# FANO BUNDLES OVER $P^{3}$ AND $Q_{3}$ 

Michai Szurek and Jaroslaw A. Wiśniewski


#### Abstract

A vector bundle $\mathscr{E}$ is called Fano if its projectivization $P(\mathscr{E})$ is a Fano manifold. In this article we prove that Fano bundles exist only on Fano manifolds and discuss rank-2 Fano bundles over the projective space $P^{3}$ and a 3-dimensional smooth quadric $Q_{3}$.


Fano bundles appear naturally as we strive to construct examples of Fano manifolds of dimension $\geq 3$; they form interesting yet accessible class of Fano $n$-folds. For example: among 87 types of Fano 3 -folds with $b_{2} \geq 2$ listed in [13] 22 types are ruled (i.e. obtained by projectivization of Fano bundles). Moreover some of the non-ruled manifolds listed there can be easily expressed as either finite covers of ruled 3 -folds or divisors (or, more generally, complete intersections) in ruled Fano manifolds of higher dimension.

Let us mention another aspect of dealing with Fano bundles: it is how to determine whether or not a vector bundle is ample. This very fine property of a vector bundle cannot be determined by its numerical invariants, see [7]. Assuming the bundle to be stable helps to establish a sufficient condition for ampleness: [10], [17], which however is far from being necessary. In the present paper we take advantage of some already known facts about stable bundles with small Chern classes and determine that a bundle $\mathscr{E}$ is not ample by finding its jumping lines or sections of $\mathscr{E}(-k)$.

Let us note that some results of this paper have already been published, see remarks after the proofs of Theorems (1.6) and (2.1).

1. Fano bundles; preliminaries. Let $\mathscr{E}$ be a vector bundle of rank $r \geq 2$ on a smooth complex projective variety $M$. Let us recall that the tautological line bundle $\xi=\xi_{\varepsilon}$ on $V=P(\mathscr{E})$ is uniquely determined by the conditions $\xi_{\mathcal{\ell}} \mid F \approx \mathscr{O}_{F}(1)$ and $p_{*} \xi_{\mathscr{\ell}}=\mathscr{E}$. By $p$ we have denoted the projection morphism of $V=P(\mathscr{E})$ onto $M$ and by $F$-the fibre of $p$. Obviously, $F \cong P^{r-1}$ and $p: V \rightarrow M$ is a $P^{r-1}$-bundle. The Picard group of $V$ can be expressed as a direct sum: Pic $V \cong Z \cdot \xi_{\mathscr{E}} \oplus p^{*}(\operatorname{Pic} M)$. Replacing $\mathscr{E}$ by its twist with a line bundle $\mathscr{L}$ on $M$ does not affect
the projectivization and

$$
\xi_{\mathscr{C} \otimes \mathscr{L}}=\xi_{\mathscr{E}} \otimes p^{*}(\mathscr{L})
$$

Moreover, $\mathscr{E}$ is generated by global sections iff $\xi_{\mathscr{E}}$ is. We have the following relative Euler sequence on $V=P(\mathscr{E})$ :

$$
\begin{equation*}
0 \rightarrow \mathscr{O}_{V} \rightarrow p^{*}(\mathscr{E})^{\vee} \otimes \xi_{\mathscr{E}} \rightarrow T_{V \mid M} \rightarrow 0 \tag{1.1}
\end{equation*}
$$

where the latter bundle is the relative tangent bundle of $p$ and fits in the exact sequence

$$
\begin{equation*}
0 \rightarrow T_{V \mid M} \rightarrow T V \rightarrow p^{*} T M \rightarrow 0 \tag{1.2}
\end{equation*}
$$

We then obtain

$$
\begin{equation*}
c_{1} V=p^{*}\left(c_{1} M-c_{1} \mathscr{E}\right)+r \xi_{\mathscr{E}} \tag{1.3}
\end{equation*}
$$

The theorem of Leray and Hirsch yields that in the cohomology ring of $V$ the following holds

$$
\begin{equation*}
\xi_{\mathscr{E}}^{r}-p^{*}\left(c_{1} \mathscr{E}\right) \xi_{\mathscr{E}}^{r-1}+p^{*}\left(c_{2} \mathscr{E}\right) \xi_{\mathscr{E}}^{r-2}-\cdots \pm p^{*}\left(c_{r} \mathscr{E}\right)=0 \tag{1.4}
\end{equation*}
$$

