FUNCTIONS IN $R^2(E)$ AND POINTS OF THE FINE INTERIOR

EDWIN WOLF

Let $E\subset\mathbb{C}$ be a set that is compact in the usual topology. Let m denote 2-dimensional Lebesgue measure. We denote by $R_0(E)$ the algebra of rational functions with poles off E. For $p\geq 1$, let $L^p(E)=L^p(E,dm)$. The closure of $R_0(E)$ in $L^p(E)$ will be denoted by $R^p(E)$.

In this paper we study the behavior of functions in $R^2(E)$ at points of the fine interior of E. We prove that if $U \subset E$ is a finely open set of bounded point evaluations for $R^2(E)$, then there is a finely open set $V \subset U$ such that each $x \in V$ is a bounded point derivation of all orders for $R^2(E)$. We also prove that if $R^2(E) \neq L^2(E)$, there is a subset $S \subset E$ having positive measure such that if $x \in S$ each function in $\bigcup_{p>2} R^p(E)$ is approximately continuous at x. Moreover, this approximate continuity is uniform on the unit ball of a normed linear space that contains $\bigcup_{p>2} R^p(E)$.

1. Introduction. Let $E \subset \mathbb{C}$ be a set that is compact in the usual topology. Let m denote 2-dimensional Lebesgue measure. We denote by $R_0(E)$ the algebra of rational functions with poles off E. For $p \geq 1$, let $L^p(E) = L^p(E, dm)$. The closure of $R_0(E)$ in $L^p(E)$ will be denoted by $R^p(E)$.

In [16] we studied the smoothness properties of functions in $R^p(E)$, p > 2, at bounded point evaluations. The case p = 2 is different. Fernström has shown in [7] that $R^2(E)$ can be unequal to $L^2(E)$ without there being any bounded point evaluations for $R^2(E)$. In this paper we use the fine topology introduced by Cartan to study the behavior of functions in $R^2(E)$ at points of the fine interior of E. We prove that if $U \subset E$ is a finely open set of bounded point evaluations for $R^2(E)$, then there is a finely open set $V \subset U$ such that each $x \in V$ is a bounded point derivation of all orders for $R^2(E)$. Finely open sets of this kind are contained in certain "Swiss cheese sets". We also prove that if $R^2(E) \neq L^2(E)$, there is a set $S \subset E$ having positive measure such that if $x \in S$ each function in $\bigcup_{p>2} R^p(E)$ is approximately continuous at x. Moreover, this approximate continuity is uniform on the unit ball of a normed linear space that contains $\bigcup_{p>2} R^p(E)$.

2. Functions in $R^2(E)$ defined on finely open sets. When $R^2(E) \neq L^2(E)$, the fine interior is non-empty. This follows from a theorem of Havin [10] that we shall now state. Let $\Delta(x, r)$ denote the open disk of radius r centered at x. Let C_2 denote the Wiener capacity as defined in [11].

THEOREM 2.1 (Havin). Let $E \subset \mathbb{C}$ be a compact set without interior in the usual topology. Then $R^2(E) \neq L^2(E)$ if and only if there is a set $S \subset E$ having positive measure such that for $x \in S$,

$$\limsup_{r\to 0} \frac{C_2(\Delta(x,r)\backslash E)}{r^2} = 0.$$

One way to relate this theorem to fine interior points is to use Wiener's criterion. Let

$$A_n(x) = \left\{ z : \frac{1}{2^{n+1}} \le |z - x| \le \frac{1}{2^n} \right\}.$$

Then x is a fine interior point of E if and only if

$$\sum_{n=1}^{\infty} nC_2(A_n(x)\backslash E) < \infty.$$

For a proof see [11, p. 220]. It follows from Wiener's criterion and Theorem 2.1 that if $R^2(E) \neq L^2(E)$, the fine interior has positive measure.

