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FUNCTIONS IN R?(E) AND
POINTS OF THE FINE INTERIOR

EpwIN WOLF

Let E C C be a set that is compact in the usual topology. Let
m denote 2-dimensional Lebesgue measure. We denote by R(E)
the algebra of rational functions with poles off E. For p > 1, let
L?(E) = LP(E,dm). The closure of Ro(E) in L?(E) will be denoted
by R?(E).

In this paper we study the behavior of functions in R*(E ) at points
of the fine interior of £. We prove that if U C E is a finely open set
of bounded point evaluations for R?(E), then there is a finely open
set V' C U such that each x € V is a bounded point derivation of
all orders for R*(E). We also prove that if R*(E) # L*(E), there
is a subset S C E having positive measure such that if x € S each
function in |J o2 RP(E) is approximately continuous at x. Moreover,
this approximate continuity is uniform on the unit ball of a normed
linear space that contains {J,,,, R”(E).

1. Introduction. Let £ C C be a set that is compact in the usual
topology. Let m denote 2-dimensional Lebesgue measure. We denote
by Ry(E) the algebra of rational functions with poles off E. For p > 1,
let LP(E) = LP(E,dm). The closure of Ry(E) in L?(E) will be denoted
by R?(E).

In [16] we studied the smoothness properties of functions in R?(E),
p > 2, at bounded point evaluations. The case p = 2 is different. Fern-
strom has shown in [7] that R(E) can be unequal to L?(E) without
there being any bounded point evaluations for R?(E). In this paper
we use the fine topology introduced by Cartan to study the behavior
of functions in R2(E) at points of the fine interior of E. We prove
that if U C FE is a finely open set of bounded point evaluations for
R?(E), then there is a finely open set ¥ C U such that each x € V is a
bounded point derivation of all orders for R?(E). Finely open sets of
this kind are contained in certain “Swiss cheese sets”. We also prove
that if R?(E) # L*(E), there is a set S C E having positive measure
such that if x € § each function in ., R?(E) is approximately con-
tinuous at x. Moreover, this approximate continuity is uniform on
the unit ball of a normed linear space that contains |J,,,, R?(E).
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2. Functions in R?(E) defined on finely open sets. When R%(E) #
L*(E), the fine interior is non-empty. This follows from a theorem of
Havin [10] that we shall now state. Let A(x, r) denote the open disk of
radius r centered at x. Let C, denote the Wiener capacity as defined
in [11].

THEOREM 2.1 (Havin). Let E C C be a compact set without interior
in the usual topology. Then R*(E) # L*(E) if and only if there is a set
S C E having positive measure such that for x € S,

Gr(Alx, r)\E)

= =0,

lim sup
r—0

One way to relate this theorem to fine interior points is to use
Wiener’s criterion. Let

1 1
An(X)Z{Z: WSIZ—XISEF}

Then x is a fine interior point of E if and only if
oo
> nCy(An(x)\E) < 0.
n=1

For a proof see [11, p. 220]. It follows from Wiener’s criterion and
Theorem 2.1 that if R?(E) # L?(E), the fine interior has positive
measure.

Each point of the fine interior has a system of fine neighborhoods
that are compact in the usual topology (see [2]). Debiard and Gaveau
observed in [5] that if the fine interior of E is nonempty, it satisfies
the Baire property: The intersection of a countable number of open
dense sets in E is always dense in E. We give the following proof.

PRroOPOSITION 2.1. If E is a set having non-empty fine interior E',
then E' satisfies the Baire property.

Proof . Let Dy, D,, ... be a sequence of finely open dense sets in E.
We must show that for each finely open set U C E', UN(}° D;) # &.
Now U N D; # & because D, is dense. Pick x; € U N D, and a fine
neighborhood B, of x; such that B; is compact in the usual topology.
Since D, is dense, there exists x, € BND, and a fine neighborhood B,
of x, compact in the usual topology such that B, C BiND,. Continuing
in this way, we get a sequence {B,} of compact finely open sets such
that B, C B,_; N D,. Since B; is compact, the finite intersection
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property implies that {° B, # &. Hence {° D, # &, and E' satisfies
the Baire property.