From now on we assume in this section that $\mathscr{E}$ is a rank-r Fano bundle on an $n$-fold $M$, i.e., that $\mathbb{P}(\mathscr{E})$ is a Fano manifold. We prove that such $M$ must be Fano, as well.
(1.5) Lemma. Let $C \subset M$ be a rational curve with a normalization $\nu: P^{1} \rightarrow C$. Assume that $\nu^{*}(\mathscr{E}) \cong \mathscr{O}\left(a_{1}\right) \oplus \mathscr{O}\left(a_{2}\right) \oplus \cdots \oplus \mathscr{O}\left(a_{r}\right)$, where $a_{1} \leq a_{2} \leq \cdots \leq a_{r}$. Then

$$
\left(c_{1} M\right) \cdot C>\sum_{i=2}^{r}\left(a_{i}-a_{1}\right) \geq 0
$$

Proof. The right hand side inequality is obvious. To prove the left hand side inequality let us assume that $W=P\left(\nu^{*} \mathscr{E}\right)$. The manifold $W$ is then a $P^{r-1}$-bundle over $P^{1}$, with a projection $\pi: W \rightarrow P^{1}$. We have a section $C_{0}$ of $\pi$ associated to the epimorphism $\nu^{*} \mathscr{E} \rightarrow \mathscr{O}\left(a_{1}\right) \rightarrow 0$, such that

$$
\xi_{v^{*} \mathscr{E}} \mid C_{0} \cong \mathscr{O}_{P^{1}}\left(a_{1}\right)
$$

The normalization map $\nu: P^{1} \rightarrow M$ lifts to a map $\bar{\nu}: W \rightarrow V$, making the following diagram commute


By the choice of $C_{0}$ we have

$$
\bar{\nu}^{*}\left(\xi_{\S}\right) \cdot C_{0}=a_{1}
$$

and, since $c_{1} V$ is ample, we obtain by (1.3)

$$
\begin{aligned}
0 & <c_{1} V \cdot \bar{\nu}\left(C_{0}\right)=\bar{\nu}^{*}\left(c_{1} V\right) \cdot C_{0} \\
& =r \cdot \bar{\nu}^{*}\left(\xi_{\mathscr{E}}\right) \cdot C_{0}+(\pi \circ \nu)^{*}\left(c_{1} M\right) \cdot C_{0}-(\pi \circ \nu)^{*}\left(c_{1} \mathscr{E}\right) \cdot C_{0} \\
& =r \cdot a_{1}+c_{1} M \cdot C-\sum_{i=1}^{r} a_{i}
\end{aligned}
$$

which yields the desired inequality.
(1.6) Theorem. If $\mathscr{E}$ is a Fano bundle on a manifold $M$ then $M$ is a Fano $n$-fold.

Proof. As $c_{1} V=-K_{V}$ is ample, the cone of curves on $V$ is spanned by the classes of extremal curves (see [12] for definitions and Theorem 1.2 on the cone of curves of a Fano manifold). Let us denote these curves by $l_{0}, l_{1}, \cdots, l_{v}$ with $l_{0}$ contained in $F$, a fibre of the projection $p: P(\mathscr{E}) \rightarrow M$. We see that $p^{*}\left(c_{1} M\right) \cdot l_{0}=0$ and for $i>0, p\left(l_{i}\right)$ is a rational curve on $M$. Therefore from (1.5) it follows that

$$
\begin{equation*}
0<c_{1} M \cdot p\left(l_{i}\right)=p^{*}\left(c_{1} M\right) \cdot l_{i} \tag{1.7}
\end{equation*}
$$

which means that $p^{*}\left(c_{1} M\right)$ is numerically effective. Recall now (a conclusion from) the Kawamata-Shokurov contraction theorem, see (2.6) in [11]:

If $D$ is nef and $a D-K$ is ample for some $a>0$, then $D$ is semiample, i.e., some power of $D$ is generated by global sections.

It follows that $D:=p^{*}\left(c_{1} M\right)$ is semiample. Since $p: V \rightarrow M$ is a $P^{r-1}$-bundle, we have, for any integer $k, p_{*} p^{*}\left(\mathscr{O}\left(k c_{1} M\right)\right)=\mathscr{O}\left(k c_{1} M\right)$ and the images (under $p_{*}$ ) of global sections of $p^{*}\left(\mathscr{O}\left(k c_{1} M\right)\right)$ are global sections of $\mathcal{O}\left(k c_{1} M\right)$. Therefore $c_{1} M$ is semiample, hence to prove that it is ample it is enough to show that $c_{1} M \cdot C>0$ for any curve $C$ in $M$.

Let $C$ be an irreducible curve in $M$. Taking an appropriate component from an intersection of the inverse image $p^{-1}(C)$ with general $r-1$ divisors from a very ample linear system, we can produce an irreducible curve $C_{1} \subset V$, such that $p\left(C_{1}\right)=C$. Then $C_{1}$ is numerically equivalent to a linear combination $\sum a_{i} l_{i}$ with at least one $a_{i}$ different from zero for $i>0$. Let $d$ be the degree of the map $p \mid C_{1}: C_{1} \rightarrow C$.

