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FUNCTIONS IN R2{E) AND
POINTS OF THE FINE INTERIOR

EDWIN WOLF

Let E c C be a set that is compact in the usual topology. Let
m denote 2-dimensional Lebesgue measure. We denote by Ro(E)
the algebra of rational functions with poles off E. For p > 1, let
LP{E) = LP(E, dm). The closure of R0{E) in LP{E) will be denoted
by Rp{E).

In this paper we study the behavior of functions in R2(E) at points
of the fine interior of E. We prove that if U C E is a finely open set
of bounded point evaluations for R2(E)9 then there is a finely open
set V c U such that each x e V is a bounded point derivation of
all orders for R2{E). We also prove that if R2{E) φ L2{E), there
is a subset S c E having positive measure such that if x e S each
function in \Jp>2 RP(E) is approximately continuous at x. Moreover,
this approximate continuity is uniform on the unit ball of a normed
linear space that contains | J p > 2 RP(E).

1. Introduction. Let E c C be a set that is compact in the usual
topology. Let m denote 2-dimensional Lebesgue measure. We denote
by Ro(E) the algebra of rational functions with poles off E. For p > 1,
let LP{E) = Lp(E, dm). The closure of R0(E) in LP{E) will be denoted
by RP{E).

In [16] we studied the smoothness properties of functions in RP(E),
p > 2, at bounded point evaluations. The case p = 2 is different. Fern-
strόm has shown in [7] that R2(E) can be unequal to L2(E) without
there being any bounded point evaluations for R2{E). In this paper
we use the fine topology introduced by Cartan to study the behavior
of functions in R2(E) at points of the fine interior of E. We prove
that if U c E is a finely open set of bounded point evaluations for
R2(E), then there is a finely open set V c U such that each x e V is a
bounded point derivation of all orders for R2{E). Finely open sets of
this kind are contained in certain "Swiss cheese sets". We also prove
that if R2{E) Φ L2(E), there is a set S c E having positive measure
such that if x e S each function in \Jp>1 RP{E) is approximately con-
tinuous at x. Moreover, this approximate continuity is uniform on
the unit ball of a normed linear space that contains \JP>2 RP{E).
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2. Functions in R2{E) defined on finely open sets. When R2(E) Φ
L2(E), the fine interior is non-empty. This follows from a theorem of
Havin [10] that we shall now state. Let A(x, r) denote the open disk of
radius r centered at x. Let C2 denote the Wiener capacity as defined
in [11].

THEOREM 2.1 (Havin). Let E c C be a compact set without interior
in the usual topology. Then R2{E) Φ L2(E) if and only if there is a set
S c E having positive measure such that for x e S,

C2{A{x,r)\E) _
hm sup v v , x ; = 0.

One way to relate this theorem to fine interior points is to use
Wiener's criterion. Let

Then x is a fine interior point of E if and only if
oo

For a proof see [11, p. 220]. It follows from Wiener's criterion and
Theorem 2.1 that if R2(E) φ L2(E), the fine interior has positive
measure.

Each point of the fine interior has a system of fine neighborhoods
that are compact in the usual topology (see [2]). Debiard and Gaveau
observed in [5] that if the fine interior of E is nonempty, it satisfies
the Baire property: The intersection of a countable number of open
dense sets in E is always dense in E. We give the following proof.

PROPOSITION 2.1. If E is a set having non-empty fine interior E1,
then Er satisfies the Baire property.

Proof. Let D\, D2,... be a sequence of finely open dense sets in E.
We must show that for each finely open set U c E', U Π (ΠΓ A ) φ 0-
Now U Π D\ Φ 0 because D\ is dense. Pick x\ e U Π D\ and a fine
neighborhood B\ of X\ such that B\ is compact in the usual topology.
Since D2 is dense, there exists x2 G i?i Γ\D2 and a fine neighborhood B2

of x2 compact in the usual topology such that B2 c B\ΠD2. Continuing
in this way, we get a sequence {Bn} of compact finely open sets such
that Bn c Bn-\ Π Dn. Since B\ is compact, the finite intersection
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property implies that f|Γ Bn Φ 0. Hence ΠΓ Dn Φ 0, and E' satisfies
the Baire property.

