FANO BUNDLES OVER P^3 AND Q_3

Michał Szurek and Jarosław A. Wiśniewski

A vector bundle $\mathscr E$ is called Fano if its projectivization $P(\mathscr E)$ is a Fano manifold. In this article we prove that Fano bundles exist only on Fano manifolds and discuss rank-2 Fano bundles over the projective space P^3 and a 3-dimensional smooth quadric Q_3 .

Fano bundles appear naturally as we strive to construct examples of Fano manifolds of dimension ≥ 3 ; they form interesting yet accessible class of Fano n-folds. For example: among 87 types of Fano 3-folds with $b_2 \geq 2$ listed in [13] 22 types are ruled (i.e. obtained by projectivization of Fano bundles). Moreover some of the non-ruled manifolds listed there can be easily expressed as either finite covers of ruled 3-folds or divisors (or, more generally, complete intersections) in ruled Fano manifolds of higher dimension.

Let us mention another aspect of dealing with Fano bundles: it is how to determine whether or not a vector bundle is ample. This very fine property of a vector bundle cannot be determined by its numerical invariants, see [7]. Assuming the bundle to be stable helps to establish a sufficient condition for ampleness: [10], [17], which however is far from being necessary. In the present paper we take advantage of some already known facts about stable bundles with small Chern classes and determine that a bundle \mathcal{E} is not ample by finding its jumping lines or sections of $\mathcal{E}(-k)$.

Let us note that some results of this paper have already been published, see remarks after the proofs of Theorems (1.6) and (2.1).

1. Fano bundles; preliminaries. Let $\mathscr E$ be a vector bundle of rank $r\geq 2$ on a smooth complex projective variety M. Let us recall that the tautological line bundle $\xi=\xi_{\mathscr E}$ on $V=P(\mathscr E)$ is uniquely determined by the conditions $\xi_{\mathscr E}|F\approx \mathscr O_F(1)$ and $p_*\xi_{\mathscr E}=\mathscr E$. By p we have denoted the projection morphism of $V=P(\mathscr E)$ onto M and by F—the fibre of p. Obviously, $F\cong P^{r-1}$ and $p\colon V\to M$ is a P^{r-1} -bundle. The Picard group of V can be expressed as a direct sum: $\operatorname{Pic} V\cong Z\cdot\xi_{\mathscr E}\oplus p^*(\operatorname{Pic} M)$. Replacing $\mathscr E$ by its twist with a line bundle $\mathscr E$ on M does not affect

the projectivization and

$$\xi_{\mathscr{E}\otimes\mathscr{L}}=\xi_{\mathscr{E}}\otimes p^*(\mathscr{L}).$$

Moreover, $\mathscr E$ is generated by global sections iff $\xi_{\mathscr E}$ is. We have the following relative Euler sequence on $V=P(\mathscr E)$:

$$(1.1) 0 \to \mathscr{O}_V \to p^*(\mathscr{E})^{\vee} \otimes \xi_{\mathscr{E}} \to T_{V|M} \to 0$$

where the latter bundle is the relative tangent bundle of p and fits in the exact sequence

$$(1.2) 0 \to T_{V|M} \to TV \to p^*TM \to 0.$$

We then obtain

(1.3)
$$c_1 V = p^*(c_1 M - c_1 \mathscr{E}) + r \xi_{\mathscr{E}}$$

The theorem of Leray and Hirsch yields that in the cohomology ring of V the following holds

$$(1.4) \xi_{\mathscr{E}}^r - p^*(c_1\mathscr{E})\xi_{\mathscr{E}}^{r-1} + p^*(c_2\mathscr{E})\xi_{\mathscr{E}}^{r-2} - \cdots \pm p^*(c_r\mathscr{E}) = 0.$$

From now on we assume in this section that \mathscr{E} is a rank-r Fano bundle on an n-fold M, i.e., that $\mathbb{P}(\mathscr{E})$ is a Fano manifold. We prove that such M must be Fano, as well.