Each point of the fine interior has a system of fine neighborhoods that are compact in the usual topology (see [2]). Debiard and Gaveau observed in [5] that if the fine interior of E is nonempty, it satisfies the Baire property: The intersection of a countable number of open dense sets in E is always dense in E. We give the following proof.

PROPOSITION 2.1. If E is a set having non-empty fine interior E', then E' satisfies the Baire property.

Proof. Let D_1, D_2, \ldots be a sequence of finely open dense sets in E. We must show that for each finely open set $U \subset E', U \cap (\bigcap_1^{\infty} D_i) \neq \emptyset$. Now $U \cap D_1 \neq \emptyset$ because D_1 is dense. Pick $x_1 \in U \cap D_1$ and a fine neighborhood B_1 of x_1 such that B_1 is compact in the usual topology. Since D_2 is dense, there exists $x_2 \in B_1 \cap D_2$ and a fine neighborhood B_2 of x_2 compact in the usual topology such that $B_2 \subset B_1 \cap D_2$. Continuing in this way, we get a sequence $\{B_n\}$ of compact finely open sets such that $B_n \subset B_{n-1} \cap D_n$. Since B_1 is compact, the finite intersection

property implies that $\bigcap_{1}^{\infty} B_n \neq \emptyset$. Hence $\bigcap_{1}^{\infty} D_n \neq \emptyset$, and E' satisfies the Baire property.

Each point of E is a point of full area density for E (see [6, p. 170]). Moreover, one can use results in [1, p. 43], due to Beurling to show that any finely open subset of $\mathbb C$ includes circles of arbitrarily small radii centered at each of its points. Next we define those points of the fine interior at which the functions in $R^2(E)$ may have smoothness properties.

DEFINITION 2.1. A point $x \in E$ is a bounded point evaluation (BPE) for $R^2(E)$ if there exists a constant C such that

$$|f(x)| \le C||f||_{L^2(E)}$$

for all $f \in R_0(E)$.

DEFINITION 2.2. A point $x \in E$ is a bounded point derivation (BPD) of order s for $R^2(E)$ if there exists a constant C such that

$$|f^{(s)}(x)| \le C||f||_{L^2(E)}$$

for all $f \in R_0(E)$.

If x is a BPE for $R^2(E)$, the map $f \mapsto f(x)$ extends from $R_0(E)$ to a bounded linear functional on $R^2(E)$. Let N(x) equal the norm of this linear functional. We will need the following lemma and proposition.

LEMMA 2.1. The function N is lower semi-continuous on the set of BPE's for $R^2(E)$.

For the proof see [16, p. 72].

The proof of the next statement is in [15, p. 148].

PROPOSITION 2.2. Let $f: X \mapsto \mathbb{R}$ be a lower semi-continuous function on a Baire space X. Every non-empty open set in X contains a non-empty open set on which f is uniformly bounded.

If $X \subset \mathbb{C}$ is compact in the usual topology, we let R(X) denote the closure of $R_0(X)$ in the sup norm on X.

THEOREM 2.2. Suppose that $U \subset E'$ is a finely open set such that every point of U is a BPE for $R^2(E)$. Then there is a compact set $X \subset U$ such that X has non-empty fine interior, and for each $f \in R^2(E)$, $f|_X \in R(X)$.

Proof. Let $U \subset E'$ be a finely open set of BPE's for $R^2(E)$. By Proposition 2.2 there is a finely open set $V \subset U$ on which the $R^2(E)$

norm of "evaluation at x" is bounded. Let $X \subset V$ be a set that is compact in the usual topology and that contains a finely open set. Let $f \in R^2(E)$. Then there is a sequence $\{f_n\}$ in $R_0(E)$ such that $||f_n - f||_{L^2(E)} \to 0$. By the choice of X there is a constant C such that

$$\sup_{z \in X} |f_n(z) - f_m(z)| \le C||f_n - f_m||_{L^2(E)}.$$

Thus the sequence obtained by restricting the f_n 's to X converges in R(X) to the restriction of f to X. We conclude that $f|_X \in R(X)$.