Each point of E is a point of full area density for E (see [6, p. 170]).
Moreover, one can use results in [1, p. 43], due to Beurling to show
that any finely open subset of C includes circles of arbitrarily small
radii centered at each of its points. Next we define those points of the
fine interior at which the functions in R2{E) may have smoothness
properties.

DEFINITION 2.1. A point x e E is a bounded point evaluation (BPE)
for R2{E) if there exists a constant C such that

I/Ml < c\\f\\L2{E)

foral l/ei? 0 (£).

DEFINITION 2.2. A point x £ E is a bounded point derivation
(BPD) of order s for R2(E) if there exists a constant C such that

\f(s)(x)\<C\\f\\L2{E)

for all feR0(E).
If x is a BPE for R2{E), the map /1-» / M extends from Ro{E) to a

bounded linear functional on R2(E). Let N(x) equal the norm of this
linear functional. We will need the following lemma and proposition.

LEMMA 2.1. The function N is lower semi-continuous on the set of
BPE'sforR2{E).

For the proof see [16, p. 72].
The proof of the next statement is in [15, p. 148].

PROPOSITION 2.2. Let f: X κ-> R be a lower semi-continuous function
on a Baire space X. Every non-empty open set in X contains a non-
empty open set on which f is uniformly bounded.

If X c C is compact in the usual topology, we let R(X) denote the
closure of RQ(X) in the sup norm on X.

THEOREM 2.2. Suppose that U c E1 is a finely open set such that
every point of U is a BPE for R2{E). Then there is a compact set
X <zU such that X has non-empty fine interior, and for each f e R2(E)f

f\χeR(X).

Proof. Let U c E' be a finely open set of BPE's for R2(E). By
Proposition 2.2 there is a finely open set V c U on which the R2{E)



396 EDWIN WOLF

norm of "evaluation at xn is bounded. Let X c V be a set that is
compact in the usual topology and that contains a finely open set.
Let / G R2{E). Then there is a sequence {fn} in i?o(£) such that
Wfn - /IIL 2(£) —> 0 By the choice of X there is a constant C such that

SUP \fn(z) - fm{z)\ < C\\fn - /m|b(£).
zex

Thus the sequence obtained by restricting the fn

9s to X converges in
R(X) to the restriction of / to X. We conclude that f\x e R(X).

Let X be as in the above theorem.

COROLLARY 2.2. Every point ofX is a BPD of all orders forR2{E).

Proof. Let x e X, and let 5be a positive integer. By [4], x is a
BPD of all orders for R{X). Hence there is a constant C such that
if / e Ro(E), \f{s)(x)\ < C\\f\\χ where || \\x denotes the sup norm
on X. By the choice of X (see the proof of Theorem 2.2), there is
another constant C such that \\f\\χ < C'\\f\\L2^Ey Taken together
these inequalities imply that x is a BPD of order s for R2(E).

There do exist examples of compact nowhere dense sets E that con-
tain finely open subsets of BPE's for R2(E).

3. The case of no BPE's for R2(E). In this section we show that
whenever R2{E) φ L2(E), there is a subset of E on which functions
in R2(E) that are not continuous may still have smoothness properties.
To describe this set of points we begin by letting φ be a positive func-
tion defined on (0, oo) such that φ is decreasing and limr|0+ ψix) = oo.

DEFINITION 3.1. A point x e E is a BPE of type φ for R2(E) if
there is a constant C such that

U Ί x'2
\f(z)\2φ(\z-x\)dm(z)j

for all feR0{E).
Fernstrόm introduced BPE's of type φ(r) = log^ \/r for β > 1 in

[7]. The proof of the following theorem is similar to the proof of
Theorem 3 in [8].