(1.5) LEMMA. Let $C \subset M$ be a rational curve with a normalization $\nu: P^1 \to C$. Assume that $\nu^*(\mathscr{E}) \cong \mathscr{O}(a_1) \oplus \mathscr{O}(a_2) \oplus \cdots \oplus \mathscr{O}(a_r)$, where $a_1 \leq a_2 \leq \cdots \leq a_r$. Then

$$(c_1M)\cdot C > \sum_{i=2}^r (a_i - a_1) \ge 0.$$

Proof. The right hand side inequality is obvious. To prove the left hand side inequality let us assume that $W = P(\nu^*\mathcal{E})$. The manifold W is then a P^{r-1} -bundle over P^1 , with a projection $\pi \colon W \to P^1$. We have a section C_0 of π associated to the epimorphism $\nu^*\mathcal{E} \to \mathscr{O}(a_1) \to 0$, such that

$$\xi_{v^*\mathscr{E}}|C_0\cong\mathscr{O}_{P^1}(a_1).$$

The normalization map $\nu: P^1 \to M$ lifts to a map $\overline{\nu}: W \to V$, making the following diagram commute

$$\begin{array}{ccc} W & \xrightarrow{\overline{\nu}} & V \\ \pi \downarrow & & \downarrow p \\ P^1 & \xrightarrow{\nu} & M \end{array}$$

By the choice of C_0 we have

$$\overline{\nu}^*(\xi_{\mathscr{E}})\cdot C_0=a_1$$

and, since c_1V is ample, we obtain by (1.3)

$$0 < c_1 V \cdot \overline{\nu}(C_0) = \overline{\nu}^*(c_1 V) \cdot C_0$$

= $r \cdot \overline{\nu}^*(\xi_{\mathscr{E}}) \cdot C_0 + (\pi \circ \nu)^*(c_1 M) \cdot C_0 - (\pi \circ \nu)^*(c_1 \mathscr{E}) \cdot C_0$
= $r \cdot a_1 + c_1 M \cdot C - \sum_{i=1}^r a_i$

which yields the desired inequality.

(1.6) Theorem. If $\mathscr E$ is a Fano bundle on a manifold M then M is a Fano n-fold.

Proof. As $c_1V = -K_V$ is ample, the cone of curves on V is spanned by the classes of extremal curves (see [12] for definitions and Theorem 1.2 on the cone of curves of a Fano manifold). Let us denote these curves by l_0, l_1, \dots, l_v with l_0 contained in F, a fibre of the projection $p: P(\mathcal{E}) \to M$. We see that $p^*(c_1M) \cdot l_0 = 0$ and for i > 0, $p(l_i)$ is a rational curve on M. Therefore from (1.5) it follows that

$$(1.7) 0 < c_1 M \cdot p(l_i) = p^*(c_1 M) \cdot l_i$$

which means that $p^*(c_1M)$ is numerically effective. Recall now (a conclusion from) the Kawamata-Shokurov contraction theorem, see (2.6) in [11]:

If D is nef and aD-K is ample for some a > 0, then D is semiample, i.e., some power of D is generated by global sections.

It follows that $D:=p^*(c_1M)$ is semiample. Since $p:V\to M$ is a P^{r-1} -bundle, we have, for any integer k, $p_*p^*(\mathscr{O}(kc_1M))=\mathscr{O}(kc_1M)$ and the images (under p_*) of global sections of $p^*(\mathscr{O}(kc_1M))$ are global sections of $\mathscr{O}(kc_1M)$. Therefore c_1M is semiample, hence to prove that it is ample it is enough to show that $c_1M\cdot C>0$ for any curve C in M.

Let C be an irreducible curve in M. Taking an appropriate component from an intersection of the inverse image $p^{-1}(C)$ with general r-1 divisors from a very ample linear system, we can produce an irreducible curve $C_1 \subset V$, such that $p(C_1) = C$. Then C_1 is numerically equivalent to a linear combination $\sum a_i l_i$ with at least one a_i different from zero for i > 0. Let d be the degree of the map $p|C_1: C_1 \to C$.

Now the inequality (1.7) gives

$$c_1 M \cdot C = \frac{1}{d} \cdot p^*(c_1 M) \cdot C_1 = \frac{1}{d} \cdot \left(\sum a_i \cdot p^*(c_1 M) \cdot l_i \right) > 0,$$

which concludes the proof of the theorem.

REMARK. Theorem (1.6) has already been known for bundles of rank 2 on surfaces [4] and 3-folds [1].