Now the inequality (1.7) gives

$$
c_{1} M \cdot C=\frac{1}{d} \cdot p^{*}\left(c_{1} M\right) \cdot C_{1}=\frac{1}{d} \cdot\left(\sum a_{i} \cdot p^{*}\left(c_{1} M\right) \cdot l_{i}\right)>0,
$$

which concludes the proof of the theorem.
Remark. Theorem (1.6) has already been known for bundles of rank 2 on surfaces [4] and 3-folds [1].
2. Rank-2 Fano bundles on $P^{3}$. The results stated below (Theorem (2.1)) can be understood as one more example of an exceptional character of the null-correlation bundle (see e.g. [3] or [15] for the definition of the null-correlation bundle).
(2.1) Theorem. The only rank-2 Fano bundles with $c_{1}=0,-1$, on $\mathrm{P}^{3}$ are
(1) $\mathscr{E}=\mathscr{O} \oplus \mathcal{O}$,
(2) $\mathscr{E}=\mathscr{O} \oplus \mathscr{O}(-1)$,
(3) $\mathscr{E}=\mathscr{O}(-1) \oplus \mathcal{O}(+1)$,
(4) $\mathscr{E}=\mathscr{O}(-2) \oplus \mathscr{O}(+1)$,
(5) the null-correlation bundle $\mathscr{N}$.

Proof. Let $V=P(\mathscr{E})$. We then have

$$
\begin{align*}
-K_{V} & =2 \xi+\left(4-c_{1} \mathscr{E}\right) H  \tag{2.2}\\
& = \begin{cases}2 \xi+4 H=2 \xi_{\mathcal{E}(1)}+2 H=2 \xi_{\mathscr{E}(2)} & \text { if } c_{1}=0, \\
2 \xi+5 H=2 \xi_{\mathcal{E}(2)}+H=2 \xi_{\mathscr{E}(3)}-H & \text { if } c_{1}=-1,\end{cases}
\end{align*}
$$

and we see that any of the bundles listed above is Fano. Indeed, if $\mathscr{E}$ is one of those listed as (1), (3) or (5) (respectively: (2) or (4)) then $c_{1} \mathscr{E}=0\left(\right.$ resp. $\left.c_{1} \mathscr{E}=-1\right)$ and $\mathscr{E}(1)$ (resp. $\left.\mathscr{E}(2)\right)$ is generated by its global sections. Now, since $\rho(V)=2$, it follows from (2.2) that $c_{1} V$ is ample as the sum of two non-proportional nef divisors.

An easy corollary follows.
(2.3) For a normalized Fano bundle $\mathscr{E}$ of rank 2 on $P^{3}$ :
if $c_{1} \mathscr{E}=0$, then $\mathscr{E}(2)$ is ample,
if $c_{1} \mathscr{E}=-1$, then $\mathscr{E}(3)$ is ample.
We shall discuss the two cases separately.
Case $c_{1}=0$. A straightforward consequence of the theorem of Leray and Hirsch (1.4) yields that in the cohomology ring of $V$ the following holds

$$
\xi^{2}+c_{2} H^{2}=0 .
$$

Since $H^{4}=0$ and $H^{3} \xi=1$, the above formula then gives

$$
\begin{equation*}
H^{2} \xi^{2}=0, \quad H \xi^{3}=-c_{2}, \quad \xi^{4}=0, \tag{2.4}
\end{equation*}
$$

so that $\left(-K_{V}\right)^{4}=(2 \xi+4 H)^{4}=128\left(4-c_{2}\right)$ and we see that $c_{2}<4$.
Assume first $\mathscr{E}$ is not semistable, i.e., $H^{0}(\mathscr{E}(-1)) \neq 0$. Let $s$ be a non-zero section of $\mathscr{E}(-1)$. We claim that $s$ does not vanish anywhere. Indeed, if $Z=\{s=0\}$ were not empty, then for a line $L$ meeting $Z$ in a finite number of points we would have

$$
\mathscr{E}(-1) \mid L=\mathscr{O}(d) \oplus \mathscr{O}(e) \quad \text { with } d \geq 1, d+e=-2,
$$

contradicting (2.3). Therefore $s$ does not vanish and thus $\mathscr{E}(-1)=$ $\mathscr{O} \oplus \mathcal{O}(-2)$, hence $\mathscr{E}$ is as in (3) of the theorem.

Let now $\mathscr{E}$ be semistable but not stable: $H^{0}(\mathscr{E}(-1))=0, H^{0}(\mathscr{E}) \neq 0$. If a non-zero section of $\mathscr{E}$ does not vanish anywhere, $\mathscr{E}$ must then be $\mathcal{O} \oplus \mathcal{O}$. Otherwise a section vanishes on a curve. If the curve is not a single line then cutting it by a line leads to a contradiction, as above. But if a single line $L$ was a zero set of a section of $\mathscr{E}$ then, by the adjunction formula, the degree of the canonical divisor of $L$ would be

$$
\operatorname{deg}\left(K_{L}\right)=\left(K_{P^{3}}+c_{1} \mathscr{E}\right) \cdot L=-4,
$$

which is impossible. Because of Bogomolov's inequality $c_{1}^{2}<4 c_{2}$ for stable bundles, [15], it remains then to study stable bundles with $c_{1}=0$ and $c_{2}=1,2,3$. In the first case $\mathscr{E}$ is the null-correlation bundle $\mathscr{N}$, for which $\mathscr{N}(2)$ is ample; $\mathscr{N}$ is then Fano.