Let X be as in the above theorem.

COROLLARY 2.2. Every point of X is a BPD of all orders $for R^2(E)$.

Proof. Let $x \in X$, and let s be a positive integer. By [4], x is a BPD of all orders for R(X). Hence there is a constant C such that if $f \in R_0(E)$, $|f^{(s)}(x)| \le C||f||_X$ where $||\cdot||_X$ denotes the sup norm on X. By the choice of X (see the proof of Theorem 2.2), there is another constant C' such that $||f||_X \le C'||f||_{L^2(E)}$. Taken together these inequalities imply that x is a BPD of order s for $R^2(E)$.

There do exist examples of compact nowhere dense sets E that contain finely open subsets of BPE's for $R^2(E)$.

3. The case of no BPE's for $R^2(E)$. In this section we show that whenever $R^2(E) \neq L^2(E)$, there is a subset of E on which functions in $R^2(E)$ that are not continuous may still have smoothness properties. To describe this set of points we begin by letting φ be a positive function defined on $(0, \infty)$ such that φ is decreasing and $\lim_{r \downarrow 0^+} \varphi(r) = \infty$.

DEFINITION 3.1. A point $x \in E$ is a BPE of type φ for $R^2(E)$ if there is a constant C such that

$$|f(x)| \le C \left\{ \int_{E} |f(z)|^{2} \varphi(|z-x|) \, dm(z) \right\}^{1/2}$$

for all $f \in R_0(E)$.

Fernström introduced BPE's of type $\varphi(r) = \log^{\beta} 1/r$ for $\beta > 1$ in [7]. The proof of the following theorem is similar to the proof of Theorem 3 in [8].

THEOREM 3.1. Let $E \subset \mathbb{C}$ be compact. Then x is a BPE of type φ for $R^2(E)$ if and only if

$$\sum_{n=1}^{\infty} \varphi^{-1}(2^{-n}) 2^{2n} C_2(A_n(x) \setminus E) < \infty.$$

For certain φ 's the above series will converge on a set of positive measure whenever $R^2(E) \neq L^2(E)$.

DEFINITION 3.2. A non-negative, real-valued function φ defined on $(0, \infty)$ is *nice* if it satisfies the following conditions:

- (i) There is an $r_0 > 0$ such that φ is decreasing on $(0, r_0)$, and $\lim_{r \downarrow 0^+} \varphi(r) = +\infty$.
- (ii) $\lim_{r\downarrow 0^+} r \cdot \varphi(r) = 0$, and there is an $s_0 > 0$ such that $1/(r \cdot \varphi(r))$ is decreasing on $(0, s_0)$; and
 - (iii) there is a $t_0 > 0$ such that $\int_0^{t_0} (1/(r \cdot \varphi(r))) dr < \infty$.

EXAMPLES.

(1)
$$\varphi(r) = \frac{1}{r^{\alpha}}, \qquad 0 < \alpha < 1.$$

(2)
$$\varphi(r) = \log^{\beta} \frac{1}{r}$$
, $\beta > 1$, for $0 < r \le 1$, $\varphi(r) = 0$ for $r > 1$.

(3)
$$\varphi(r) = \left(\log \frac{1}{r}\right) \left[\log \left(\log \frac{1}{r}\right)\right]^{\beta}, \ \beta > 1, \quad \text{for } 0 < r \le 1/2,$$

$$\varphi(r) = (\log 2) \cdot \left[\log(\log 2)\right]^{\beta}, \quad \text{for } r > 1/2.$$

Condition (iii) of Definition 3.2 combined with Theorem 2.1 and Theorem 3.1 imply the following:

THEOREM 3.2. Let $E \subset \mathbb{C}$ be a compact set without interior in the usual topology. Let φ be nice. Then if $R^2(E) \neq L^2(E)$ the set of BPE's of type φ has positive measure.