- 2. Rank-2 Fano bundles on P^3 . The results stated below (Theorem (2.1)) can be understood as one more example of an exceptional character of the null-correlation bundle (see e.g. [3] or [15] for the definition of the null-correlation bundle).
- (2.1) Theorem. The only rank-2 Fano bundles with $c_1=0,-1,$ on \mathbb{P}^3 are
 - (1) $\mathscr{E} = \mathscr{O} \oplus \mathscr{O}$,
 - (2) $\mathscr{E} = \mathscr{O} \oplus \mathscr{O}(-1)$,
 - (3) $\mathscr{E} = \mathscr{O}(-1) \oplus \mathscr{O}(+1)$,
 - $(4) \mathscr{E} = \mathscr{O}(-2) \oplus \mathscr{O}(+1),$
 - (5) the null-correlation bundle \mathcal{N} .

Proof. Let $V = P(\mathcal{E})$. We then have

(2.2)
$$-K_{V} = 2\xi + (4 - c_{1}\mathscr{E})H$$

$$= \begin{cases} 2\xi + 4H = 2\xi_{\mathscr{E}(1)} + 2H = 2\xi_{\mathscr{E}(2)} & \text{if } c_{1} = 0, \\ 2\xi + 5H = 2\xi_{\mathscr{E}(2)} + H = 2\xi_{\mathscr{E}(3)} - H & \text{if } c_{1} = -1, \end{cases}$$

and we see that any of the bundles listed above is Fano. Indeed, if $\mathscr E$ is one of those listed as (1), (3) or (5) (respectively: (2) or (4)) then $c_1\mathscr E=0$ (resp. $c_1\mathscr E=-1$) and $\mathscr E(1)$ (resp. $\mathscr E(2)$) is generated by its global sections. Now, since $\rho(V)=2$, it follows from (2.2) that c_1V is ample as the sum of two non-proportional nef divisors.

An easy corollary follows.

(2.3) For a normalized Fano bundle \mathscr{E} of rank 2 on P^3 :

if $c_1 \mathcal{E} = 0$, then $\mathcal{E}(2)$ is ample,

if $c_1\mathscr{E} = -1$, then $\mathscr{E}(3)$ is ample.

We shall discuss the two cases separately.

Case $c_1 = 0$. A straightforward consequence of the theorem of Leray and Hirsch (1.4) yields that in the cohomology ring of V the following holds

$$\xi^2 + c_2 H^2 = 0.$$

Since $H^4 = 0$ and $H^3 \xi = 1$, the above formula then gives

(2.4)
$$H^2\xi^2 = 0$$
, $H\xi^3 = -c_2$, $\xi^4 = 0$,

so that $(-K_V)^4 = (2\xi + 4H)^4 = 128(4 - c_2)$ and we see that $c_2 < 4$.

Assume first \mathscr{E} is not semistable, i.e., $H^0(\mathscr{E}(-1)) \neq 0$. Let s be a non-zero section of $\mathscr{E}(-1)$. We claim that s does not vanish anywhere. Indeed, if $Z = \{s = 0\}$ were not empty, then for a line L meeting Z in a finite number of points we would have

$$\mathscr{E}(-1)|L = \mathscr{O}(d) \oplus \mathscr{O}(e)$$
 with $d \ge 1, d + e = -2,$

contradicting (2.3). Therefore s does not vanish and thus $\mathscr{E}(-1) = \mathscr{O} \oplus \mathscr{O}(-2)$, hence \mathscr{E} is as in (3) of the theorem.

Let now \mathscr{E} be semistable but not stable: $H^0(\mathscr{E}(-1)) = 0$, $H^0(\mathscr{E}) \neq 0$. If a non-zero section of \mathscr{E} does not vanish anywhere, \mathscr{E} must then be $\mathscr{O} \oplus \mathscr{O}$. Otherwise a section vanishes on a curve. If the curve is not a single line then cutting it by a line leads to a contradiction, as above. But if a single line L was a zero set of a section of \mathscr{E} then, by the adjunction formula, the degree of the canonical divisor of L would be

$$\deg(K_L) = (K_{P^3} + c_1 \mathscr{E}) \cdot L = -4,$$

which is impossible. Because of Bogomolov's inequality $c_1^2 < 4c_2$ for stable bundles, [15], it remains then to study stable bundles with $c_1 = 0$ and $c_2 = 1, 2, 3$. In the first case \mathscr{E} is the null-correlation bundle \mathscr{N} , for which $\mathscr{N}(2)$ is ample; \mathscr{N} is then Fano.

