are continuous in a neighborhood of

the origin 0. Denoting by 30 and dVJ the partial derivatives d/dx0 and

d/dxVJ, respectively, assume that

(1.1) det £ ^ A ( ° ) ΦO

.7 = 0 \l<μ,v<r

holds for all complex numbers z with \z\ = 1 (det indicates the determinant

of the r X r matrix on the left).

Let β < 0 be a fixed real number, and assume that the reals yvn

(1 < v < r, n > 1) with

(1.2) Urn yvn = 0 (1 < v < r)
«-»oo

form a solution of the system

(1.3) /

209
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of recurrence equations. Write

(1.4) S = {βi -y: 1 > 0, j > 0, βi -j > βN],

and let β = sλ > s2> > sq = /?JV 6e α« enumeration of the elements of
the set S. Then there are numbers cvl (1 < v < r, 1 < / < q) such that

(1.5) yvn= Σ crln* + o(nPN) asn-*n.
/=1

Moreover, the numbers cvl depend only on the ith partial derivatives of Hμ

for I < μ < r and 1 < i < N.

If 1/β is an integer then clearly

S=

and so (1.5) simplifies to

(1.6) yvn-Σ

The proof of this theorem depends on the following result about
systems of linear recurrence equations; this result generalizes the Lemma
of [9, p. 424]:

LEMMA 1.2. Let k > 0 and r > 1 be integers, and let fv and gμ

(1 < μ < r, 1 < v < r) be complex-valued functions defined on positive
integers such that the equations

(1-7) Σ Σ Knjfλn + j) = gμ{n) {n>Q,\^μ<r)

hold, where λμj;ny are complex numbers such that the limits

(1.8) U r n λ μ v n j = \ v j { l < μ , v < n 0 < j < k )
n—> 00

exist. Suppose that the "characteristic determinant"

(1.9) D(z) = detί Σ KJA
L7 = 0 \l<μ,v<r

satisfies

(1.10) D(z)Φ0

for every complex z with \z\ = 1.
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Now let a < 0 be a fixed real number, and suppose that each fv is

bounded (1 < v < r), and

(1.11) l im gμ(n)iΓ° = 0 (l<μ<r).
n->oo

Then we have

(1.12) Urn fv(n)n~a = 0 (1 < v < r).

as well.

Next we turn to the proofs of these results. The proofs are closely

related to those in [9], though the present results are substantially more

general. A special case of Theorem 1.1 was given in [1] without proof.

2. Proof of Lemma 1.2. In virtue of (1.10), l/D(z) has a Laurent

expansion

(2.1) 1/DW- £ a,z'
/=-00

absolutely convergent in a closed annulus p~ι < \z\ < p (p > 1). This

means in particular that

(2.2) β,= o{p-M) as/-* ±oo.

Put λμvnJ = λμvj for n < 0, and extend fv and gμ to arguments n < 0

as follows (1 < μ, v < r\ 0 <j < k). Put fv{n) = 0 for all n < 0 and

then determine gμ(n) foτn<0 from (1.7). Clearly, we will have gμ(n) = 0

for all but finitely many n < 0, and (1.7) will be valid for all integers n

with -oo < n < oc. Using E to denote the forward shift operator, that is

E ι f { n ) =f(n + I) ( - o o < / < o o ) ,

and writing

(2.3) hμ{n) = gμ(n) + Σ Σ (λMr, - λμvnJ)fv(n + j)
v = l y = 0

this means that

(2.4) t Σ \vjE
J\fv{n) = hμ(n) (-oo < n < oo, 1 < μ < r)

r=l\j=0 j

holds. Using Cramer's rule, we can solve this system of equations, except

for the division by D(E) (cf. (1.9)), to be discussed later; the point is that

(2.4) is a system of linear equations where the coefficients on the left-hand
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side come from a commutative ring. We obtain

(2.5) D(E)fv(n) = t Dμv{E)hμ{n),

where Dμv{E) is the cofactor of the element in the μth row and the
column of the determinant D(E). The right-hand side looks like the
expansion of the determinant corresponding to the vih unknown, but it is
not a determinant since Dμv(E) and hμ(n) do not commute in general.
From (2.5) one can obtain fv{n) via multiplying both sides by the inverse
of D(E). According to (2.1), the inverse of D(E) is formally given by

00

/—oo

hence, one might surmise that
oo r

(2.6) fv(
n)= Σ aιEιLj Dμv(E)hμ(n).

