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FANO BUNDLES OVER P3 AND Q3

MlCHAL SZUREK AND JAROSLAW A. WlSNIEWSKI

A vector bundle 8" is called Fano if its projectivization P(&) is
a Fano manifold. In this article we prove that Fano bundles exist
only on Fano manifolds and discuss rank-2 Fano bundles over the
projective space P3 and a 3-dimensional smooth quadric QT, .

Fano bundles appear naturally as we strive to construct examples
of Fano manifolds of dimension > 3; they form interesting yet ac-
cessible class of Fano n-folds. For example: among 87 types of Fano
3-folds with Z?2 > 2 listed in [13] 22 types are ruled (i.e. obtained by
projectivization of Fano bundles). Moreover some of the non-ruled
manifolds listed there can be easily expressed as either finite covers of
ruled 3-folds or divisors (or, more generally, complete intersections)
in ruled Fano manifolds of higher dimension.

Let us mention another aspect of dealing with Fano bundles: it is
how to determine whether or not a vector bundle is ample. This very
fine property of a vector bundle cannot be determined by its numerical
invariants, see [7]. Assuming the bundle to be stable helps to establish
a sufficient condition for ampleness: [10], [17], which however is far
from being necessary. In the present paper we take advantage of some
already known facts about stable bundles with small Chern classes and
determine that a bundle I? is not ample by finding its jumping lines
or sections of %(-k).

Let us note that some results of this paper have already been pub-
lished, see remarks after the proofs of Theorems (1.6) and (2.1).

1. Fano bundles; preliminaries. Let % be a vector bundle of rank
r > 2 on a smooth complex projective variety M. Let us recall that the
tautological line bundle ξ = ζg on V = P(^) is uniquely determined
by the conditions ξ?\F « &F(1) and p*ξ% = &. By p we have denoted
the projection morphism of V = P(&) onto M and by F—the fibre of
p. Obviously, F = Pr~{ and p: V -> M is a Pr~{-bundle. The Picard
group of V can be expressed as a direct sum: PicF = Z-ζ^®p*(PicM).
Replacing g7 by its twist with a line bundle i Ό n M does not affect
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the projectivization and

Moreover, % is generated by global sections iff ξg> is. We have the
following relative Euler sequence onV = P{&):

(1.1) o -> 0V - /> ( r ) v ® & - 7V,M - 0

where the latter bundle is the relative tangent bundle of p and fits in
the exact sequence

(1.2) 0 - Tvw -> Γ F -> /7*ΓM - 0.

We then obtain

(1.3) c 1 K = / ι * ( c 1 J I / - c 1 r ) + r&

The theorem of Leray and Hirsch yields that in the cohomology ring
of V the following holds

(1.4) ξ'z - p*{cx%)ζrfγ +p*(c2g)ξrf2 - ... ±p\cr%) = 0.

From now on we assume in this section that ^ is a rank-r Fano
bundle on an fl-fold M9 i.e., that P(l?) is a Fano manifold. We prove
that such M must be Fano, as well.

(1.5) LEMMA. Let C c M be a rational curve with a normalization
v\ Pι -> C. Assume that v*{%) = 0{a\) Θ &{ai) Θ Θ ^ ( Λ Γ )
^l < ci2 < - < ar. Then

ι=2

/ The right hand side inequality is obvious. To prove the left
hand side inequality let us assume that W — P(v*£?). The manifold W
is then a Pr~x-bundle over Pι, with a projection π: W —• P 1 . We have
a section Q of π associated to the epimorphism J/*IP —• &{a\) —»• 0,
such that

The normalization map v: Pι -> M lifts to a map v\ W —• F, making
the following diagram commute

Pι
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By the choice of Q we have

F*(&) Co = β!

and, since Ci F is ample, we obtain by (1.3)

0<cιV ΰ(C0)=V(cιV) C0

= r • Ί7*(ξ?) • Co + (π o u)*{CϊM) • Q, - (π o i/)* far) Co

= r αi + C\M C -

which yields the desired inequality.

(1.6) THEOREM. If% is a Fano bundle on a manifold M then M is
a Fano n-fold.

Proof. As C\ V = -Ky is ample, the cone of curves on V is spanned
by the classes of extremal curves (see [12] for definitions and Theorem
1.2 on the cone of curves of a Fano manifold). Let us denote these
curves by /Q, l\, , lυ with /Q contained in F, a fibre of the projection
p: P{%) -> M. We see that p*{cxM) /0 = 0 and for i > 0, /?(/;) is a
rational curve on M. Therefore from (1.5) it follows that

(1.7) 0<cιM p(li)=p*(cιM) li

which means that p*(c\M) is numerically effective. Recall now (a
conclusion from) the Kawamata-Shokurov contraction theorem, see
(2.6) in [11]:

If D is nef and aD-K is ample for some a > 0, then D is semiample,
i.e., some power of D is generated by global sections.