In the remaining cases we know that \mathscr{E} has multiple jumping lines, i.e. such lines L for which $\mathscr{E}|L=\mathscr{O}_L(-2)\oplus\mathscr{O}_L(2)$, see [8], Proposition 9.11, and [18], respectively. In virtue of (2.3), such bundles cannot be Fano.

Case $c_1 = -1$. The multiplication table is now:

(2.5)
$$H^4 = 0, H^3 \xi = 1, H^2 \xi^2 = -1,$$

 $H \xi^3 = -c_2 + 1, \xi^4 = 2c_2 - 1$

and from

$$(-K_V)^4 = (2\xi + 5H)^4 = 32(-4c_2 + 17) > 0$$

we obtain that the only possible non-negative values for c_2 are 0, 2 or 4 (recall that Schwarzenberger's condition says $c_1c_2 \equiv 0 \pmod{2}$). Assume $H^0(\mathcal{E}(-1)) \neq 0$. As above, we show that no section $s \neq 0$

vanishes: if $Z = \{zero(s)\}$ were not empty, for a line L meeting Z at finitely many points we would have

$$\mathscr{E}(-1)|L = \mathscr{O}_L(d) \oplus \mathscr{O}_L(e)$$
 with $d \ge 1, d + e = -3$,

contradicting (2.3). Therefore the sections $\mathcal{E}(-1)$ do not vanish anywhere, so that \mathcal{E} is as in (4) of Theorem (2.1).

Let then $H^0(\mathscr{E}(-1))=0$, $H^0(\mathscr{E})\neq 0$. The zero set Z of a non-zero section is then a curve (if not empty). Again, if Z were anything different from a single line, for a line L that cuts Z at a finite number ≥ 2 of points we would have

$$\mathscr{E}|L = \mathscr{O}_L(d) \oplus \mathscr{O}_L(e), \qquad d \geq 2, d + e = -1,$$

contradicting the ampleness of $\mathcal{E}(3)$. But c_1c_2 is even so that the case $c_1 = -1$, $c_2 = 1$ does not hold, hence Z is not a line. The non-zero sections of \mathcal{E} do not vanish, hence $\mathcal{E} = \mathcal{O} \oplus \mathcal{O}(1)$.

It remains to exclude the cases of stable vector bundles with $c_1 = -1$ and $c_2 = 2$ or 4. In the former case \mathscr{E} has multiple jumping lines, [9], Proposition 4.1, i.e., those for which $\mathscr{E}|L = \mathscr{O}_L(-3) \oplus \mathscr{O}_L(2)$, hence \mathscr{E} cannot be Fano in view of (2.3). In the latter one $\mathscr{E}(2)$ has a section, see [2], Lemma 1, and $2H + \xi$ is effective with

$$(2H + \xi)(c_1 P(\xi))^3 = (2H + \xi)(2\xi + 5H)^3 = -17.$$

These bundles are then not Fano.

REMARK. Theorem (2.1) (in a somewhat weaker form) was first announced by Artiushkin, [1]. His proof was, however, incorrect: in line 36 on page 14 if E is a normalized bundle on P^3 , then the tautological divisor $\xi_E = L$ in op. cit. need not to be effective, therefore $(-K)^3 \cdot L$ need not to be positive. Our actual proof is more complicated.

Let us conclude this section by proving that $P(\mathcal{N})$ has a P^1 -bundle structure over a 3-dimensional quadric Q_3 . To see this, first let us recall that $\mathcal{N}(1)$ can be defined as the bundle fitting in the following exact sequence on P^3

$$0 \to \mathscr{O} \to \Omega P^3(2) \to \mathscr{N}(1) \to 0.$$

Note that $P(\Omega P^3(2))$ is the incidence variety

$$I = \{(x, l) \in P^3 \times Grass(1, 3) \colon x \in l\}$$

and Grass(1,3) is isomorphic to a 4-dimensional quadratic. Now, from the above exact sequence it follows that $P(\mathcal{N}(1))$ is a divisor in I which is an inverse image of a hyperplane section of Grass(1,3).

