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THE POISSON FLOW ASSOCIATED
WITH A MEASURE

DoucLAs PAUL DOKKEN AND ROBERT ELLIS

This paper is devoted to the study of harmonic functions on groups.
The approach is via a detailed study of the Poisson flow associated
with a Borel probability measure 1 on a locally compact group 7.
Again the basic idea is that though many results associated with the
study of harmonic functions on groups are couched in probabilistic
terms and proved using methods of probability theory, they really be-
long in the domain of topological dynamics. The major results include
a proof that a solvable connected Lie group admits only constants as
harmonic functions for a spread out measure y with u(A4) = u(4™")
for all Borel sets 4, and a new non-geometric proof of a fundamental
result of Furstenberg’s on semi-simple Lie groups.

0. Introduction. The technical aspects of the paper depend on the
methods and results developed in [E] and [D]. For the sake of com-
pleteness these are summarized in §1.

In §2 another approach to the Poisson flow is given. Let .%# be the
algebra of right uniformly continuous functions on 7, |%| its Gelfand
space and .#(u) the set of idempotent measures v on |%Z| stationary
with respect to 4 and having the same harmonic functions. If the
support of u is all of T, the support S of v is a subflow of |#|. The
main result of this section is that in this case there exists v € & (u)
such that the restriction R: #Z — C(S) maps the set 7, of u-harmonic
functions isometrically onto a uniformly closed 7-invariant subalgebra
%, of C(S). The Poisson flow (B, T) is just the Gelfand space of 7.
This has several implications, among them that wp € B (p € S) where
o is the measure on B induced by v. Moreover the algebra of the
flow (vT,T) is isomorphic to the subalgebra of % generated by .%,
and (B, T) is the subflow of (vT,T) given by B = {vp|p € S}. In this
paper the results of this rather technical section are used only in §5.

Another aim of this paper is to obtain conditions under which a
subgroup K of T will act transitively on B. The particular case K =
{e} says that the constants are the only u-harmonic functions.

Sections 3 and 4 are devoted to this issue. In the former, conditions
are studied which suffice to guarantee that a particular element of T
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will act trivially on B, and the latter to the study of what happens
when the only K-invariant harmonic functions are constants. One
result along these lines: let 7 be connected, and K a compact normal
subgroup of T such that there are no K-invariant harmonic functions
other than the constants; then there are no non-constant u-harmonic
functions.

These general results are applied to two specific cases in §§5 and 6.

In §5 the following result is proved: let T be a solvable connected
Lie group, u a spread out measure on 7" such that the closed subgroup
generated by the support of u is all of T and u(A4) = u(A=!) for all
Borel subsets 4 of T. Then all y-harmonic functions are constant
[B.R.].

Finally §6 is devoted to a proof of Furstenberg’s result on semi-
simple Lie groups with finite center and no compact factors using
the methods developed in §§3 and 4. (If T = KAN is an Iwasawa
decomposition of such a group, then K acts transitively on the Poisson
space of u for every supported spread out measure u on 7.)

1.0. Basic background. In this section we introduce the notation
and summarize some basic results to be used throughout the rest of
the paper. Primary references are [E] and [D].

1.1. By a flow we shall mean a transformation group (X, T') with
compact Hausdorff phase space X and locally compact phase group
T. We shall suppress the “7 and denote the flow by X.

A pointed flow (X, x) is a flow X together with a point xo € X and
XxoI = X. The theory of such flows is the subject of [E] where it is
shown that they are all homomorphic images of a universal pointed
flow (BT, e). (Here BT is the Stone-Cech compactification of T with
the discrete topology and e is the identity of 7'.)

Let (X, xg) be a pointed flow. Then there exists a unique epimor-
phism n: BT — X with n(e) = xy. The adjoint, n* of 7 is a monomor-
phism of C(X) into C(BT) and its image denoted by (X, xp) isa T-
subalgebra of C(f7T); i.e. a uniformly closed 7T-invariant subalgebra
of C(BT).