THEOREM 3.1. Let E c C be compact Then x is a BPE of type φ
forR2{E) if and only if

oo

Σφ-\2-n)22nC2{An(x)\E) < oo.
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For certain φ's the above series will converge on a set of positive
measure whenever R2{E) / L2(E).

DEFINITION 3.2. A non-negative, real-valued function φ defined on
(0, oo) is nice if it satisfies the following conditions:

(i) There is an ΓQ > 0 such that φ is decreasing on (0, r0), and

(ii) limr|o+ r ' ψ(r) = 0, and there is an s0 > 0 such that l/(r φ(r))
is decreasing on (O,so); and

(iii) there is a t0 > 0 such that /o'°(l/(r p(r))) dr < oo.

EXAMPLES.

(1)

(2) ^(r)=log^-, β>\9 f o r O < r < l , ^(r) = 0 f o r r > l .

(3) ^(r) = (log I ) [log (log 1)] , ^ > 1, for 0 < r < 1/2,

fl^(r) = (log2) [Iog(log2)]*, for r > 1/2.

Condition (iii) of Definition 3.2 combined with Theorem 2.1 and
Theorem 3.1 imply the following:

THEOREM 3.2. Let E c C be a compact set without interior in the
usual topology. Let φ be nice. Then ifR2{E) φ L2{E) the set ofBPE's
of type φ has positive measure.

Let S denote the set ofxeE such that limsupr_0 C2{A(x, r)\E)/r2

= 0. Suppose that x e E is a BPE of type φ. We define a norm || \\φ

on functions in L2(E) as follows:

yes

where / is a function of z. Let Rφ(E) be the closure of Ro(E) in
this norm. For certain φ such as φ(r) = log^ 1/r, β > 0, Holder's
inequality implies that \Jp>2RP(E) c R*(E).

Now suppose that x is a BPE of type φ. Let L2(E, φ dm) be the
space of all complex measurable functions / defined on E such that
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UE I / 2 ( Z ) I ' ̂ (lz ~ *l) dm{z)γi2 < oo. By a well known theorem [14],
there is a function g e L2(E, φ dm) such that

/ ( * ) = / f'g-φ(\z-x\)dm(z)
JE

for all / G RQ(E). We have the following theorem.

THEOREM 3.3. Let φ be a nice function such that /0 φ3(r)r dr < oc.
Suppose that x e E is a BPE of type φ. Let ε > 0. Then there is a set
A c E having full area density at x such that ifyeA and f e Ro{E),

\f{y)-f(χ)\<e\\f\\9.

We will give an outline of the proof. For more details see [16].

Outline of Proof of Theorem 3.3. Let ε > 0. Let g e L2(Ef φ dm) be
the representing function for x as defined above. Then if

f

JE z - y

is defined and Φ 0,

Z~X

z — x
S{z)-φ{\z-x\)dm{z)

c{y)z-y
g{z).φ{\z-x\)

is a representing function for y. Among the points where c(y) is
defined are those in the set A\ of the following lemma:

LEMMA 3.1. For each δ > 0, the sets

- χ ^ ^ and

have full area density at x.

The proof uses the properties of the nice function φ and is similar
to that of Lemma 3.3 in [16]. Now if c(y) is defined and Φ 0, and if
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f eR0{E), we have

[/(r) - /Ml [l + j ^ y ] ίW p(|z - x\) dm(z)

From Holder's inequality, the assumption that x is a BPE of type
φ, and the assumption that /0' φ

3(r)rdr < oo, it follows that

f(x)\<c\y~χ\\\f\\ \f \s(z)\2 • φ(\z - A) V/2

f(x)\<

JW\< c{y)
where C is independent of / .

Choose δ > 0 so small that if y e A\ Π A2 (see Lemma 3.1), then

Lemma 3.1 implies that the set A = ̂ ! n ̂ 2 has full area density at
x. Moreover, if 3; e A and / e

\f{y)-f{χ)\<t\\f\\φ

The author is grateful to the referee for helpful comments and sug-
gestions.
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