In the remaining cases we know that $\mathscr{E}$ has multiple jumping lines, i.e. such lines $L$ for which $\mathscr{E} \mid L=\mathscr{O}_{L}(-2) \oplus \mathscr{O}_{L}(2)$, see [8], Proposition 9.11 , and [18], respectively. In virtue of (2.3), such bundles cannot be Fano.

Case $c_{1}=-1$. The multiplication table is now:

$$
\begin{gather*}
H^{4}=0, \quad H^{3} \xi=1, \quad H^{2} \xi^{2}=-1,  \tag{2.5}\\
H \xi^{3}=-c_{2}+1, \quad \xi^{4}=2 c_{2}-1
\end{gather*}
$$

and from

$$
\left(-K_{V}\right)^{4}=(2 \xi+5 H)^{4}=32\left(-4 c_{2}+17\right)>0
$$

we obtain that the only possible non-negative values for $c_{2}$ are 0,2 or 4 (recall that Schwarzenberger's condition says $c_{1} c_{2} \equiv 0(\bmod 2)$ ). Assume $H^{0}(\mathscr{E}(-1)) \neq 0$. As above, we show that no section $s \neq 0$
vanishes: if $Z=\{\operatorname{zero}(s)\}$ were not empty, for a line $L$ meeting $Z$ at finitely many points we would have

$$
\mathscr{E}(-1) \mid L=\mathscr{O}_{L}(d) \oplus \mathscr{O}_{L}(e) \quad \text { with } d \geq 1, d+e=-3
$$

contradicting (2.3). Therefore the sections $\mathscr{E}(-1)$ do not vanish anywhere, so that $\mathscr{E}$ is as in (4) of Theorem (2.1).

Let then $H^{0}(\mathscr{E}(-1))=0, H^{0}(\mathscr{E}) \neq 0$. The zero set $Z$ of a nonzero section is then a curve (if not empty). Again, if $Z$ were anything different from a single line, for a line $L$ that cuts $Z$ at a finite number $\geq 2$ of points we would have

$$
\mathscr{E} \mid L=\mathscr{O}_{L}(d) \oplus \mathscr{O}_{L}(e), \quad d \geq 2, d+e=-1
$$

contradicting the ampleness of $\mathscr{E}(3)$. But $c_{1} c_{2}$ is even so that the case $c_{1}=-1, c_{2}=1$ does not hold, hence $Z$ is not a line. The non-zero sections of $\mathscr{E}$ do not vanish, hence $\mathscr{E}=\mathscr{O} \oplus \mathscr{O}(1)$.

It remains to exclude the cases of stable vector bundles with $c_{1}=-1$ and $c_{2}=2$ or 4 . In the former case $\mathscr{E}$ has multiple jumping lines, [9], Proposition 4.1, i.e., those for which $\mathscr{E} \mid L=\mathscr{O}_{L}(-3) \oplus \mathscr{O}_{L}(2)$, hence $\mathscr{E}$ cannot be Fano in view of (2.3). In the latter one $\mathscr{E}(2)$ has a section, see [2], Lemma 1, and $2 H+\xi$ is effective with

$$
(2 H+\xi)\left(c_{1} P(\xi)\right)^{3}=(2 H+\xi)(2 \xi+5 H)^{3}=-17
$$

These bundles are then not Fano.
Remark. Theorem (2.1) (in a somewhat weaker form) was first announced by Artiushkin, [1]. His proof was, however, incorrect: in line 36 on page 14 if $E$ is a normalized bundle on $P^{3}$, then the tautological divisor $\xi_{E}=L$ in op. cit. need not to be effective, therefore $(-K)^{3} \cdot L$ need not to be positive. Our actual proof is more complicated.

Let us conclude this section by proving that $P(\mathscr{N})$ has a $P^{1}$-bundle structure over a 3-dimensional quadric $Q_{3}$. To see this, first let us recall that $\mathscr{N}(1)$ can be defined as the bundle fitting in the following exact sequence on $P^{3}$

$$
0 \rightarrow \mathscr{O} \rightarrow \Omega P^{3}(2) \rightarrow \mathscr{N}(1) \rightarrow 0
$$

Note that $P\left(\Omega P^{3}(2)\right)$ is the incidence variety

$$
I=\left\{(x, l) \in P^{3} \times \operatorname{Grass}(1,3): x \in l\right\}
$$

and $\operatorname{Grass}(1,3)$ is isomorphic to a 4-dimensional quadratic. Now, from the above exact sequence it follows that $P(\mathscr{N}(1))$ is a divisor in $I$ which is an inverse image of a hyperplane section of $\operatorname{Grass}(1,3)$.