Conversely, let & be a T-subalgebra of C(f7T) and set x =y (&) if
f(x)=f() (f € &). Then (&) is a closed T-invariant equivalence
relation on BT and so induces an action of T on the quotient space
BT /(&) which we denote |«/|. The flow |/| is pointed by [e], the
equivalence class to which e belongs.
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The foregoing shows that one can study either the class of pointed
flows or the collection of T-subalgebras of C(BT). We adopt the latter
point of view.

One advantage of doing so is that C(S7T) may be identified with
#(T), the set of bounded real-valued functions on 7. Thus if f €
Z(T), it has a unique continuous extension f to ST. (Recall that T
may be viewed as a subset of #7.) On the other hand if g € C(B8T),
then its restriction f to T is in % (T) and f = g. In general we
shall not distinguish notationally between an element of % (7') and its
continuous extension to S7.

So far no mention has been made of the topology .7 on T. However,
it is a simple matter to take this into account; one merely requires
that all the T-subalgebras &/ considered be contained in Z = {f €
% (T)|f is right uniformly continuous}. This will guarantee that the
map (x,t) — xt: || x T — |&| is continuous when T is provided
with the topology 7.

Of course when .7 is the discrete topology on 7, # = C(BT).
Moreover in general |%Z| has all the algebraic properties of 7 and
may replace it in all discussions involving flows X where the map
(x,t) = xt: X x (T,9) — X is continuous.

1.2. Another advantage of the algebraic approach is that it allows
one to incorporate the study of measures on flows into this scheme.

Thus let x4 be a positive linear functional on % (7T") with u(1) = 1.
Then under the identification of Z(T) with C(ST), u may be viewed
as a positive linear functional on C(ST) and all of its subalgebras.
Consequently x induces u, € #(|7|) = # (&), the set of Borel prob-
ability measures on |#/| for every T-subalgebra &/ of C(BT).

In particular if u € #(T), the set of Borel probability measures on
T, it is defined on bor(T), the set of bounded Borel functions on 7.
The latter is a T-invariant uniformly closed subalgebra of %#(T) and
so by the Hahn-Banach theorem y may be extended to an element 7z
of # = #(BT). Of course there are many choices for zz but which
one is made is irrelevant for our analysis and so it will also be denoted
by u.

Now let X be a flow, v € .#(X) the set of probability measures on
Xand ue # =#(BT). For fe C(X),te T set

fo(t) = (tfiv) = /X F(xt)dv(x).
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Then fv € B(T) = C(BT) whence (fv,u) = [4 fv(p)du(p) is de-
fined.

The map f — (fv,u): C(X) — R defines a positive linear func-
tional vu on C(X) with vu(l) = 1. Thus vu € #(X).

At this point a word of caution is in order. Let f be a bounded
Borel function on X. Then fv(f) = [, f(xt)dv(X) again defines an
element fv of & (T) and so |, 8T f v(p)du(p) is defined. However in
general this is not equal to [, f(x)d(vu)(x). For example: let f be a
bounded lower semicontinuous function on X. Then

/ Fx)d(v)(x) < / 7o(p) du(p)
X BT

but the two need not be equal.
Now it isn’t hard to see that f € bor(X) implies that fv € bor(7T).
Hence if u € #(T),

/ Fo(p)du(p) = / foit)ydu(t) = / £(x) d(wp)(x).
BT T X

Thus in this case vu is the usual convolution of the measures v
and u.

The map (v, u) = vu: #(X) x # — #(X) defines an action of .#
on .#(X) such that the map u — vu: # — #(X) is continuous for
all v € #(X) and the map v — vu: #(X) — #(X) is continuous for
all u e #(T) [2.1.12 of D].

Again when (X, (7,9)) is a flow, v € #(X), fv € Z (f € C(X)),
and .# may be replaced by .Z(#) in the preceding discussion.

We shall identify the elements of a compact Hausdorff space X with
the subset {J,|y € X} C #(X) where J, is the Dirac measure at y.
When this is done the map 7 is seen to be an extension of the action
(x,p) > xp: X x BT — X of BT on X.

For a detailed discussion of these remarks see [D].