/=_oo μ = i

To see that this formal calculation is indeed correct, one only has to
observe that the series on the right-hand side is absolutely convergent in
view of (2.2) and the boundedness of hμ. The boundedness of hμ follows
from (1.8), (1.11), and the assumed boundedness of fv for 1 < v < r (cf.
(2.3)).

(2.6) allows us to estimate fv{n) for large positive n as follows. Using
(2.3), (2.6) can be rewritten as

/ » = Σ Σ alDμv(E)gμ(n + I)
/=-oo μ = l

(2-7) co r , *

+ Σ Σ Σ Σ β ^ ( % r U » + /)W» + 0;
/=-oo μ=l 5 = 1 7 = 0

here we used the notation λμpJ(n) = λμvnJ to indicate n as the argument
on which the operator E acts; moreover, we incorporated the powers Eι

into the functions as arguments shifts. By (1.11) and (2.2), the first sum on
the right-hand side of (2.7) is o{na) as n -> oo. As for the second sum, the
absolute value of the term corresponding to the indices /, μ, s, j is

(2.8) <: K\aλ max |λμί,. - λμsJ(n + I + i)\\fs(n + I + i) |,

where K is a constant depending on the determinants Dμv(E) (1 <
/x, v < r), and the range 0 < i < (r - \)k is explained by the fact that the
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highest power of E occurring in (the expansion of) Dμv{E) has exponent
at most (r - l)fc, and so Dμv(E) causes various argument shifts by
numbers i in the range described. As the quantity following the symbol
max is bounded in view of (1.8) and the boundedness of /5, the sum of
these terms for μ, s, j , and for / in the range -oo < / < -n/2 is

/ -n/2 \

°\ Σ P"'7' = o(na) as J2-» oo,

according to (2.2). By (1.8), the maximum in (2.8) is

o( sup |Λ(i) |) as w + /-» oo.

Hence the sum of the terms for μ, s9 j and for / in the range -n/2 < / < oo
is

oί sup ί \ft(i)\)
\ i>n/2 5 = 1 /

in view of (2.2).
Putting these estimates together, (2.7) implies that for every ε > 0

there is an nε such that
ε

- S UP L
' r i>n/2 5 = 1

holds for n > nε (> 0) and for 1 < v < r. As a < 0, na here is a
decreasing function. Thus, putting

i>χ 5 = 1

for any real x (F is finite since fs is bounded), this means that

F(x) < εxa + εF(x/2)

holds for every x > nε. Using this repeatedly, with x/2ι replacing x for
0 < / < q, where q is the largest integer < \og2(x/nε), we obtain that

x

/-o ^ ' ^

Noting that F(x/2q+1) < F(0) and εq+1 = O(jclog2C) as JC -> oo (for fixed
ε), F(x) = o(xa) follows from here by observing that ε > 0 was arbitrary
(but nε depends on ε). Thus (1.12) follows. The proof of Lemma 1.2 is
complete.
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3. Proof of Theorem 1.1. Observe that Hμ(0) = 0 for 1 < μ < r in
view of (1.2) and (1.3). Thus, according to Taylor's formula,

Hμ(nβ;yvn+J:l<v<r,O<j<k)