Therefore:

- (2.6) PROPOSITION. The Fano 4-fold $P(\mathcal{N}(1))$ is a projectivization of a rank-2 vector bundle on smooth quadratic $Q_3 \subset Grass(1,3)$, obtained by restricting to Q_3 the universal quotient bundle from Grass(1,3).
- **3. Bundles over** Q_3 . Let us recall that the cohomology ring of Q_3 is generated by the classes of $[H] \in H^2(Q_3, Z)$, $[L] \in H^4(Q_3, Z)$, and $[P] \in H^6(Q_3, Z)$ where H, L and P are a quadratic surface, a line and a point, respectively. There are the following relationships: $[H]^2 = 2L$, [H][L] = [P] and hence $[H]^3 = 2[P]$. If \mathscr{F} is a coherent sheaf on Q_3 with the Chern polynomial

$$1 + c_1(\mathscr{F})[H]t + c_2(\mathscr{F})[L]t^2 + c_3(\mathscr{F})[P]t^3$$
,

then the numbers c_i are called the Chern classes of \mathcal{F} .

Recall the Riemann-Roch formula for \mathcal{F} , [5]

$$\chi(\mathscr{F}) = \frac{1}{6}(2c_1^3 - 3c_1c_2 + 3c_3) + \frac{3}{2}(c_1^2 - c_2) + \frac{13}{6}c_1 + \operatorname{rank}\mathscr{F}.$$

Let now $\mathscr E$ be a rank-2 vector bundle on Q_3 . The theorem of Leray and Hirsch (1.4) gives the following relations between the generators of $\operatorname{Pic}(P(\mathscr E))\cong Z\oplus Z$

$$\begin{cases} \text{ if } c_1 = 0, \text{ then } \xi^2 + \frac{1}{2}c_2(\mathscr{E})H^2 = 0; \\ \text{ if } c_1 = -1, \text{ then } \xi^2 + \xi H + \frac{1}{2}c_2(\mathscr{E})H^2 = 0. \end{cases}$$

Because $H^4 = 0$ and $H^3 \xi = 2$, we obtain:

if
$$c_1 = 0$$
, then $H^2 \xi^2 = 0$, $H \xi^3 = -c_2$, $\xi^4 = 0$;
if $c_1 = -1$, then $H^2 \xi^2 = -2$, $H \xi^3 = 2 - c_2$, $\xi^4 = 2c_2 - 2$.

Let $\mathscr E$ be a normalized rank-2 vector bundle on Q_3 and $V=P(\mathscr E)$ its projectivization. We then have

(3.1)
$$c_1 V = -K_V = \begin{cases} 2\xi + 3H & \text{when } c_1 = 0, \\ 2\xi + 4H & \text{for } c_1 = -1. \end{cases}$$

Case of non-stable bundles. Assume $\mathscr E$ is non-stable with $c_1(\mathscr E)=-1$. If a non-zero section from $H^0(\mathscr E(-1))$ vanishes at some point, let us consider a line L passing through this point and not contained in the zero set entirely. Then $\mathscr E(-1)|L=\mathscr O(d)\oplus\mathscr O(e)$ with $d\geq 1$, d+e=-3 that contradicts the ampleness of $\mathscr E(2)$, (3.1).

Assume $H^0(\mathscr{E}(-1))=0$, $H^0(\mathscr{E})\neq 0$. Then a non-zero section of \mathscr{E} either does not vanish anywhere or it vanishes on a set of pure dimension 1. The divisor $\xi_{\mathscr{E}}$ is effective on $P(\mathscr{E})$ and

$$\xi \cdot (-K_V)^3 = 8\xi(\xi + 2H)^3 = 16(-2c_2 + 1),$$

and we see that $c_2 \leq 0$. But then sections of \mathscr{E} do not have zeros, hence $\mathscr{E} = \mathscr{O}(-1) \oplus \mathscr{O}$. Finally, we easily check that $\mathscr{O}(-1) \oplus \mathscr{O}$ is a Fano bundle (because $\mathscr{O}(1) \oplus \mathscr{O}(2)$ is ample).