Let S denote the set of $x \in E$ such that $\limsup_{r\to 0} C_2(\Delta(x,r)\backslash E)/r^2 = 0$. Suppose that $x \in E$ is a BPE of type φ . We define a norm $|| \ ||_{\varphi}$ on functions in $L^2(E)$ as follows:

$$||f||_{\varphi} = \sup_{y \in S} ||f \cdot \varphi(|z - y|) \cdot \varphi(|z - x|)||_{L^{2}(E)}$$

where f is a function of z. Let $R^{\varphi}(E)$ be the closure of $R_0(E)$ in this norm. For certain φ such as $\varphi(r) = \log^{\beta} 1/r$, $\beta > 0$, Hölder's inequality implies that $\bigcup_{p>2} R^p(E) \subset R^{\varphi}(E)$.

Now suppose that x is a BPE of type φ . Let $L^2(E, \varphi dm)$ be the space of all complex measurable functions f defined on E such that

 $\{\int_E |f^2(z)| \cdot \varphi(|z-x|) \, dm(z)\}^{1/2} < \infty$. By a well known theorem [14], there is a function $g \in L^2(E, \varphi \, dm)$ such that

$$f(x) = \int_{E} f \cdot g \cdot \varphi(|z - x|) \, dm(z)$$

for all $f \in R_0(E)$. We have the following theorem.

THEOREM 3.3. Let φ be a nice function such that $\int_0^1 \varphi^3(r)r \, dr < \infty$. Suppose that $x \in E$ is a BPE of type φ . Let $\varepsilon > 0$. Then there is a set $A \subset E$ having full area density at x such that if $y \in A$ and $f \in R_0(E)$,

$$|f(y) - f(x)| \le \varepsilon ||f||_{\varphi}.$$

We will give an outline of the proof. For more details see [16].

Outline of Proof of Theorem 3.3. Let $\varepsilon > 0$. Let $g \in L^2(E, \varphi dm)$ be the representing function for x as defined above. Then if

$$c(y) = \int_{E} \frac{z - x}{z - y} g(z) \cdot \varphi(|z - x|) dm(z)$$

is defined and $\neq 0$,

$$\frac{1}{c(y)}\frac{z-x}{z-y}g(z)\cdot\varphi(|z-x|)$$

is a representing function for y. Among the points where c(y) is defined are those in the set A_1 of the following lemma:

LEMMA 3.1. For each $\delta > 0$, the sets

$$A_{1} = \left\{ y \in \mathbb{C} : |y - x| \int_{E} \frac{|g(z)| \cdot \varphi(|z - x|)}{|z - y|} dm(z) < \delta \right\} \quad and$$

$$A_{2} = \left\{ y \in \mathbb{C} : |y - x| \left[\int_{E} \frac{|g(z)|^{2} \cdot \varphi(|z - x|)}{|z - y|^{2} \cdot \varphi^{2}(|z - y|)} dm(z) \right]^{1/2} < \delta \right\}$$

have full area density at x.

The proof uses the properties of the nice function φ and is similar to that of Lemma 3.3 in [16]. Now if c(y) is defined and $\neq 0$, and if

 $f \in R_0(E)$, we have

$$f(y) - f(x) = \frac{1}{c(y)} \int_{E} \frac{[f(z) - f(x)] \cdot (z - x)}{(z - y)} g(z) \cdot \varphi(|z - x|) \, dm(z)$$

$$= \frac{1}{c(y)} \int_{E} [f(z) - f(x)] \left[1 + \frac{y - x}{z - y} \right] g(z) \cdot \varphi(|z - x|) \, dm(z)$$

$$= \frac{y - x}{c(y)} \int_{E} \left[\frac{f(z) - f(x)}{z - y} \right] g(z) \cdot \varphi(|z - x|) \, dm(z)$$

$$= \frac{y - x}{c(y)} \int_{E} \frac{f(z) - f(x)}{z - y} \frac{\varphi(|z - y|)}{\varphi(|z - y|)} g(z) \cdot \varphi(|z - x|) \, dm(z).$$