It follows that D := p*{c\M) is semiample. Since p: V —• M is a
P r - 1-bundle, we have, for any integer k, p*p*(tf(kc\M)) = &(kc\M)
and the images (under /?*) of global sections oϊp*{@(kc\M)) are global
sections of &{kc\M). Therefore CγM is semiample, hence to prove
that it is ample it is enough to show that C\ M C > 0 for any curve C
in M.

Let C be an irreducible curve in M. Taking an appropriate com-
ponent from an intersection of the inverse image p~ι (C) with general
r - 1 divisors from a very ample linear system, we can produce an ir-
reducible curve C\ c V, such that p{C\) = C. Then C\ is numerically
equivalent to a linear combination Σ aiU ŵ ith at least one α, different
from zero for / > 0. Let d be the degree of the map p\C\: Cγ —• C.
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Now the inequality (1.7) gives

ClM. C = 1 p*{cxM) d = \

which concludes the proof of the theorem.

REMARK. Theorem (1.6) has already been known for bundles of
rank 2 on surfaces [4] and 3-folds [1].

2. Rank-2 Fano bundles on P3. The results stated below (Theo-
rem (2.1)) can be understood as one more example of an exceptional
character of the null-correlation bundle (see e.g. [3] or [15] for the
definition of the null-correlation bundle).

(2.1) THEOREM. The only rank-2 Fano bundles with C\ = 0,-1, on
P 3 are

(1) g* = ̂ Θ ^ ,
(2) gr = ^ ® ^ ( - l ) ,
(3) r = ̂ (-l)Θ^(+l),
(4) r = ^(-2)Θ^(+l),
(5) the null-correlation bundle JV.

ξ

Proof. Let V = P(g). We then have

(2.2) -Kv = 2ξ + (4 - cx&)H

+ 4H = 2ξf(ι) + 2H = 2ξn2) if cx = 0,

2ξ + 5H = 2ξt(2) +H = 2ξf{3) -H if cx = - 1 ,

and we see that any of the bundles listed above is Fano. Indeed, if &
is one of those listed as (1), (3) or (5) (respectively: (2) or (4)) then
c{g> = 0 (resp. c{^ = -1) and <T(1) (resp. <T(2)) is generated by its
global sections. Now, since p(V) = 2, it follows from (2.2) that C\V
is ample as the sum of two non-proportional nef divisors.

An easy corollary follows.

(2.3) For a normalized Fano bundle & of rank 2 on P3:
if c\% = 0, then f(2) is ample,
if c\W = - 1 , then ^(3) is ample.

We shall discuss the two cases separately.

Case C\ = 0. A straightforward consequence of the theorem of
Leray and Hirsch (1.4) yields that in the cohomology ring of V the
following holds

ζ2 + c2H
2 = 0.
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Since H4 = 0 and H3ζ = 1, the above formula then gives

(2.4) H2ξ2 = 0, # £ 3 = - c 2 , £ 4 = 0,

so that (-Kv)
4 = (2ξ + AH)4 = 128(4 - c2) and we see that c2 < 4.

Assume first g7 is not semistable, i.e., i/°(l?(—1)) φ 0. Let s be a
non-zero section of ί?(—1). We claim that 5 does not vanish anywhere.
Indeed, if Z = {s = 0} were not empty, then for a line L meeting Z
in a finite number of points we would have

^ ( - 1 ) | L = 0{d) θ<?(*) with d > l,d + e = -2,

contradicting (2.3). Therefore s does not vanish and thus 1?(—1) =
& Θ ̂ ( - 2 ) , hence f7 is as in (3) of the theorem.

Let now g7 be semistable but not stable: //°(gr(-l)) = 0, H°(g) φ 0.
If a non-zero section of <<? does not vanish anywhere, I? must then be
ί f θ ^ . Otherwise a section vanishes on a curve. If the curve is not a
single line then cutting it by a line leads to a contradiction, as above.
But if a single line L was a zero set of a section of & then, by the
adjunction formula, the degree of the canonical divisor of L would be

which is impossible. Because of Bogomolov's inequality c\ < 4c2 for
stable bundles, [15], it remains then to study stable bundles with c\ = 0
and cι = 1,2,3. In the first case % is the null-correlation bundle JV,
for which J^(2) is ample; JV is then Fano.