1.3. NoTATION. Let y € #(#). Then Q, = cnv(yT), the closed
convex hull of yT', B, = €X(Q,) the closure of the extreme points of
Q,, and w, € .#(B,) with barycenter b(w,) = y. The support of y will
be denoted S;.

Since (yT,7) is a flow when T is given the topology .7, al(yT,7) C
Z whence there exists a canonical map «,: |#| — yT with k,([e]) = y.

Finally % = {f € #Z|fy = f}, the set of harmonic functions with
respect to y.

When it is clear which measure is being discussed and there is no
chance of confusion, the various subscripts involved will be dropped.
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1.4. DErFINITION. Let u € #Z(T), y € #(Z%). Then y is stationary
with respect to u if yu = y. The set of idempotent, stationary measures
y with % = 7, will be denoted .#'(u). Thus y € Z(u) if and only if
2=y, yu=y,and 7 = 7,.

1.5. REMARKS 1. Let 4 € #(T). Then there exists v € cav{u"|n =
1,2,...} withv € Z(u).

2. Let ue #(T), y € Z(u). Then: (a) (B,, T) is the Poisson flow
associated with u [F1] [D]. (b) The barycenter map b: .#(B,) — Q, is
bijective. (¢) w,u = w,. (d) B, is a T-invariant subset of Q,. (e) If
supp w, is T-invariant, then B, = supp w,.

The proof of the following is straightforward and will be omitted.

1.6. PROPOSITION. Let v,A € ¥ (u). Then (i) vA =v and Av = 4,
(ii) the maps L,: AT — vT and L;: vT — AT such that L,(p) = vp
(p € AT) and L;(q) = Aq (q € vT) are isomorphisms which are inverse
to one another, (iii) w,oL;! = w, and co,,oL;1 = w;, (Iv) L, oK) = k),
and LA oK, =K.

Thus the flows {vT|v € Z(u)} are canonically isomorphic. The
next proposition shows that the algebras C(vT) are all canonically
isomorphic to the uniformly closed subalgebra generated by #,.

1.7. PROPOSITION. Let k: |%#| — vT be the canonical map. Then
k*(C(vT)) = al(#,), the uniformly closed subalgebra generated by the
u-harmonic functions.

Proof. Let f € #, and a(f) its affine extension to .#(%). Then
g =a(f)|-r € C(T) and
(k;,8)(p) = g(k(p)) = g(vp) = (f,vp) = (fv.5p)
=(f.0p) =f(p)  (p€|Z]).
Hence imk* D #; and so imk* D al(#,).

On the other hand let p, g € |%| be such that f(p) = f(q) (f € #,)
and suppose that h(vp) = (k*h)(p) # (k*h)(q) = h(rq) for some
h € C(vT). Since the elements of C(vT) of the form a(f)|—, f € %,
separate points of v T there exists f € C(vT) with fv(p) = (f,vp) #
(f,vq) = fr(q). But this contradicts the original assumption since
fv € #,. The proof is completed.

1.8. CoROLLARY. Let (X, T,w) be a flow such that wu = w, and
v e Z(u). Then there exists a homomorphism ¢: vT — T C #(X)
with ¢(v) = w (compare 4.4 of [G]).
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Proof. Let f € C(X). Then fou = fw implies that fw € #, =
#,. Hence fov = fw. Thus wv = w and the canonical map p —
wp: |#| — oT factors through v 7.

2.0. The Poisson flow associated with a measure x4 € .#(7). Some
more results concerning the Poisson flow (B,, T, w,) are obtained un-
der the additional assumption that suppu = 7. Then it is immedi-
ate that «,(S,) D B,. It is shown that there exists A € Z(u) with
k;(S;) = B;. In this case the restriction f — f|gs,: Z — C(S;) maps
#, isometrically onto a uniformly closed T-invariant subalgebra of
C(S,).

2.1. LEMMA. Let X be a flow and n € # (%) be such that the map
Y — yn: #(X) — #(X) is continuous. Then (f,yn) = [(f,xn) dy(x)
(y € £(X), f € C(X)).

Proof. Let K be the set of measures on X for which 2.1 is valid.
Then clearly K is convex and the assumption on # implies that it is
closed.