N-lN-l Λ

= Σ 7r

ί ΣΛ,+/ ϋVt**'; ' J W i ^ ^ . o

for 1 < r < /x and for some θ (depending on μ and n) with 0 < θ < 1,
provided n is large enough (so that the point (nβ; yv,n+/ 1 < v < r,
0 <j < k) belongs to a convex neighborhood of 0 in which Hμ is N times
continuously differentiable). The left-hand side here is zero according to
(1.3). In view of the continuity of the Nth derivatives of Hμ at 0, (1.2) and
the negativity of /? imply that the right-hand side will change only slightly
if we replace the argument of H with 0 in the last term; estimating the
magnitude of this change, we obtain the following (note that the modified
last term of the preceding formula being incorporated into the sum below,
/ now goes to N rather than N - 1):

N l / ^ Λ V
(3D y — Λ + y y v M .3. \ H (0)/ = !

= o{nβN) + o Σ Σ \yv,n+j\
*> = ! 7 = 0

as n —> oo (the function expressed as o may depedn on k, r, N and the
bounds of the iVth derivatives of Hμ close to 0).

To prove (1.5), we will use induction, that is, we will assume that for
some integer m with 1 < m < q we have

m - l

(3-2) yvn = Σ cwn* + δvn (1 < v < r),
/=1

where

(3.3) δvn = o(ns-i) zsn-*<x>;

here in case m = 1 we put sQ = 0. For m = 1, (3.3) is simply the
restatement of (1.2), and for m > 1 (3.3) will be the hypothesis of
induction. As for the induction step, we will show that expansion (3.2) can
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be continued, i.e. that

(3.4) 8vn = cvmns- + o(ns»>).

As we have sq = βN, in case m = q the error term here will be o{nβN),
i.e. the same as in (1.5). Thus, to prove (1.5) it will be sufficient to
establish (3.4).

According to (3.2), we have

m - l

(3.5) yv,n+j= Σ cvl(n+j)Sι + δv,n+J

/=i

m

= Σ c9lJn« + 8WψΛ+j + o(n'*)
/=i

as n -> oo for, say, 0 < j < k. Note that the summation on the right goes
to m rather than m — 1. The right-hand side here is obtained by taking
the binomial expansion

It is clear from the definition of the set S given in (1.4) that the exponents
Sj - s of n on the right satisfying st - s > sm belongs to S. Thus one
indeed obtains the right-hand side of (3.5), and it is clear that the
coefficients cvlj (1 < / < m) are determined by the coefficients cvl (1 <
/ < m - 1).

We are going to substitute (3.5) into (3.1). Note for this that Svn+j =
6>(1) and nβ8vn+j = o{nSm) as n -> oo (1 < v < r, 0 <j < k) according to
(3.3); the second relation holds since clearly sm_λ + β < sm. As β > sh

the second relation also means that ns'8n+J = o(nSm). Thus carrying out
the indicated substitution, we obtain that

m — 1

(3.6)

holds for 1 < μ < r as n -> oo with some constants Cμh 1 < / < m, and
C'μm. The first error term on the right comes from the second error term on
the right-hand side of (3.1) and from powers higher than first of 8vn+J

resulting from substituting (3.5) into (3.1). Note also that the first error
term on the right-hand side of (3.1) was absorbed into the second error
term on the right of (3.6); this can be done since βN < sm. It is clear from
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the definition of S in (1.4) that in deriving (3.6), only exponents of n
belonging to S will occur, that is no powers of n other than those
indicated should occur in (3.6). Substituting (3.3) into (3.6), it follows that
Cμl = 0 for 1 < / < m - 1. Thus (3.6) becomes

(3.7) c;mΛ - + Σ Σ W Λ ( ° ) = °[ έ Σ Kn+J\) + *(*'-)•
v = l y = 0 \v = l y = 0 /

As we might have pointed out right after (3.6), the coefficients Cμm here
are determined by the cvl (1 < / < r, 1 < v < m - 1) in (3.2) and by the
ith order partial derivatives of Hμ at 0 for 1 < / < N.