In case $c_1 = 0$ we exclude non-semistable bundles in a very similar way. Finally, if \mathscr{E} is semistable but not stable, that is $H^0(\mathscr{E}) \neq 0 = H^0(\mathscr{E}(-1))$, the divisor $\xi_{\mathscr{E}}$ is effective and

$$0 < \xi(2\xi + 3H)^3 = 18(-2c_2 + 3)$$

so that $c_2 \le 0$ (recall that $c_2 \equiv 0 \mod 2$, see [5], §1). If so, a non-zero section of \mathscr{E} does not vanish anywhere and \mathscr{E} must then be $\mathscr{O} \oplus \mathscr{O}$.

Case of stable bundles with $c_1 = 0$. From the condition $K^4 > 0$ we easily obtain that if $V = P(\mathcal{E})$ is Fano, then $c_2 \le 4$, and since $c_2 \equiv 0 \pmod{2}$ it follows that either $c_2 = 2$ or 4. We believe that there is no Fano bundle on Q_3 with $c_1 = 0$, $c_2 = 4$, however we do not have enough information on these bundles to prove it.

In case of $c_2 = 2$, one can easily check that the pull-back $\pi^*(\mathcal{N})$ of the null-correlation bundle, under a double covering $\pi: Q_3 \to P^3$, is Fano. Indeed, $\pi^*(\mathcal{N})(1)$ is then spanned on Q_3 , therefore $-K_{P(\pi^*(\mathcal{N}))} = 2\xi_{\pi^*(\mathcal{N})(1)} + H$ is ample. On the other hand we have

(3.2) PROPOSITION. If \mathscr{E} is a stable bundle on Q_3 with $c_1 = 0$, $c_2 = 2$ such that $\mathscr{E}(1)$ is spanned by global sections then \mathscr{E} is a pull-back $\pi^*(\mathscr{N})$ of a null-correlation bundle \mathscr{N} , under a double covering $\pi: Q_3 \to P^3$.

Proof. The argument is based on the following fact: for any two disjoint lines on P^3 there exists a section of a twisted null-correlation bundle $\mathcal{N}(1)$ vanishing exactly on these lines. Therefore, if we prove that a section of $\mathcal{E}(1)$ vanishes on a set being a pullback, via a double covering $\pi\colon Q_3\to P^3$, of two disjoint lines on P^3 , then in view of Theorem 1.1 and Remark 1.1.1 from [8], $\mathcal{E}(1)$ is a pullback of $\mathcal{N}(1)$; if Z is the union of two disjoint lines and Y its pullback then it is easy to check that every isomorphism between $\omega_Q(-2)|Y$ and ω_Y comes from $\omega_P(-2)|Z\simeq\omega_Z$.

Assume \mathscr{E} is stable with $c_1(\mathscr{E}) = 0$, $c_2(\mathscr{E}) = 2$ on Q_3 . We easily compute the following cohomology table of $h^i(\mathscr{E}(-m))$

Indeed, vanishing of the lower and upper row is a consequence of the stability (plus Serre's duality) and the "spectrum" technique, namely Corollary 2.4 in [5], gives

$$h^1(\mathcal{E}(-2)) = h^1(\mathcal{E}(-3)) = h^2(\mathcal{E}) = h^2(\mathcal{E}(-1)) = 0$$

and the remaining part of the table follows from computing the Euler-Poincaré characteristic.

Since $\chi(\mathcal{E}(1)) = 5$ and $h^2(\mathcal{E}(1)) = h^1(\mathcal{E}(-4)) = 0$ by Corollary 2.4 in [5], we see $h^0(\mathcal{E}(1)) \ge 5$. Let Y be the zero of a generic section.

Since $H^0(\mathcal{E}) = 0$ and $\mathcal{E}(1)$ is assumed to be globally generated, Y is a smooth (not necessarily connected) curve. From the diagram

we calculate, with the aid of the cohomology table above, that $h^0(\mathcal{O}_Y) = 2$, i.e., Y consists of two connected components, say Y_1 and Y_2 .

Claim. Y_1 and Y_2 are conics.

Proof of claim. Since $c_2\mathcal{E}(1) = 4$ and both Y_i are smooth (therefore reduced) we have only to exclude the possibility that one of them is a line L. But then by the adjunction formula we would obtain

$$deg(K_L) = (K_{O_3} + c_1 \mathcal{E}(1)) \cdot L = -1$$

which is impossible.