In the remaining cases we know that g7 has multiple jumping lines,
i.e. such lines L for which %\L = ^ L ( - 2 ) Θ ^ L ( 2 ) , see [8], Proposition
9.11, and [18], respectively. In virtue of (2.3), such bundles cannot be
Fano.

Case ci = —1. The multiplication table is now:

(2.5) H4 = 0, H3ξ=l, H2ξ2 = -l,

Hξ3 = -c2 + l, ξ4 = 2c2-l

and from

(-Kv)
4 = (2ξ + 5H)4 = 32(-4c2 + 17) > 0

we obtain that the only possible non-negative values for c2 are 0, 2
or 4 (recall that Schwarzenberger's condition says C\C2 = 0 (mod 2)).
Assume /7°(l?(-l)) Φ 0. As above, we show that no section s Φ 0
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vanishes: if Z = {zero(.s)} were not empty, for a line L meeting Z at
finitely many points we would have

r ( - \ ) \ L = &L{d) Θ ffL{e) with d > 1,d + e = - 3 ,

contradicting (2.3). Therefore the sections §"(—1) do not vanish any-
where, so that & is as in (4) of Theorem (2.1).

Let then //°(g?(-l)) = 0, H*{&) φ 0. The zero set Z of a non-
zero section is then a curve (if not empty). Again, if Z were anything
different from a single line, for a line L that cuts Z at a finite number
> 2 of points we would have

g\L = 0iXd)®0L{e\ d>2,d + e = -l,

contradicting the ampleness of 1?(3). But C\C2 is even so that the case
C\ = - 1 , (?2 = 1 does not hold, hence Z is not a line. The non-zero
sections of % do not vanish, hence ? = ^ 0 ^ ( 1 ) .

It remains to exclude the cases of stable vector bundles with c\ = - 1
and C2 = 2 or 4. In the former case ί? has multiple jumping lines, [9],
Proposition 4.1, i.e., those for which g\L = ^ L ( - 3 ) Θ ^ L ( 2 ) , hence ^
cannot be Fano in view of (2.3). In the latter one l?(2) has a section,
see [2], Lemma 1, and 2H + ξ is effective with

ζ)(ζ γ = - 1 7 .

These bundles are then not Fano.

REMARK. Theorem (2.1) (in a somewhat weaker form) was first an-
nounced by Artiushkin, [1]. His proof was, however, incorrect: in line
36 on page 14 if E is a normalized bundle on P 3 , then the tautological
divisor ξE = L in op. cit. need not to be effective, therefore (-K)3 L
need not to be positive. Our actual proof is more complicated.

Let us conclude this section by proving that P{/V) has a Pι-bundle
structure over a 3-dimensional quadric Q$. To see this, first let us
recall that J^(l) can be defined as the bundle fitting in the following
exact sequence on P 3

0 _> # _> ΩP3(2) -> Jf{X) -> 0.

Note that P(ΩP3(2)) is the incidence variety

/ = {(XJ) eP3x Grass(l, 3): x e 1}

and Grass(l,3) is isomorphic to a 4-dimensional quadratic. Now,
from the above exact sequence it follows that P{JV(1)) is a divisor
in / which is an inverse image of a hyperplane section of Grass(l, 3).
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Therefore:

(2.6) PROPOSITION. TheFano 4-foldP{JK(\)) is aprojectivization of
a rank-2 vector bundle on smooth quadratic Q$ c Grass(l, 3), obtained
by restricting to Q3 the universal quotient bundle from Grass(l, 3).

3. Bundles over Q3. Let us recall that the cohomology ring of Q3

is generated by the classes of [H] e H2(Q3,Z), [L] e H4(Q3,Z), and
[P] e H6(Qi, Z) where H, L and P are a quadratic surface, a line and a
point, respectively. There are the following relationships: [H]2 = 2L,
[H][L] = [P] and hence [H]3 = 2[P]. If & is a coherent sheaf on β 3

with the Chern polynomial

then the numbers c, are called the Chern classes of &.
Recall the Riemann-Roch formula for ^ , [5]

χ{9*) = \{2c\ - 3cιc2 + 3c3) + \{c2 - c2) + ψc{ +

Let now % be a rank-2 vector bundle on Q3. The theorem of Leray
and Hirsch (1.4) gives the following relations between the generators

Γ if cx = 0, then ξ2 + \c2{%)H2 = 0;

I if a = - 1 , then ξ2 + ξH + \c2{%)H2 = 0.

Because H4 = 0 and H3ζ = 2, we obtain:

if a = 0, then H2ξ2 = 0, Hξ3 = -c2, ξ4 = 0;

if ci = - 1 , then H2ξ2 = -2, Hξ3 = 2- c2, ξ4 = 2c2 - 2.