Therefore:
(2.6) Proposition. The Fano 4-fold $P(\mathscr{N}(1))$ is a projectivization of a rank-2 vector bundle on smooth quadratic $Q_{3} \subset \operatorname{Grass}(1,3)$, obtained by restricting to $Q_{3}$ the universal quotient bundle from $\operatorname{Grass}(1,3)$.
3. Bundles over $Q_{3}$. Let us recall that the cohomology ring of $Q_{3}$ is generated by the classes of $[H] \in H^{2}\left(Q_{3}, Z\right),[L] \in H^{4}\left(Q_{3}, Z\right)$, and $[P] \in H^{6}\left(Q_{3}, Z\right)$ where $H, L$ and $P$ are a quadratic surface, a line and a point, respectively. There are the following relationships: $[H]^{2}=2 L$, $[H][L]=[P]$ and hence $[H]^{3}=2[P]$. If $\mathscr{F}$ is a coherent sheaf on $Q_{3}$ with the Chern polynomial

$$
1+c_{1}(\mathscr{F})[H] t+c_{2}(\mathscr{F})[L] t^{2}+c_{3}(\mathscr{F})[P] t^{3}
$$

then the numbers $c_{i}$ are called the Chern classes of $\mathscr{F}$.
Recall the Riemann-Roch formula for $\mathscr{F}$, [5]

$$
\chi(\mathscr{F})=\frac{1}{6}\left(2 c_{1}^{3}-3 c_{1} c_{2}+3 c_{3}\right)+\frac{3}{2}\left(c_{1}^{2}-c_{2}\right)+\frac{13}{6} c_{1}+\operatorname{rank} \mathscr{F} .
$$

Let now $\mathscr{E}$ be a rank-2 vector bundle on $Q_{3}$. The theorem of Leray and Hirsch (1.4) gives the following relations between the generators of $\operatorname{Pic}(P(\mathscr{E})) \cong Z \oplus Z$

$$
\left\{\begin{array}{l}
\text { if } c_{1}=0, \text { then } \xi^{2}+\frac{1}{2} c_{2}(\mathscr{E}) H^{2}=0 \\
\text { if } c_{1}=-1, \text { then } \xi^{2}+\xi H+\frac{1}{2} c_{2}(\mathscr{E}) H^{2}=0
\end{array}\right.
$$

Because $H^{4}=0$ and $H^{3} \xi=2$, we obtain:
if $c_{1}=0, \quad$ then $H^{2} \xi^{2}=0, \quad H \xi^{3}=-c_{2}, \quad \xi^{4}=0 ;$
if $c_{1}=-1, \quad$ then $H^{2} \xi^{2}=-2, \quad H \xi^{3}=2-c_{2}, \quad \xi^{4}=2 c_{2}-2$.
Let $\mathscr{E}$ be a normalized rank-2 vector bundle on $Q_{3}$ and $V=P(\mathscr{E})$ its projectivization. We then have

$$
c_{1} V=-K_{V}= \begin{cases}2 \xi+3 H & \text { when } c_{1}=0  \tag{3.1}\\ 2 \xi+4 H & \text { for } c_{1}=-1\end{cases}
$$

Case of non-stable bundles. Assume $\mathscr{E}$ is non-stable with $c_{1}(\mathscr{E})=$ -1. If a non-zero section from $H^{0}(\mathscr{E}(-1))$ vanishes at some point, let us consider a line $L$ passing through this point and not contained in the zero set entirely. Then $\mathscr{E}(-1) \mid L=\mathscr{O}(d) \oplus \mathscr{O}(e)$ with $d \geq 1$, $d+e=-3$ that contradicts the ampleness of $\mathscr{E}(2),(3.1)$.

Assume $H^{0}(\mathscr{E}(-1))=0, H^{0}(\mathscr{E}) \neq 0$. Then a non-zero section of $\mathscr{E}$ either does not vanish anywhere or it vanishes on a set of pure dimension 1. The divisor $\xi_{\mathscr{E}}$ is effective on $P(\mathscr{E})$ and

$$
\xi \cdot\left(-K_{V}\right)^{3}=8 \xi(\xi+2 H)^{3}=16\left(-2 c_{2}+1\right)
$$

and we see that $c_{2} \leq 0$. But then sections of $\mathscr{E}$ do not have zeros, hence $\mathscr{E}=\mathscr{O}(-1) \oplus \mathscr{O}$. Finally, we easily check that $\mathcal{O}(-1) \oplus \mathscr{O}$ is a Fano bundle (because $\mathscr{O}(1) \oplus \mathcal{O}(2)$ is ample).