Let now H_i be the plane containing Y_i , i = 1, 2; clearly $Q_3 \cap H_i = Y_i$ and H_1 , H_2 meet at one point in P^4 off Q_3 . Projecting $Q_3 \subset P^4$ from this point onto a hyperplane H in P^4 is a double covering of H and the images of Y_1 and Y_2 are two skew lines, say L_1 and L_2 . It then follows that $\mathcal{E}(1)$ is the pull-back of the null-correlation bundle $\mathcal{N}(1)$ corresponding to L_1 and L_2 .

REMARK. It is not entirely clear whether or not any stable bundle on Q_3 with $c_1 = 0$ and $c_2 = 2$ enjoys the property stated in (3.2).

Case of stable bundles with $c_1 = -1$, $c_2 = 1$. Here a more detailed description of Fano bundles can be given. Let \mathscr{E} be a stable bundle on Q_3 with $c_1 = -1$, $c_2 = 1$.

- (3.3) The cohomology of such a bundle are the following:
- (1) $h^0(\mathscr{E}(m)) = 0$ for $m \le 0$,
- (2) $h^0(\mathscr{E}(1)) = 4$,
- (3) $h^1(\mathscr{E}(m)) = h^2(\mathscr{E}(m)) = 0$ for all m,
- (4) $h^3(\mathscr{E}(m)) = 0$ for $m \ge -2$.

Proof. (1) is a criterion of stability, (4) is dual to (1), (2) will follow from (3), (4) and the Riemann-Roch formula. Corollary 2.4 in [5] gives $h^1(\mathcal{E}(m)) = 0$ for $m \le -1$. By duality, $h^2(\mathcal{E}(m)) = 0$ for $m \ge -1$ so that $h^1(\mathcal{E}) = \chi(\mathcal{E}) = 0$. The Castelnuovo criterion (see e.g. Lecture 14 in [14]) now yields that $\mathcal{E}(m)$ are generated by global sections if $m \ge 1$ and that all cohomology $H^i(\mathcal{E}(m))$ vanish for $i \ge 1$, $i + m \ge 1$. Now by duality (3) follows for any integer m.

Note that from the Castelnuovo criterion it follows that $\mathcal{E}(1)$ is spanned; therefore $\mathcal{E}(2)$ is ample and \mathcal{E} is Fano.

Now we prove that such \mathscr{E} is the one from (2.6). Since the bundle $\mathscr{E}(1)$ is spanned and $h^0(\mathscr{E}(1)) = 4$ it follows that the linear system $|H + \xi|$ is base point free and of dimension 3. Let $\varphi \colon P(\mathscr{E}) \to P^3$ be the map associated with this system.

(3.4). PROPOSITION. $\varphi: P(\mathscr{E}) \to P^3$ is a P^1 -bundle which is the projectivization of a null-correlation bundle.

Proof. First note that a general divisor D in the linear system $|2H+\xi|$ is a Fano 3-fold listed as no 17 in Table 2 [13]. The map $\varphi|_D$ is a blowdown morphism from D onto P^3 .

We claim that φ has no fibre of dimension ≥ 2 . Assume that S is such a fibre. Then $f := D \cap S$ is isomorphic to P^1 and $\mathscr{O}_f(H) \cong \mathscr{O}_{P^1}(1)$. In view of Theorem 2.1b', [6] we see that $S \cong P^2$ and $\mathscr{O}_S(H) \cong \mathscr{O}_{P^2}(1)$. But in this case $p: S \to Q_3$ is a plane embedding of P^2 in Q_3 , which is impossible.

Now any fibre of φ is numerically equivalent to $(H+\xi)^3$ and, since $H\cdot (H+\xi)^3=1$, it follows that it must be isomorphic to P^1 . The push-forward $\varphi_*(\mathscr{O}(H))$ is a rank-2 Fano bundle on P^3 . From the results of §2 we see that it is a null-correlation bundle.

COROLLARY. Any stable rank-2 bundle on Q_3 with Chern classes $c_1 = -1$, $c_2 = 1$ is a pull-back of the universal quotient bundle on

Grass(1, 3) via some hyperplane embedding

$$Q_3 \rightarrow \text{Grass}(1,3) = Q_4 \subset P^5$$
.