Now if y € X, [, (f,0xn) ddy(x) = (f,dyn) so that X C K. Hence
K =.#(X).

2.2. PROPOSITION. Let X be a flow and n € # () be such that the
map y — yn. #(X) — #(X) is continuous. Then (Supp)suppn =
supp yn (v € #(X)).

Proof. Let y € #(X), u € suppy, p € suppn and f € C(X) with
f > 0and f(up) > 0. Then the map fu: |#| — R such that fu(q) =
f(uq) (g € |#]) is continuous and positive. Consequently (f,d,n) =
(féu,n) = (fu,n) > a > 0 since p € suppn. This implies by 2.1 that
(f,rn) = [ (f,0xn) dy(x) > 0 since u € supp y, whence up € supp 1.
Thus (supp y)(supp #7) C supp 7 and so (Supp 7)(Supp #) C Supp 77 =

supp 1.
Now assume u ¢ (supp »)(supp 7). Then there exists f € C(X) with

0 < f <1, f(u) =1, and supp f contained in the complement of

(supp y)(supp 7).
Then 0 = f(xp) = (f,dxp) (x € suppy, p € suppn) whence
(f,0xn) = 0 (x € supp x). Thus

(fovm) = /X (f, 8x) dy(x) = /Suppyu, Sem) dy(x) = 0

whence u ¢ supp yn. The proof is completed.
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2.3. CorOLLARY. Let u € #(T) with suppu = T, and y € Z(u).
Then (a) S, is T-invariant, (b) supp w, is T-invariant and (c) supp w,
= By.

Proof. Since yu =y and w1 = w,, (a) and (b) follow from 2.2.
The image of cnv(supp w,) under the barycenter map is a closed,
convex, T-invariant subset of Q, which contains . Hence

b(cnv(supp wy)) = O,

whence supp w, = ex(Cnv supp w,) = b(excnvsupp w,) = exQ, = B,.
(Recall that b is bijective.)

2.4. ProrosITION. Let u€ #(T), suppu =T, andy € ¥ (u). Then
Ky(Sy) D B,.

Proof. Let K be the canonical extension of k, to a map from .# (%)
tocnv(yT) C #(#). Then k(cnv S,) is a closed convex T-invariant
subset of cnv(y7’) containing y. Hence ¥ (cnv S,) = cnv(yT) whence

K(Sy) = K(Sy) = K(ex(cav Sy)) D ex(cav(yT)) = By.

Our goal now is to find y € Z(u) with x,(S,) = B,.

2.5. NortATION. For the rest of this section the following notation
will be in force: u € #(T), suppu =T, v € L(u), S =S, Kk = Ky,
B=B, w=Q, and L = k" !(B)NS. Notice that L is a closed
invariant subset of S.

2.6. LEMMA. Let A € #(Z#), suppA C L, and k™' = w. Then
VA=v.

Proof. Let f € #, p,q € L with k(p) = k(q) i.e. vp = vq. Then
fv(p) = (f,vp) = (f,vq) = fv(q) whence fv = ¢ o k for some
¢ € C(B).

Now (f,v4) = (fv,2) = (p ok, 2) = (p,Ax ") = (9, ).

On the other hand let a(f) be the affine extension of f to .# (%) and
let b = vp € B. Then a(f)(b) = (f,vp) = fr(p) = ¢(k(p)) = ¢(b)
zv;ner;e)ea(f)lg — ¢. Finally (f,v) = a(f)(v) = (a(f)| 5, ®) = {9, @) =

,VA).
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2.7. LEMMA. There exists > = A € #(F) such that vl = v,
suppA C Land A k™! = w.

Proof. Let K = {A € #(Z)|vA=v, suppA C L}.

The Hahn-Banach theorem and 2.6 imply that K # &.

Now let A, p € K. Then vip = vp = v. Moreover A € cnvsupp4 C
cnv L and p € cnvsupp p C cnv L imply that Ap € (cnvL)(cnv L) C
cnv L (recall L is T-invariant), whence suppip C L.