Choose cvm (1 < v < r) as the solution of the system

(3.8) Σ Cvm Σ ΰvjHμ("> ~μm
-=1 \7=0

= - C ' (1 < μ < r)

of linear equations. Observe that this system is uniquely solvable accord-
ing to (1.1) with z = 1. Put

(3.9) / , ( * ) = δ9tΛ - c v m n s ~ ( l < v < r )

In order to establish (3.4), it will be sufficient to show that

(3.10) fv(n) = o{ns»>) as n -* oo.

To show this, substituting (3.8) and (3.9) into (3.7), we obtain

Σ Σ

= O

r k

Σ Σ|β,.,+,l +*("'-)
/

for 1 < μ < r as n -> oo. The coefficient of cvm on the left is o(nSm), and
so we obtain

(3.Π) Σ Σ KM" +J) - Σ Σ o(\δrtn+j\) + o{n'-),
v = l 7 = 0 v=l 7 = 0

where \μvj = dvjHμ(0). Note that with this choice of \μvp (1.10) is
satisfied according to (1.1). By (3.9), for the first error term in (3.11) we
have

o(ns'»)
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with suitable y]μvnj such that r}μpnJ -> 0 as n -» oo. Thus (3.11) becomes
r k

for 1 < μ < r. Using Lemma 1.2 with \μvnj = λμvJ — i)μvnj f°Γ Λis system
of recurrences (note that fv is bounded in view of (3.3) and (3.9)), we can
conclude that (3.10) is indeed valid. This establishes (3.4), and thus the
conclusion of Theorem 1.1 follows by induction. The proof is complete.

4. Asymptotic expansions for the recurrence coefficients of certain
Freud polynomials. Consider the polynomials pn orthonormal on the real
line with respect to the weight function

w(x) = exp(-<2(;t)),

where Q(x) is a polynomial of even degree:
2m

(4.1) Q(x) = Σ *iX* (™ > 0 integer, a2m > 0).

That is, the polynomials

Pn(χ) = ynχ
n+ ••• ( Y » > O )

are such that

/ Pι{χ)pn{x)w{x)dx = 8ln (l,n>0),
- 0 0

where 8ln = 1 if / = n and 8ln = 0 otherwise. These polynomials satisfy
the recurrence equation

(4.2) Xpn{x) = an + lPn + l(X) "̂ " bnPn\X) ~^~ anPn-l\X) \ n ~ θ)>

where an = γw_i/γn (n > 1) and a0 =jp_1(x) = 0 (see e.g. [2, formula
(1.2.4) on p. 17] or [13, formulas (3.2.1) and (3.2.2) on p. 42]). Al. Magnus
[8, Theorem 6.1] proved the following about the asymptotic behavior of
the coefficients an and bn\

(4.3) lim β-,rVP">- C(m,«2J= f(«2J2™ " /

and

(4.4) lim bnn~lA2m) = 0.
n—>oo

In an earlier paper [7], Magnus established (4.3) in the special case
Q(x) = x2m, settling a conjecture of G. Freud [4, p. 5]; see [11, Sections
4.15 — 4.18] for a discussion of results and conjectures concerning Freud
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weights. D. Lubinsky, H. N. Mhaskar, and E. B. Saff [6, 6a] recently
proved the analogue of (4.3) under more general circumstances: e.g. their
result applies to the weight function w(x) = exp(-|x|λ) with λ > 1.

In establishing his result, Magnus considered the Jacobi matrix formed
by the coefficients in (4.2), which is the infinite matrix

(4.5) A =

K
ax

0

0

a2

0

0
a2

b2

a3

0 •••
0

α3 •••

b 3 •••

He showed that the sequences a
(b0, bv Z>2, ) satisfy the equations

= (av a2, a3, ••• ) a n d b

(4.6)

and

(4.7)

= aΛ{Q'{A))Λ,Λ-i = * (* = 1,2,3,...)