Each point of E is a point of full area density for E (see [6, p. 170]).
Moreover, one can use results in [1, p. 43], due to Beurling to show
that any finely open subset of C includes circles of arbitrarily small
radii centered at each of its points. Next we define those points of the
fine interior at which the functions in R?(E) may have smoothness
properties.

DEFINITION 2.1. A point x € E is a bounded point evaluation (BPE)
for R2(E) if there exists a constant C such that

I£()] < Cll N2y
for all f € Ry(E).

DEFINITION 2.2. A point x € E is a bounded point derivation
(BPD) of order s for R?(E) if there exists a constant C such that

|/ (x) < ClIf Il
for all f € Ry(E).
If x is a BPE for R?(E), the map f — f(x) extends from Ry(E) to a

bounded linear functional on R?(E). Let N(x) equal the norm of this
linear functional. We will need the following lemma and proposition.

LEMMA 2.1. The function N is lower semi-continuous on the set of
BPE’s for R*(E).

For the proof see [16, p. 72].
The proof of the next statement is in [15, p. 148].

PROPOSITION 2.2. Let f: X — R be a lower semi-continuous function
on a Baire space X. Every non-empty open set in X contains a non-
empty open set on which f is uniformly bounded.

If X c C is compact in the usual topology, we let R(X) denote the
closure of Ry(X) in the sup norm on X.

THEOREM 2.2. Suppose that U C E' is a finely open set such that
every point of U is a BPE for R*(E). Then there is a compact set
X C U such that X has non-empty fine interior, and for each f € R*(E),
f1x € R(X).

Proof. Let U C E' be a finely open set of BPE’s for R%(E). By
Proposition 2.2 there is a finely open set ¥ U on which the R*(E)
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norm of “evaluation at x” is bounded. Let X C V be a set that is
compact in the usual topology and that contains a finely open set.
Let f € R?(E). Then there is a sequence {f,} in Ro(E) such that
[|fn = fllz2(g) — 0. By the choice of X there is a constant C such that

sup 1fn(2) = fm(2)] < Cllfn = SmllL2E).

Thus the sequence obtained by restricting the f,,’s to X converges in
R(X) to the restriction of f to X. We conclude that f|y € R(X).
Let X be as in the above theorem.

COROLLARY 2.2. Every point of X is a BPD of all orders forR*(E).

Proof. Let x € X, and let s be a positive integer. By [4], x is a
BPD of all orders for R(X). Hence there is a constant C such that
if f € Ry(E), |f®)(x)| < C||fllx where || ||x denotes the sup norm
on X. By the choice of X (see the proof of Theorem 2.2), there is
another constant C' such that ||f||x < C'||f]|r:z). Taken together
these inequalities imply that x is a BPD of order s for R?(E).

There do exist examples of compact nowhere dense sets E that con-
tain finely open subsets of BPE’s for R%(E).

3. The case of no BPE’s for R?(E). In this section we show that
whenever R%(E) # L*(E), there is a subset of E on which functions
in R?(E) that are not continuous may still have smoothness properties.
To describe this set of points we begin by letting ¢ be a positive func-
tion defined on (0, co) such that ¢ is decreasing and lim, o. ¢(7) = oco.

DEFINITION 3.1. A point x € E is a BPE of type ¢ for R%(E) if
there is a constant C such that

1/2
/() <C {/E 11 (2)IPo(lz —XI)dm(Z)}

for all f € Ry(E).

Fernstrom introduced BPE’s of type ¢(r) = log# 1/r for # > 1 in
[7]. The proof of the following theorem is similar to the proof of
Theorem 3 in [8].

THEOREM 3.1. Let E C C be compact. Then x is a BPE of type ¢
for R%(E) if and only if

3971 (27227 Cy(An(X)\E) < oo.
n=1
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For certain ¢’s the above series will converge on a set of positive
measure whenever R%(E) # L%(E).

DEFINITION 3.2. A non-negative, real-valued function ¢ defined on
(0, 00) is nice if it satisfies the following conditions:
(i) There is an rp > O such that ¢ is decreasing on (0, rp), and
lim, o+ ¢(r) = +4o00.
(ii) lim, o+ 7 - @(r) = 0, and there is an sy > 0 such that 1/(r - ¢(r))
is decreasing on (0, sp); and
(iii) there is a zo > 0 such that fO"’(l/(r ~@(r)))dr < o.