From Hölder's inequality, the assumption that x is a BPE of type φ , and the assumption that $\int_0^1 \varphi^3(r) r \, dr < \infty$, it follows that

$$|f(y) - f(x)| \le \frac{C|y - x|}{c(y)} ||f||_{\varphi} \left\{ \int_{E} \frac{|g(z)|^{2} \cdot \varphi(|z - x|)}{|z - y|^{2} \cdot \varphi^{2}(|z - y|)} dm(z) \right\}^{1/2}$$

where C is independent of f.

Choose $\delta > 0$ so small that if $y \in A_1 \cap A_2$ (see Lemma 3.1), then

$$\frac{C}{c(y)}|y-x|\left\{\int_{E}\frac{|g(z)|^2\cdot\varphi(|z-x|)}{|z-y|^2\cdot\varphi^2(|z-y|)}\,dm(z)\right\}^{1/2}<\varepsilon.$$

Lemma 3.1 implies that the set $A = A_1 \cap A_2$ has full area density at x. Moreover, if $y \in A$ and $f \in R_0(E)$,

$$|f(y) - f(x)| \le \varepsilon ||f||_{\varphi}.$$

The author is grateful to the referee for helpful comments and suggestions.

REFERENCES

- [1] L. Ahlfors, Conformal Invariants, McGraw-Hill, New York, 1973.
- [2] R. M. Blumenthal and R. K. Getoor, *Markov Processes and Potential Theory*, Academic Press, New York, 1968.
- [3] J. E. Brennan, Approximation in the mean and quasi-analyticity, J. Functional Analysis, 12 (1973), 307–320.
- [4] A. Debiard and B. Gaveau, *Potential fin et algèbres de fonctions analytiques* I, J. Functional Analysis, **16** (1974), 289-304.
- [5] ______, Potential fin et algèbres de fonctions analytiques II, J. Functional Analysis, 17 (1974), 296-310.
- [6] J. Deny, Les potentials d'énergie finie, Acta Math., 82 (1950), 107-183.
- [7] C. Fernström, Some remarks on the space $R^2(E)$, Internat. J. Math. Math. Sci., **6** no. 3, (1983), 459-466.

- [8] C. Fernström and J. C. Polking, Bounded point evaluations and approximation in L^p by solutions of elliptic partial differential equations, J. Functional Analysis, 28 (1978), 1-20.
- [9] L. I. Hedberg, Non-linear potentials and approximation in the mean by analytic functions, Math. Z., 129 (1972), 299-319.
- [10] _____, Approximation in the mean by analytic functions, Trans. Amer. Math. Soc., 163 (1972), 157-171.
- [11] L. L. Helms, Introduction to Potential Theory, John Wiley and Sons, Inc., 1969.
- [12] N. S. Landkof, Foundations of Modern Potential Theory, translated from the Russian by A. P. Doohovsky, Springer-Verlag, 1972.
- [13] B. Oksendal, A Wiener test for integrals of Brownian motion and the existence of smooth curves in nowhere dense sets, J. Functional Analysis, 36 (1980), 72-87.
- [14] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
- [15] H. Schubert, *Topology*, translated from the German by Siegfried Moron, Allyn and Bacon, Inc., Boston, 1968.
- [16] E. M. Wolf, Bounded point evaluations and smoothness properties of functions in $\mathbb{R}^p(X)$, Trans. Amer. Math. Soc., 238 (1978), 71–88.
- [17] _____, Smoothness properties of function in $R^2(E)$ at certain boundary points, Internat. J. Math. and Math. Sci., 2, No. 3 (1979), 415-426.

Received March 24, 1987 and in revised form December 28, 1987.

University of Lowell Lowell, MA 01854