def
Gm(a,b)-(Q'(A))H.m-0 ( « - 0 , 1 , 2 , . . . ) ,

where Qf is the derivative of the polynomial in (4.1), and (B)^- denotes
the element in the (i + l)st row and (j + l)st column of the matrix B.
These equations have their origin in earlier works of Freud [3, Lemma 1
on p. 93] and Shohat [12]. Using equations (4.6) and (4.7), we will show by
Theorem 1.1 that αMw~1/(2m) and fcnτΓ1/(2m) have asymptotic expansions
in powers of «~1/m. As the first step, we will show that such asymptotic
expansions exist in terms of powers of n~

1/(2m):

LEMMA 4.1. There are real numbers cvl (v + 1,2, / = 1,2,3,...) such
that for any integer N > 1 we have

(4.8) ann
1=1

(see (4.3) for C(mya2m)) and

(4.9)

as n -> oo. Here

(4.10)

Σ c2ln

c2l = -« 2 w _ 1 /(2mα 2 m ) .

Later we will need the equation

(4.11) bn = -« 2 m_ 1/(2mα 2 m)
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which is a direct consequence of (4.9) with N = 1 and (4.10). Magnus
stated this equation with the sharper error term O(n'ι/m) in a preliminary
version of his paper [8], but he omitted it from the final version. Our
formula (5.2) below implies (4.11) with this sharper error term.

Proof. We are going to take a closer look at equations (4.6) and (4.7).
We of course have

2 m - l

(4.12) Q'(A)= Σ (s + l)a,+1A>,
5 = 0

and so it is of crucial importance to obtain a closer description of the
expressions (As)nn and (As)nn_v Notice that

w i t h a H = b i 9 a u + 1 « a i + u = a i + 1 a n d a t j = 0 i f \i - j \ > l ( c f . ( 4 . 5 ) ) .
Thus

(4.13) ( A > ) p q = Σ a p h a k i 2 a i $ q ( p , q > 0 ) ,

where iv i2,..., is independently run over the values 0,1,2,..., but if one
only wants to consider the nonzero terms in this product, then they are
subject to the additional conditions I*, — iι+1\ < 1 for 0 < / < s, where we
put j 0 = p and is+ι = q. Thus there are homogeneous polynomials

PvixipXi/ \J\ * s/2) (μ = l,2)

of degree s such that

(4.14) (A%,Λ-2+μ = Pjan+J,bn+J: \j\ < s/2)

holds for n > s/2. Indeed, the condition \iι - iι+ι\ < 1 on the indices iι

in (4.13) imply that

n -(s + l ) / 2 <it<n + s/2

in case p = n and q = n or n — 1, and equality can happen only if
ir Φ ir+ι for all /' with 0 < V < s; thus (As)nn_ι or (As)nn does not
depend on an+j or bn+J for j outside the range indicated (in fact, the exact
range is of no importance). (4.14) is not valid for n < s/2, because at and
bj are undefined for i < 0 and j < 0. An important observation is that for
odd s every term of Pls{xvj) contains x2j for some j as a factor. In other
words, in (4.13) with p = q = n > s/2 we have iι = ι/+1 for some / with
0 < / < s (i0 = is+1 = n) in case s is odd. This is because the parity of
0 = is — i0 is the same as that of

s

Σ l ' / + i - h\
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An important consequence of this is that

(4.15) j Λ - i U * , , : " = 1,2, \j\ < s/2) = 0 (\i\ < s/2)

holds for odd s at every point with x2J = 0 for all j with \j\ < s/2.
Introduce the variables

(4.16) yln = ann

(4.17) y2n = bHn-

and

(4.18) £„ = n-W"\

Dividing both sides of (4.6) by n and taking (4.12) and (4.14) into
account, we obtain

(4.19) Hμ{ξn; Λ,n+/ v = 1,2, |y| < m) = 0 (μ = 1,2)

for μ = 1 (w > m) with

(4.20) tf^ x ^ ^ U, L/|<m)