Thus K is a non-empty semigroup. Since it is clearly closed, there
exists A € K with A% = A.

Finally let y=A1-k~!, f €.%. Then

(@)l s, 7) =(alf) -x,4) = (fv,2) = (f,v4)
= (f,v) =a(f)v).

Hence b(y) = v = b(w) and so y = w since b is one-one [D, 3.1.8].
2.8. PROPOSITION. There exists A € £ (u) with k,;(S;) = B;.

Proof. Let p? = p € #(#) with vp = v and suppp C L. Such
exists by 2.7.

Set A = pv. Then A2 = pvpv = pv = A, Av = pv? = pv = A and
vi=vpv =v?=v. Consequently % = % = 7%, and so A € Z(u).

Since L is T-invariant and supp p C L, suppA C L.

Now L;: vT — AT is an isomorphism (1.6) whence L;(B,) = B,;.
Hence «,(S;) € k;(L) = Lk, (L) = L;(B,) = B;. The proof is com-
plete. (2.4).

2.9. NoTtATION. For the rest of this section A will denote a measure
guaranteed by 2.8. Thus 1 € Z(u) withvi=v, Av =4, S, C S, and
K,(S;) = B;. The restriction of k; to S, will be denoted by r;.

2.10. LeMMA. Let y € Z(u), f,8 € #, with f(p) = g(p) (p € S,).
Then f = g.

Proof. Let t € T. Then
1) = f3(0) = / Flxt) dy(x)
S,
- /S g(xt)dy(x) = g7(t) = 80)

(Recall that S, is invariant.)



POISSON FLOW ASSOCIATED WITH A MEASURE 87

2.11. DEefFINITION. Let y € Z(u) and f € C(S,). Then f is har-
monic on S, if there exists g € #, with g|s = f. (Notice that by 2.10
if such a g exists, it is unique.) The set of harmonic functions on S,
will be denoted by 7.

2.12. PROPOSITION. Let ¢: C(B;) — # be the map such that (f) =
fw; (f € C(B;)) and R: # — C(S;) the restriction map. Then (i)
Ro g =r}, (i) % = imry}, (iii) r} is an isometry, (iv) R restricted to
Z, Is an isometry into %;.

Proof. (i) Let f € C(B;), g = ¢(f), a(g) the affine extension of g
to # (%) and p € S;. Then k(p) € B; and by [D, 3.1.6],

f(r(p)) = a(g)(k(p)) = (8,4p) = (f2,40,) = (f4?, )
= <f’1:517) = <g3517) = g(p)

(ii) By|[D, 2.1.22] ¢ is an isometry onto /%, whence imr} = R(#;) =
# by 2.12.

(i1i) This follows from the fact that «;(S;) = B;.

(iv) Let f € #,. Then by [D, 2.1.22] there exists g € C(B;) with
¢(g) = f and |ig|| = |Ifll. Then R(f) = R(p(g)) = x*(8)
whence |R(f)]| = Ix*(2)ll = ligll = /]

2.13. REMARK 1. Proposition 2.12 shows that .%; is a uniformly
closed T-invariant subalgebra of C(S;) and that B; is obtained from
S; by identifying points with respect to the relation {(x,y)|x,y € S;,
f(x) = f(»)(f € #)}. Thus the harmonic functions on S; are a
subalgebra of C(S;) whereas in general /%, = %7 is not a subalgebra of
F = C(\#)).

2.14. PROPOSITION. Let R: # — C(S;) be the restriction map.
Then R induces a homomorphism R; of al(%,) onto %; and al(%,) =
2, D R;l (0).

Proof. By 2.12 % is a uniformly closed T-invariant subalgebra of
C(S;) whence R induces a homomorphism of R~!(.%;) onto .%;. Since
R(7Z,) = %, al(#,) C R™'(%;), and so R induces a homomorphism
R, of al(%;) onto .%,.