Let i 7 be a normalized rank-2 vector bundle on (?3 and F = P{β?) its
projectivization. We then have

2ξ + 3H when cx = 0,
( 3 β l ) "*' " κ 12^ + 47/ f o r d = - l .

Cα5^ o/ non-stable bundles. Assume <̂  is non-stable with C\ {%) =
- 1 . If a non-zero section from 7/°(ί?(—1)) vanishes at some point,
let us consider a line L passing through this point and not contained
in the zero set entirely. Then <T(-1)|L = &{d) @&{e) with d > 1,
d + e = - 3 that contradicts the ampleness of ί?(2), (3.1).

Assume //°(<r(-l)) = 0, /^(g7) Φ 0. Then a non-zero section of
g7 either does not vanish anywhere or it vanishes on a set of pure
dimension 1. The divisor ζ% is effective on P(%) and

ξ (-ϋ: F ) 3 = Sξ(ξ + 2H)3 = 16(-2c2 + 1),
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and we see that c2 < 0. But then sections of I? do not have zeros,
hence % = ^ ( - 1 ) Θ 0. Finally, we easily check that ^ ( - 1 ) Θ (9 is a
Fano bundle (because <9{\) @<?(2) is ample).

In case C\ = 0 we exclude non-semistable bundles in a very similar
way. Finally, if & is semistable but not stable, that is H°(i?) Φ 0 =
#°(<r(-l)), the divisor ζ% is effective and

0 < ξ(2ξ + 3//)3 = 18(-2c2 + 3)

so that c2 < 0 (recall that C 2 Ξ 0 mod 2, see [5], §1). If so, a non-zero
section of I? does not vanish anywhere and % must then be ff Θ &.

Case of stable bundles with c\ = 0. From the condition K4 > 0 we
easily obtain that if V = P{&) is Fano, then c2 < 4, and since Q Ξ O
(mod 2) it follows that either c2 = 2 or 4. We believe that there is
no Fano bundle on ζ?3 with Ci = 0, c2 = 4, however we do not have
enough information on these bundles to prove it.

In case of c2 = 2, one can easily check that the pull-back π*(yΓ) of
the null-correlation bundle, under a double covering π: Qi —> /*3, is
Fano. Indeed, π*(^Γ)(l) is then spanned on β 3 , therefore -KP(
= 2ζπ*(jη(i) + H is ample. On the other hand we have

(3.2) PROPOSITION. 7/Ί? W Λ 5 ^ / ^ bundle on QΊ, with c\ = 0, c2 = 2
ztftf ^(l) is spanned by global sections then % is a pull-back π* (/V)

of a null-correlation bundle JV, under a double covering π: Q3 —• P3.

Proof The argument is based on the following fact: for any two
disjoint lines on P 3 there exists a section of a twisted null-correlation
bundle ^ ( 1 ) vanishing exactly on these lines. Therefore, if we prove
that a section of l?(l) vanishes on a set being a puUback, via a double
covering π: Q3 —• P 3 , of two disjoint lines on P 3 , then in view of
Theorem 1.1 and Remark 1.1.1 from [8], <T(1) is a puUback of JV{\)\

if Z is the union of two disjoint lines and Y its pullback then it is easy
to check that every isomorphism between COQ(—2)\Y and ωγ comes
from ωp(-2) |Z ~ ω z .

Assume <T is stable with c\{%) = 0, c2(<T) = 2 on β 3 . We easily
compute the following cohomology table of

0
1
0
0

m = 3

0
1
0
0

m = 2

0
0
1
0

m= 1

0 -
0
1
0

m = 0

• h3

h2

hι
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Indeed, vanishing of the lower and upper row is a consequence of the
stability (plus Serre's duality) and the "spectrum" technique, namely
Corollary 2.4 in [5], gives

hι {&{-!)) = hι(&(-3)) = h2{%) = h2{%{-\)) = 0

and the remaining part of the table follows from computing the Euler-
Poincare characteristic.

Since χ(&{\)) = 5 and h2{%{\)) = hι(^{-4)) = 0 by Corollary 2.4
in [5], we see A°(l?(l)) > 5. Let Y be the zero of a generic section.

Since H°(8?) = 0 and *?(1) is assumed to be globally generated, Y
is a smooth (not necessarily connected) curve. From the diagram

0
I

o -> <?(-2) -> r ( - i ) -^ /y -> o

I
0

we calculate, with the aid of the cohomology table above, that h°(#γ) =
2, i.e., Y consists of two connected components, say Y\ and Yι-

Claim. Y\ and Y^ are conies.