2 m - l

= -l + *io Σ (5 + l ) α ί + 1 | 2 m - 1 - ί

The argument of Pls is explained by the equation

\l/(2m)
)

and a similar equation involving bn+j. The range \j\ < m on the left-hand
side of (4.20) (and in (4.19), for μ = 1) is explained by the observation
that in each term of the sum in (4.20) we have |y| < s/2, and the
maximum value for s/2 in (4.20) is m — 1/2. A similar remark applies to
(4.21) below (concerning the case μ = 2 in (4.19)). Similarly, dividing both
sides of (4.7) by nι-ι/{2m\ we obtain (4.19) with μ = 2, where

(4.21) H2{i\xψj:v = \,lΛJ\<m)

2 m - l
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We will use Theorem 1.1 to derive (4.8) and (4.9) from (4.19) at the
point

(4.22) p = (0;xVJ:p = l,2,\j\<m)

with xXj = C(m,a2m) (cf. (4.3)) and x2j = 0 for |y| < m replacing the
point 0. Note that the (appropriate modification of) (1.2) is satisfied in
view of (4.3) and (4.4). Moreover, Hμ (μ = 1,2) is differentiable infinitely
many times in a neighborhood of p. As 1/β is an integer with β =
-1/(2 m), we will get the asymptotic expansion in the simplified form
(1.6) rather than (1.5). The only thing that we have to establish is that
condition (1.1) with p replacing 0 is satisfied.

Noting that at p we have ξ = 0, equations (4.20) and (4.21) simplify
to

(4.23) Hx{θ; xvj) = -1

and

(4.24) # 2 (0 ; xvj) =

where v = 1,2 and \j\ < m. Writing [dpq{z)]pq==l2 for the determinant
corresponding to the determinant in (1.1), we therefore have

w - l

(4.25) dφ)= Σ
0Xql

and
m — 1 Λ

(4.26) d2q{z)- Σ z'to2q\
/=-W + l "~Φ p

where the symbol 1̂  indicates that the derivatives have to be taken at the
point (JC0; xvj) = p. We also dropped the factor 2ma2mzm~ι from each
element of the determinant, since this does not affect the validity of (1.1).
It is more convenient to have zι in (4.25) and (4.26) than z

m~1+ι\ the
reason we would get the latter is that here n — m 4- 1 corresponds to n in
Theorem 1.1. (Thus we get expansion (1.6) in terms of (n - m + l)βί

rather than nβι, but using the binomial expansion we can rewrite this in
terms of nβι, as we did it in (3.5).)

Observe that

(4.27) d21(z) = 0

in view of (4.15). Thus to show that the analogue of (1.1) is satisfied we
have to show that

(4.28) dpp(z) Φ 0 whenever \z\ = 1 (p = 1,2).
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To this end, we will use some results of Magnus [8] concerning the infinite

matrix

(ak/2)dFn(a,b)/dak dFn(a,b)/dbk] π = i , 2 , . . .

(ak/2)dGn(a,b)/dak dGn(a,b)/dbk\ Λ = 0 , 1 , . . . ,

fc = l , 2 , . . . fc = 0 , l , . . .

where Fn and Gn are defined by (4.6) and (4.7). According to Theorems

5.2 and 5.3, respectively, of [8], this matrix is symmetric and positive

definite for the choice Q(x) = x2m

y an = C > 0 (« > 1) and bn = 0

(« > 0). This implies that, for the same choice of a, b and Q, the matrices

(4.29)

and

(4.30)

are

have

0) [*Gn(a,b)/dbk]kfΛ_θ9l_

also symmetric and positive definite. In view of (4.12) and (4.14), we

e

for n > m, with the same choice of a, b and Q as above (for n — k > m

the right-hand side is to be interpreted as 0). Thus, taking (4.22) into

account, the positive definiteness of the matrix in (4.29) with C =

C(m, alm) (cf. (4.3)) means that

00

ή n σ k ^ K L \°n\
n = m k = m ι,n — κ n = m

holds with some K > 0 for any sequence ( σ w , σ m + 1 , . . . ) of complex

numbers such that only finitely many of the σw's are nonzero (w denotes

the complex conjugate of w; for \n - k\> m the above derivatives are to

be interpreted as zero). Taking σn = zn/ {M for m < n < M and σn = 0

for n > M, where z is an arbitrary complex number with \z\ = 1, and

making M -> oo, dn(z) Φ 0 follows from the above inequality. d22(z) Φ 0

follows in a similar way from the positive definiteness of the matrix in

(4.30). This shows that (4.28) is indeed valid, and so (4.8) and (4.9)

follows.