Now let f € al(#,). Then R, f € %, and so there exists g € #, with
R,f = R;g. Thus al(#,) = %, + R;‘(O). That the sum is direct now
follows from 2.10.
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2.15. REMARKS. 1. Let y € Z(u), f € al(#,), and a(f) the affine
map on C(yT) induced by f. Then a(f)(yt) = (f,yt) = (fy)(¢) (t €
T). Thus a(f) ok, = fy. This shows that in general the isomorphism
k3 of C(yT) onto al(%,) takes the affine functions a(yT) = {a(f)|f €
&} onto the harmonic functions 7.

2. In the case of A we can say a little more. Thus let O(B;) = {f €
C(AT): f|, = 0}. Then it is easy to see that f € O(B,) if and only
if R;(f ok;) = 0. Consequently the splitting al(#,) = 7, @ R;‘(O)
induces the splitting C(AT) = a(At) ® O(B;).

3. Let g,h € &# with h|g, = 0. Then a(g + h) = a(g). Thus if
f € C(AT) with f = a(g) + ! with [ € O(B,) then f = a(g + h) +;
i.e. even though the decomposition of f in the form f = a(g) +/ is
unique, the element g of % is not. One choice for g is f o k;.

To see this observe that fok; € al(#,) whence by 2.14 fok, = h+u
where 4 € #Z, and u = 0 on S;. Then & = hd = hA + ud = (f o k;)A.
0= fox; —(fox;)A= fok;—a(fok,)ok; on.S; by Remark 1 above.
Consequently f —a(fok;) =0 on B;.

4. Let f € C(B)), g1 € C(AT) and h € # such that g|p, = f,
|l € O(B;) and g = a(h) + . Then a(h)|p, = g|p, = f. Thus given
any continuous function f on the boundary there exists an “harmonic
function” a(h) with a(h)| g, = f.

5. The isomorphism k} of C (AT) onto al(#,) also induces an iso-
morphism &; of .#(al(#,)) onto .#(AT). Now A may be viewed as
a measure on al(#,) by restrition and w, as a measure on AT since
B c AT. It is natural to expect that &;(A) = w;. To see that this is in-
deed the case let f € C(AT). Then (f,w;) = [p fdw; = [g fox,dA =
(f,k;(4). (Use 2.7.)

The aim of the following is to compare the construction of the
Poisson flow above with the one given originally by Furstenberg [F1].
(See also [A] and [G].)

2.16. REMARKS. 1. The Poisson flow constructed by Furstenberg is
obtained by showing: (i) fp = lim,_, fu" exists for all f € al(%,),
(ii) £ = {f|fp = 0} is an ideal in al(#,) and (iii) al(Z,) = 7, ® 7.
The resulting isomorphism of /%, with al(#,)/.7 allows one to define
a product f* g = (fg)p on %, and a measure w,(f) = f(e) (f € #,)
such that (B,, T, w,) is the Poisson flow associated with u where B,
is the Gelfand space of the Banach algebra (%, ). Moreover the map
9,: C(By) — (#,, *) such that ¢,(f) = fw, (f € C(B,)) is an algebra
isomorphism.
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2. By Proposition 2.12, R, is an isometry of /%, onto the uni-
formly closed T-invariant subalgebra .%; of C(S;). Hence the equation
R;(fAg) = Ry(f)Ri(g) (f, & € #,) defines a multiplication A on %,
which makes it into a commutative Banach algebra.

Now let f,g € C(B;). Then again by 2.12, R(fw;)R(gw;) =
(for))(gory) = fgor, = R((fg)w;). Hence fw,Agw, = (fg)w, and
so the map ¢;: C(B;) — (%, A) such that ¢;(f) = fw, is an algebra
isomorphism.

3. Since all Poisson flows are isomorphic there exists an isomor-
phism y: C(B,) — C(B;) such that fw, = (foy)w, (f € C(B))).

Let f, g € C(B;). Then

fw,xgw; = (foy)wy*(goy)w,=((foy)(gow)w,
=((fg)ov)w, = (fg)w, = fw;Agw;.

Thus the two multiplications *, A on /%, are the same.
4.Let f,g € #, Then fg = h+[where h € #,and |5, =0. (2.17).
This implies that 2 = hA = (fg)A — IA = (fg)A from which it follows

that R;(fg) = Ry((f8)A) + Ru(l) = R;((fg)4). Hence fAg = (fg)4
(f.g € 7).