In case $c_{1}=0$ we exclude non-semistable bundles in a very similar way. Finally, if $\mathscr{E}$ is semistable but not stable, that is $H^{0}(\mathscr{E}) \neq 0=$ $H^{0}(\mathscr{E}(-1))$, the divisor $\xi_{\mathscr{E}}$ is effective and

$$
0<\xi(2 \xi+3 H)^{3}=18\left(-2 c_{2}+3\right)
$$

so that $c_{2} \leq 0$ (recall that $c_{2} \equiv 0 \bmod 2$, see [5], §1). If so, a non-zero section of $\mathscr{E}$ does not vanish anywhere and $\mathscr{E}$ must then be $\mathscr{O} \oplus \mathscr{O}$.

Case of stable bundles with $c_{1}=0$. From the condition $K^{4}>0$ we easily obtain that if $V=P(\mathscr{E})$ is Fano, then $c_{2} \leq 4$, and since $c_{2} \equiv 0$ $(\bmod 2)$ it follows that either $c_{2}=2$ or 4 . We believe that there is no Fano bundle on $Q_{3}$ with $c_{1}=0, c_{2}=4$, however we do not have enough information on these bundles to prove it.

In case of $c_{2}=2$, one can easily check that the pull-back $\pi^{*}(\mathcal{N})$ of the null-correlation bundle, under a double covering $\pi: Q_{3} \rightarrow P^{3}$, is Fano. Indeed, $\pi^{*}(\mathcal{N})(1)$ is then spanned on $Q_{3}$, therefore $-K_{P\left(\pi^{*}(\mathcal{N})\right)}$ $=2 \xi_{\pi^{*}(\mathcal{N})(1)}+H$ is ample. On the other hand we have
(3.2) Proposition. If $\mathscr{E}$ is a stable bundle on $Q_{3}$ with $c_{1}=0, c_{2}=2$ such that $\mathscr{E}(1)$ is spanned by global sections then $\mathscr{E}$ is a pull-back $\pi^{*}(\mathcal{N})$ of a null-correlation bundle $\mathscr{N}$, under a double covering $\pi: Q_{3} \rightarrow P^{3}$.

Proof. The argument is based on the following fact: for any two disjoint lines on $P^{3}$ there exists a section of a twisted null-correlation bundle $\mathscr{N}(1)$ vanishing exactly on these lines. Therefore, if we prove that a section of $\mathscr{E}(1)$ vanishes on a set being a pullback, via a double covering $\pi: Q_{3} \rightarrow P^{3}$, of two disjoint lines on $P^{3}$, then in view of Theorem 1.1 and Remark 1.1.1 from [8], $\mathscr{E}(1)$ is a pullback of $\mathscr{N}(1)$; if $Z$ is the union of two disjoint lines and $Y$ its pullback then it is easy to check that every isomorphism between $\omega_{Q}(-2) \mid Y$ and $\omega_{Y}$ comes from $\omega_{\mathrm{P}}(-2) \mid Z \simeq \omega_{Z}$.

Assume $\mathscr{E}$ is stable with $c_{1}(\mathscr{E})=0, c_{2}(\mathscr{E})=2$ on $Q_{3}$. We easily compute the following cohomology table of $h^{i}(\mathscr{E}(-m))$

| 0 | 0 | 0 | 0 | $\uparrow h^{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | $h^{2}$ |
| 0 | 0 | 1 | 1 | $h^{1}$ |
| 0 | 0 | 0 | 0 | $h^{0}$ |
| $m=3$ | $m=2$ | $m=1$ | $m=0$ |  |

Indeed, vanishing of the lower and upper row is a consequence of the stability (plus Serre's duality) and the "spectrum" technique, namely Corollary 2.4 in [5], gives

$$
h^{1}(\mathscr{E}(-2))=h^{1}(\mathscr{E}(-3))=h^{2}(\mathscr{E})=h^{2}(\mathscr{E}(-1))=0
$$

and the remaining part of the table follows from computing the EulerPoincaré characteristic.

Since $\chi(\mathscr{E}(1))=5$ and $h^{2}(\mathscr{E}(1))=h^{1}(\mathscr{E}(-4))=0$ by Corollary 2.4 in [5], we see $h^{0}(\mathscr{E}(1)) \geq 5$. Let $Y$ be the zero of a generic section.

Since $H^{0}(\mathscr{E})=0$ and $\mathscr{E}(1)$ is assumed to be globally generated, $Y$ is a smooth (not necessarily connected) curve. From the diagram

$$
0 \rightarrow \mathscr{O}(-2) \rightarrow \mathscr{E}(-1) \rightarrow \begin{gathered}
0 \\
\downarrow \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\mathscr{O}_{3} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{gathered}
$$

we calculate, with the aid of the cohomology table above, that $h^{0}\left(\mathscr{O}_{Y}\right)=$ 2, i.e., $Y$ consists of two connected components, say $Y_{1}$ and $Y_{2}$.