We have yet to establish (4.10). To this end, note that, according to

(4.2), the transformation x' = x + η causes the change b'n = bn + η. Thus,

by completing the mth power in (4.1) via the transformation x <- x +

ot2m-i/(2ma2m), we may assume that «2m-i = ^ i*1 ^ s c a s e (4-10)
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simplifies to

(4.31) c 2 1 = 0.

To show this, substitute the estimates

yin = C(m9a2m) + O(n-W">) a n d

valid as n -> oo according to (4.8) and (4.9) (cf. (4.16) and (4.17)), into

(4.21). In doing so, observe that in view of the assumption alm_x = 0, the

contribution of the terms for 0 < s < 2 m — 2 on the right-hand side is

O(ξl) = O{n~l/m) (cf. (4.18)). Observe, further, that every term in

P22m-i(χpj) h a s positive coefficient (cf. (4.13) and (4.14)). As we remarked

after (4.14), every term of P2i2m-i(xVj) contains x2j for some j as a factor.

Moreover, by using arguments similar to those described after (4.14), it is

easy to see that there are terms of P2,2m-i(xvj) i*1 which x2j occurs for

exactly one j , and this x2J occurs with exponent 1. Thus the above

substitution gives

with a positive constant K. Substituting this into (4.19) with μ = 2,

c2l = 0 follows, verifying (4.31). The proof of the lemma is complete.

5. Improved asymptotic expansions for the Freud coefficients. In (4.8)

and (4.9) every second coefficient is zero, that is we can obtain asymptotic

expansions in terms of powers of n~1/m. More precisely, Lemma 4.1 can

be strengthened as

THEOREM 5.1. For the recurrence coefficients an, bn of the orthonormal

polynomials associated with the weight function w(x) = exp(-β(jc)) with

Q(x) as in (4.1), there are real numbers ηvl (v = 1,2, / = 1,2,3,...) such

that

N

(5.1) ann-1/(2m) = C(m,a2m) + £
1=1

and

(5.2) bn = -alm_γ/{lmalm) + £
1=1

hold for any integer N > 1 as n -> oo, where C{m, a2m) is given by (4.3).
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The particular case m = 2 of this result is briefly discussed in [1],

Extending an earlier result of J. S. Lew and D. A. Quarles Jr. [5] for

Q(x) = x 4 , Mate-Nevai-Zaslavsky [10, Theorem 1 on p. 497] established a

stronger version of (5.1) for Q(x) = x2m, with the asymptotic expansion

on the right-hand side being given in terms of powers of n~2.

Proof. Similarly as at the end of the proof of Lemma 4.1, while

establishing (4.10), we may assume that α2m-i = 0. Then, according to

(4.11) we have

(5.3) bn = O(n-W»).

Instead of (4.16) and (4.17), we now introduce the notation

(5.4) JΊΠ = < v r 1 / ( 2 m ) and yln = bn.

Then we still have
u m yln = C(m,a2m)

n-*oo

and

Urn yln = 0

according to (4.3) and (5.3), so it is still the point p described in (4.22)

that replaces 0 in the application of Theorem 1.1.