Proof of claim. Since cι^(\) = 4 and both 7/ are smooth (therefore
reduced) we have only to exclude the possibility that one of them is a
line L. But then by the adjunction formula we would obtain

which is impossible.
Let now /// be the plane containing Yiy i = 1,2; clearly Q3ΠH1 = Y[

and H[9 H2 meet at one point in P4 off Qi. Projecting ζ?3 c P4 from
this point onto a hyperplane H in P4 is a double covering of H and
the images of Y\ and I2 a r e t w 0 skew lines, say L\ and L2. It then
follows that l?(l) is the pull-back of the null-correlation bundle ^ ( 1 )
corresponding to L\ and L2.

REMARK. It is not entirely clear whether or not any stable bundle
on ζ?3 with C\ = 0 and c2 = 2 enjoys the property stated in (3.2).
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Case of stable bundles with C\ = — 1, c-i = 1. Here a more detailed
description of Fano bundles can be given. Let J? be a stable bundle
on (?3 with C\ = — 1, c2 = l

(3.3) The cohomology of such a bundle are the following:

(1) Λ°(r(w)) = 0 for m < 0,
(2) Λ0(*(l)) = 4,
(3) hι(^(m)) = h2(^(rn)) = 0 for all m,
(4) h\g{rn)) = 0 for m > -2.

(1) is a criterion of stability, (4) is dual to (1), (2) will
follow from (3), (4) and the Riemann-Roch formula. Corollary 2.4
in [5] gives hι(g(m)) = 0 for m < - 1 . By duality, A2(gr(ra)) = 0 for
m > - 1 so that hι{%) = χ{%) = 0. The Castelnuovo criterion (see
e.g. Lecture 14 in [14]) now yields that l?(m) are generated by global
sections if m > 1 and that all cohomology Hι{%{m)) vanish for / > 1,
i + m> 1. Now by duality (3) follows for any integer m.

Note that from the Castelnuovo criterion it follows that ί?(l) is
spanned; therefore ί?(2) is ample and g7 is Fano.

Now we prove that such g7 is the one from (2.6). Since the bundle
ί?(l) is spanned and /z°(l?(l)) = 4 it follows that the linear system
\H + ζ\ is base point free and of dimension 3. Let φ: P{%) -> P3 be
the map associated with this system.

(3.4). PROPOSITION, φ: P(%) —• P3 is a Pι-bundle which is the
projectivization of a null-correlation bundle.

Proof First note that a general divisor D in the linear system |2i/+£|
is a Fano 3-fold listed as n° 17 in Table 2 [13]. The map φ\r> is a blow-
down morphism from D onto P3.

We claim that φ has no fibre of dimension > 2. Assume that S is
such a fibre. Then / := DnS is isomorphic to Pι and fff{H) = &Px (1).
In view of Theorem 2.1b', [6] we see that S = P2 and &S(H) = ^ ί 1 ) -
But in this case p: S —• Q3 is a plane embedding of P 2 in ζ?3, which
is impossible.

Now any fibre of φ is numerically equivalent to (H + ζ)3 and, since
H (H + ζ)3 = 1, it follows that it must be isomorphic to Pι. The
push-forward φ*((?(H)) is a rank-2 Fano bundle on P3. From the
results of §2 we see that it is a null-correlation bundle.

COROLLARY. Any stable rank-2 bundle on Q$ with Chern classes
C\ — — 1, C2 = 1 is a pull-back of the universal quotient bundle on
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Grass(l, 3) via some hyperplane embedding

REMARK 1. The above example shows that the Horrocks splitting
principle, as it stands on Pn (see e.g. [15]), cannot be applied literally
to bundles on <23 (see [16] for an analogue of the Horrocks splitting
principle on Qn). Let us also notice that the bundle discussed above is
uniform: its decomposition type is the same on all lines and smooth
conies in (λ$.

REMARK 2. It is proved in [19] that V = P{jr) = P{g) (where &
is the bundle discussed above and JV is the null-correlation bundle on
P 3 ) is the only ruled Fano 4-fold of index 2 obtained from a non-
decomposable bundle.

Added in the proof. Together with Ignacio Sols we have concluded
the case of rank-2 Fano bundles on Q3. Firstly, we have proved that
the first twist of a stable bundle with c\ = 0, cι = 2 is spanned by global
sections (see Proposition (3.2) and the subsequent remark). Secondly,
we have decided that bundles with C\ = 0, C2 = 4 are not Fano (see
the discussion preceding (3.2)).
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