REMARK 1. The above example shows that the Horrocks splitting principle, as it stands on P^n (see e.g. [15]), cannot be applied literally to bundles on Q_3 (see [16] for an analogue of the Horrocks splitting principle on Q_n). Let us also notice that the bundle discussed above is uniform: its decomposition type is the same on all lines and smooth conics in Q_3 .

REMARK 2. It is proved in [19] that $V = P(\mathcal{N}) = P(\mathcal{E})$ (where \mathcal{E} is the bundle discussed above and \mathcal{N} is the null-correlation bundle on P^3) is the only ruled Fano 4-fold of index 2 obtained from a non-decomposable bundle.

Added in the proof. Together with Ignacio Sols we have concluded the case of rank-2 Fano bundles on Q_3 . Firstly, we have proved that the first twist of a stable bundle with $c_1 = 0$, $c_2 = 2$ is spanned by global sections (see Proposition (3.2) and the subsequent remark). Secondly, we have decided that bundles with $c_1 = 0$, $c_2 = 4$ are not Fano (see the discussion preceding (3.2)).

REFERENCES

- [1] I. Yu. Artiushkin, Four-dimensional Fano manifolds representable as P¹-bundles, Vest. Mosk. Un-ta, ser 1, No. 1, (1987), 12–16, in Russian.
- [2] C. Banica and N. Manolache, Rank 2 stable vector bundles on $P^3(C)$ with Chern classes $c_1 = -1$, $c_2 = 4$. Math. Z., **190** (1985), 315-339.
- [3] W. Barth, Some properties of stable rank-2 vector bundles on P_n , Math. Ann., **226** (1977), 125–159.
- [4] I. V. Demin, Three-dimensional Fano manifolds representable as line fiberings, Izv. Akad. Nauk SSSR, 44, n°4, (1980), 464-921, English translation in Math USSR Izv. 17 Addendum to this paper in Izv. Akad. Nauk SSSR 46 n°3, English translation in Math. USSR Izv. 20.
- [5] L. Ein and I. Sols, Stable vector bundles on quadrics, Nagoya Math. J., 96 (1984), 11-22.
- [6] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. Tokyo, 22 (1975), 103–115.
- [7] W. Fulton, Ample vector bundles, Chern classes, numerical criteria. Inv. Math., 32 (1978), 171-178.
- [8] R. Hartshorne, Stable Vector Bundles of Rank 2 on P³, Math. Ann., 238 (1978), 229-280.
- [9] R. Hartshorne and I. Sols, Stable rank 2 vector bundles on P^3 with $c_1 = -1$, $c_2 = 2$. J. Reine und Angew. Math., 325 (1981), 145–152.
- [10] T. Hosoh, Ample vector bundles on a rational surface, Nagoya Math. J., 59 (1975), 135-148.

- [11] Y. Kawamata, *The cone of curves of algebraic varieties*, Ann. Math., **119** (1984), 603f-633.
- [12] Sh. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. Math., 116 (1982), 133–176.
- [13] Sh. Mori and Sh. Mukai, Classification of Fano 3-folds with $B_2 \ge 2$, Manuscripta Math., 36 (1981), 147–162.
- [14] D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Studies 59, Princeton Univ. Press 1966.
- [15] Ch. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces, Birkhäuser 1981.
- [16] G. Ottaviani, Critères de scindage pour les fibrès vectoriels sur les grassmannienns et les quadriques, Comptes Rendus Acad. Sci. Paris, 305 (1987), 257-260.
- [17] M. Schneider, Stabile Vektorraumbündel vom rang 2 auf der projektiven Ebene. Nachr. Akad. Wiss. Gottingen 1976, 83-86.
- [18] S. S. Tikhomirov, On stable two-dimensional vector bundles on P³ with Chern classes c₁ = 0, c₂ = 3 and 4, Sbornik Nauch. Tr. Yarosl. Pedag. Inst. im. K. D. Ushinskogo, 180 (1979), 106-114, in Russian.
- [19] J. A. Wisniewski, Ruled Fano 4-folds of index 2, Proc. Amer. Math. Soc., 105 (1983), 55-61

Received January 26, 1988.

WARSAW UNIVERSITY PKIN 9P. 00-901 WARSZAWA, POLAND Jarosław A. Wiśniewski visiting at: The Johns Hopkins University

Baltimore, MD 21218, USA