We now put

(5.5) Hn = n-^

instead of (4.18), and we will obtain the analogue

(5.6) # ; ( { „ ; yv>n+J: v = 1,2, \j\ < m) = 0 (μ = 1,2)

of (4.19) via dividing (4.6) by n and (4.7) by nι'x/m. As (5.4) and (5.5)

imply an = > Ί n | ^ 1 / 2 , according to (4.12) and (4.14) we have

(5.7) H*{ξ;xVJ:v = 1,2, \j\<m)

2m-l

=-l + H*1 0r1 / 2) Σ (* + i)«,+1
5 = 0

Here £ m appears in front of the second term on the right because

ξ% = 1/H, and we divided (4.6) by n. Similarly,

(5.8) H*(ξ;xPJ:v=l,2, \j\ < m)

2m-l
1 Σ

2J

: \j\ < s/2).
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Observe that H* is differentiable in a neighborhood of p (cf. (4.22)).
Indeed, it is easy to see that, on the one hand, the positive powers of £
in (5.7) and (5.8) at least cancel out the negative powers, and so £ does not
occur with negative exponent in H*. On the other hand, £ 1 / 2, which is
not differentiable at 0, does not occur in H*. This is so because in every
term of (4.6) and (4.7) each ak occurs with an even exponent. In fact, in
each term on the right-hand side of (4.13), foτp = q = n each factor
ak_ιk has to be matched by a corresponding factor akk_v so ak occurs
with even power in each term of (As)nn. The same is true for p = n and
q = n - 1 except for k = n: there has to be an extra occurrence of ann_v

not matched by an_Xn. Thus in {Λs)nn_λ each ak occurs with an even
power except for an, which always occurs with an odd power; but the
extra factor an occurring (4.6) compensates for this. Thus, indeed, in every
term of (4.6) and (4.7) each ak occurs with an even exponent. In other
words, in every term of (5.7) and (5.8), each expression jc ly£~1/2 occurs
with an even exponent; thus ξ1/2 indeed does not occur in H*.

Hence, to be able to apply Theorem 1.1 we have only to show that the
analogue of (1.1) is satisfied for H* at p. We will show this by verifying
the equations

( 5 9 )

and

(*Λiii 3#2*(/>) m2{p)
V W) 3x2, 9x2J '

where Hμ are as in (4.20) and (4.21) and \j\ < m. This will clearly suffice
in view of (4.27) and (4.28) (cf. (4.25) and (4.26)). If we substitute ξ = 0
into (5.7) and (5.8), then, similarly to (4.23) and (4.24), we obtain

(5.11) #*(0; xrj) = -1 + 2ma2mx10P*2m_ι(xPJ)

and

(5.12) H*{0; xrJ) =

Here the polynomial P*2m-ι(xPj) is formed as the sum of those terms of
pι,2m-ι(xvj) which do not contain any x2j. Indeed, as Pιi2m-ι(xvj) ^s a

homogeneous polynomial of degree 2m - 1, for those of its terms T(xpj)
containing an x2J, the degree of T(xvj) in the xXj

9s is < 2m - 1. Thus
the expression

x2J
)
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will contain ξ with a positive exponent. Therefore the substitution £ = 0

will cancel this term on the right-hand side of (5.7). Similarly, P*zm-ι(xvj)

is formed as the sum of those terms of i^m-i ί**/) which contain only

one x2j9 and that with exponent 1. It is important to recall here that, as

remarked after (4.14), every term of P2,2m-i(xvj) contains at least one x2J.

Observe, furthermore, that the term corresponding to s = 2m — 2 in the

sum on the right-hand side of (5.8) would also contribute to the right-hand

side of (5.12) expressing Hf(Q, xvj) except for the fact that we assumed
a2m-i = 0 above, at the beginning of this proof.

Now, as we have x2j = 0 for every j: (\j\ < m) at the point 77, it is

clear from the above description of the polynomials Pμ*2m-i that

(μ = l ,2),

(μ = 1,2), anddxλJ dxυ

dx2j dx2j

hold (|y| < m). In view of these equations, (5.9) and (5.10) follow by

comparing (5.11) and (5.12) to (4.23) and (4.24), respectively. This com-

pletes the proof of the theorem.
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