Claim. $Y_{1}$ and $Y_{2}$ are conics.
Proof of claim. Since $c_{2} \mathscr{E}(1)=4$ and both $Y_{i}$ are smooth (therefore reduced) we have only to exclude the possibility that one of them is a line $L$. But then by the adjunction formula we would obtain

$$
\operatorname{deg}\left(K_{L}\right)=\left(K_{Q_{3}}+c_{1} \mathscr{E}(1)\right) \cdot L=-1
$$

which is impossible.
Let now $H_{i}$ be the plane containing $Y_{i}, i=1,2$; clearly $Q_{3} \cap H_{i}=Y_{i}$ and $H_{1}, H_{2}$ meet at one point in $P^{4}$ off $Q_{3}$. Projecting $Q_{3} \subset P^{4}$ from this point onto a hyperplane $H$ in $P^{4}$ is a double covering of $H$ and the images of $Y_{1}$ and $Y_{2}$ are two skew lines, say $L_{1}$ and $L_{2}$. It then follows that $\mathscr{E}(1)$ is the pull-back of the null-correlation bundle $\mathscr{N}(1)$ corresponding to $L_{1}$ and $L_{2}$.

Remark. It is not entirely clear whether or not any stable bundle on $Q_{3}$ with $c_{1}=0$ and $c_{2}=2$ enjoys the property stated in (3.2).

Case of stable bundles with $c_{1}=-1, c_{2}=1$. Here a more detailed description of Fano bundles can be given. Let $\mathscr{E}$ be a stable bundle on $Q_{3}$ with $c_{1}=-1, c_{2}=1$.
(3.3) The cohomology of such a bundle are the following:
(1) $h^{0}(\mathscr{E}(m))=0$ for $m \leq 0$,
(2) $h^{0}(\mathscr{E}(1))=4$,
(3) $h^{1}(\mathscr{E}(m))=h^{2}(\mathscr{E}(m))=0$ for all $m$,
(4) $h^{3}(\mathscr{E}(m))=0$ for $m \geq-2$.

Proof. (1) is a criterion of stability, (4) is dual to (1), (2) will follow from (3), (4) and the Riemann-Roch formula. Corollary 2.4 in [5] gives $h^{1}(\mathscr{E}(m))=0$ for $m \leq-1$. By duality, $h^{2}(\mathscr{E}(m))=0$ for $m \geq-1$ so that $h^{1}(\mathscr{E})=\chi(\mathscr{E})=0$. The Castelnuovo criterion (see e.g. Lecture 14 in [14]) now yields that $\mathscr{E}(m)$ are generated by global sections if $m \geq 1$ and that all cohomology $H^{i}(\mathscr{E}(m))$ vanish for $i \geq 1$, $i+m \geq 1$. Now by duality (3) follows for any integer $m$.

Note that from the Castelnuovo criterion it follows that $\mathscr{E}(1)$ is spanned; therefore $\mathscr{E}(2)$ is ample and $\mathscr{E}$ is Fano.

Now we prove that such $\mathscr{E}$ is the one from (2.6). Since the bundle $\mathscr{E}(1)$ is spanned and $h^{0}(\mathscr{E}(1))=4$ it follows that the linear system $|H+\xi|$ is base point free and of dimension 3. Let $\varphi: P(\mathscr{E}) \rightarrow P^{3}$ be the map associated with this system.
(3.4). Proposition. $\varphi: P(\mathscr{E}) \rightarrow P^{3}$ is a $P^{1}$-bundle which is the projectivization of a null-correlation bundle.

Proof. First note that a general divisor $D$ in the linear system $|2 H+\xi|$ is a Fano 3 -fold listed as $n^{\circ} 17$ in Table 2 [13]. The map $\left.\varphi\right|_{D}$ is a blowdown morphism from $D$ onto $P^{3}$.

We claim that $\varphi$ has no fibre of dimension $\geq 2$. Assume that $S$ is such a fibre. Then $f:=D \cap S$ is isomorphic to $P^{1}$ and $\mathscr{O}_{f}(H) \cong \mathscr{O}_{P^{1}}(1)$. In view of Theorem $2.1 \mathrm{~b}^{\prime}$, [6] we see that $S \cong P^{2}$ and $\mathscr{O}_{S}(H) \cong \mathscr{O}_{P^{2}}(1)$. But in this case $p: S \rightarrow Q_{3}$ is a plane embedding of $P^{2}$ in $Q_{3}$, which is impossible.

Now any fibre of $\varphi$ is numerically equivalent to $(H+\xi)^{3}$ and, since $H \cdot(H+\xi)^{3}=1$, it follows that it must be isomorphic to $P^{1}$. The push-forward $\varphi_{*}(\mathscr{O}(H))$ is a rank-2 Fano bundle on $P^{3}$. From the results of $\S 2$ we see that it is a null-correlation bundle.