EXAMPLES.

(1) ¢(r)=;15, O<a<l

(2) ¢(r)=logﬁ%, B>1 for0O<r<1, ¢@(r)=0 forr>l.

B
(3) eo(r)= <log ;) [log (log %)] , B>1, forO<r<1/2
o(r) = (log2) - [log(log2)]#, forr>1/2.

Condition (iii) of Definition 3.2 combined with Theorem 2.1 and
Theorem 3.1 imply the following:

THEOREM 3.2. Let E C C be a compact set without interior in the
usual topology. Let ¢ be nice. Then if R*(E) # L*(E) the set of BPE’s
of type ¢ has positive measure.

Let S denote the set of x € E such that limsup,_,o Co(A(x, r)\E)/r?
= 0. Suppose that x € E is a BPE of type 9. We define a norm || ||,
on functions in L?(E) as follows:

ANy = Slelgllf' o(1z=y) - o(lz — xDll2E)
y

where f is a function of z. Let R?(E) be the closure of Ry(E) in
this norm. For certain ¢ such as ¢(r) = logf 1/r, B > 0, Holder’s
inequality implies that {J,,, R?(E) C R?(E).

Now suppose that x is a BPE of type ¢. Let L2(E, 9 dm) be the
space of all complex measurable functions f defined on E such that
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{[z1/*(2)|-¢(|z — x|) dm(2)}'/? < co. By a well known theorem [14],
there is a function g € L?(E, 9 dm) such that

f(x)=/Ef-g-¢(lz—XI)dm(Z)

for all f € Ry(E). We have the following theorem.

THEOREM 3.3. Let ¢ be a nice function such that fol @3(r)rdr < .
Suppose that x € E is a BPE of type ¢. Let ¢ > 0. Then there is a set
A C E having full area density at x such that if y € A and f € Ry(E),

If(¥) = S < el fly-

We will give an outline of the proof. For more details see [16].

Outline of Proof of Theorem 3.3. Let ¢ > 0. Let g € L*>(E, ¢ dm) be
the representing function for x as defined above. Then if

c) = [ Z=58()- pllz = xl) dm(2)

is defined and # 0,

1 z—x
c(y)z-vy

g(z) - o(lz —xl)

is a representing function for y. Among the points where c(y) is
defined are those in the set 4, of the following lemma:

LEMMA 3.1. For each & > 0, the sets

Alz{yEC:|y—xI/Elg(z)ll¢(|z_x|)dm(z)<5} and

|z -y
_ . g(2)2- ()2 - x|) 12
4= {y cciy x| [ B yana] <o

have full area density at x.

The proof uses the properties of the nice function ¢ and is similar
to that of Lemma 3.3 in [16]. Now if ¢(y) is defined and # 0, and if
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f € Ry(E), we have

(2 =x)

10) = 1) = o [ PO ZTERLE=D o) 1z - dimz)
— & LU - 1 |14 225 () o1z - x dm(z)
E

() 7=y
_y=x [ [f(z) - f(x)

B dw.L{ z—y ]g&y¢”2“xﬂwﬂﬂ
_y=x [ f(z)=f(x) p(]z = yI) . B

() /E z—y ¢(|Z—yl)g(z) ¢0(|z — x|) dm(z2).

From Hoélder’s inequality, the assumption that x is a BPE of type
@, and the assumption that fol @3(r)r dr < oo, it follows that

Cly - x| () - 9(1z = x) v
170 - st < LAy { [ EEL A= g

where C is independent of f.
Choose ¢ > 0 so small that if y € 4, N A, (see Lemma 3.1), then

C - lg(2)1? p(z — x]|) 1/2
" x'{ﬁ|z—y|2-¢2(|z_y,)dm(z>} <e

Lemma 3.1 implies that the set 4 = 4; N A, has full area density at
Xx. Moreover, if y € 4 and f € Ry(E),

If(v) = )] < ellfly-

The author is grateful to the referee for helpful comments and sug-
gestions.
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