Corollary. Any stable rank-2 bundle on $Q_{3}$ with Chern classes $c_{1}=-1, c_{2}=1$ is a pull-back of the universal quotient bundle on

Grass $(1,3)$ via some hyperplane embedding

$$
Q_{3} \rightarrow \operatorname{Grass}(1,3)=Q_{4} \subset P^{5} .
$$

Remark 1. The above example shows that the Horrocks splitting principle, as it stands on $P^{n}$ (see e.g. [15]), cannot be applied literally to bundles on $Q_{3}$ (see [16] for an analogue of the Horrocks splitting principle on $Q_{n}$ ). Let us also notice that the bundle discussed above is uniform: its decomposition type is the same on all lines and smooth conics in $Q_{3}$.
Remark 2. It is proved in [19] that $V=P(\mathcal{N})=P(\mathscr{E})$ (where $\mathscr{E}$ is the bundle discussed above and $\mathscr{N}$ is the null-correlation bundle on $P^{3}$ ) is the only ruled Fano 4 -fold of index 2 obtained from a nondecomposable bundle.

Added in the proof. Together with Ignacio Sols we have concluded the case of rank-2 Fano bundles on $Q_{3}$. Firstly, we have proved that the first twist of a stable bundle with $c_{1}=0, c_{2}=2$ is spanned by global sections (see Proposition (3.2) and the subsequent remark). Secondly, we have decided that bundles with $c_{1}=0, c_{2}=4$ are not Fano (see the discussion preceding (3.2)).

## References

[1] I. Yu. Artiushkin, Four-dimensional Fano manifolds representable as $P^{1}$-bundles, Vest. Mosk. Un-ta, ser 1, No. 1, (1987), 12-16, in Russian.
[2] C. Banica and N. Manolache, Rank 2 stable vector bundles on $P^{3}(C)$ with Chern classes $c_{1}=-1, c_{2}=4$. Math. Z., 190 (1985), 315-339.
[3] W. Barth, Some properties of stable rank-2 vector bundles on $P_{n}$, Math. Ann., 226 (1977), 125-159.
[4] I. V. Demin, Three-dimensional Fano manifolds representable as line fiberings, Izv. Akad. Nauk SSSR, 44, nº ${ }^{\circ}$, (1980), 464-921, English translation in Math USSR Izv. 17 Addendum to this paper in Izv. Akad. Nauk SSSR $46 n^{\circ}$ 3, English translation in Math. USSR Izv. 20.
[5] L. Ein and I. Sols, Stable vector bundles on quadrics, Nagoya Math. J., 96 (1984), 11-22.
[6] T. Fujita, On the structure of polarized varieties with $\Delta$-genera zero, J. Fac. Sci. Univ. Tokyo, 22 (1975), 103-115.
[7] W. Fulton, Ample vector bundles, Chern classes, numerical criteria. Inv. Math., 32 (1978), 171-178.
[8] R. Hartshorne, Stable Vector Bundles of Rank 2 on P3, Math. Ann., 238 (1978), 229-280.
[9] R. Hartshorne and I. Sols, Stable rank 2 vector bundles on $P^{3}$ with $c_{1}=-1$, $c_{2}=2$. J. Reine und Angew. Math., 325 (1981), 145-152.
[10] T. Hosoh, Ample vector bundles on a rational surface, Nagoya Math. J., 59 (1975), 135-148.
[11] Y. Kawamata, The cone of curves of algebraic varieties, Ann. Math., 119 (1984), 603f-633.
[12] Sh. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. Math., 116 (1982), 133-176.
[13] Sh. Mori and Sh. Mukai, Classification of Fano 3-folds with $B_{2} \geq 2$, Manuscripta Math., 36 (1981), 147-162.
[14] D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Studies 59, Princeton Univ. Press 1966.
[15] Ch. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces, Birkhäuser 1981.
[16] G. Ottaviani, Critères de scindage pour les fibrès vectoriels sur les grassmannienns et les quadriques, Comptes Rendus Acad. Sci. Paris, 305 (1987), 257-260.
[17] M. Schneider, Stabile Vektorraumbündel vom rang 2 auf der projektiven Ebene. Nachr. Akad. Wiss. Gottingen 1976, 83-86.
[18] S. S. Tikhomirov, On stable two-dimensional vector bundles on $P^{3}$ with Chern classes $c_{1}=0, c_{2}=3$ and 4 , Sbornik Nauch. Tr. Yarosl. Pedag. Inst. im. K. D. Ushinskogo, 180 (1979), 106-114, in Russian.
[19] J. A. Wisniewski, Ruled Fano 4-folds of index 2, Proc. Amer. Math. Soc., 105 (1983), 55-61

Received January 26, 1988.
Warsaw University
PKIN 9p. 00-901 Warszawa, Poland
Jaroslaw A. Wiśniewski visiting at: The Johns Hopkins University Baltimore, MD 21218, USA