5. Combining 1, 3, and 4 we see that (fg)A = (fg)p (f.& € #).
Now let fi,..., fu € #, with n > 3 and assume that Fp = FA where
F=fi fi_.

Let F=h+IwithheZ andl|5,=0. The h=hi=hi+IA=
Fi=Fp=hp+I1p=nh+I1p whence [p=0. Since p~!(0) is an ideal
(If2)p = 0. Moreover /| s, = 0 implies that (/f,)A = 0. Consequently
(Sr--Ja)p = (Ff)p = (Wfu)p + (Lfn)p = (hfu)p = (hfa)A (by 4
above) = (hf + 1 f)A= (Ff)A=(fi - fu)A

Finally since p and A are linear, fA = fp = lim,_, fu" (f €
al(7,). B

6. Let k;: #(|#|) — #(AT) be the map induced by k;, and ¢:
# (al(#,)) — # (AT) the isomorphism induced by k} : C(AT) — al(%,).
Then &), = ¢ or where r: # (%) — #(al(#,)) is the restriction map.
Hence limk;(u") = ¢(limr(u")) = ¢(4) = w; by 5 of 2.15.

7. In the various papers cited above it is assumed that 7 is second
countable. This is probably not necessary but we don’t insist for the
following proposition will be used only for such 7.

2.17. PROPOSITION. Let T be second countable. Then there exists
ye€ZL(u)suchthaty e K =env{u"|ln=1,...} C A (Z) and k,(S,) =
By-
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Proof. Let . € Z(u) with x,;(S)) = B, and &;: #(|%|) — # (AT)
induced by x;. Then by 6 of 2.16, K N fc;l(w,l) is nonvacuous. Since
it is also compact, convex, and invariant under u, there exists y €
K Ny (w;) with yu = y and thus y? = y since y € K. This implies
that y € Z(u) with k;(S,) = supp w; = B;, whence «,(S,) = B, as in
the proof of 2.8.

3.0. Some basic results. Our aim in most instances is to show
that under certain conditions the constants are the only u-harmonic
functions, i.e. #, = R. This is equivalent to showing that the Poisson
flow (B, T) is a point or that 7 acts trivially on B.

In this section we prove some basic results which will be applied
later to show that #, = R. They are of the form of conditions on
t € T and x € B which guarantee that x¢ = x.

3.1. Standing notation. Throughout this section u will denote a
fixed element of .Z(T), (X,T) a flow and w € .#Z(X) with wu = w.

3.2. PROPOSITION. Let A € #(T) and f a bounded Borel function
on X. Then (i)

mwM=/
and (ii)

f(xt)dw(x)dA(t) =/ f(xt)dA(t) dw(x)
TxX XxT
w(A) = / w(At™ ) du(t)
T
for all Borel subsets A of X.

Proof. Statement (i) follows from Fubini’s theorem and the remarks
made in 1.2.
(ii) This follows from (i) with f = y 4.

3.3. COROLLARY. Let A be a Borel subset of X with w(4) = 1
and H = {t € T|w(At™") = 1}. Then (i) u(H) = 1, (ii) the map
s = w(As™1): T — R continuous at t € supp u implies that t € H.

Proof. (i) Let H, = {tjw(At™") > 1 — 1} Then

I = w(4) = /H (A du(r) + /T . (A du()

> u(H) + (1= ) (1= w(H) = 1= 1+ Ll

whence u(H,) > 1 and the result follows.
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(ii) Assume w(At™') < a < 1. Then there exists a neighborhood U
of ¢t with w(A4s™') < a (s € U) whence

w(A4) = / w(Ar~YY du(r) +/ w(Ar~") du(r)
U T\U
<au(U)+1-pu(U)<1
since #(U) > 0. The proof is completed.

3.4. CorROLLARY. Let X be metrizable x € X, and (t,) a sequence
in T such that wt, — 6y and K = {t € T|wtt, — 6.}. Then u(K) = 1.

Proof. There exists a Borel subset 4 of X with w(A4) =1 and yt, —
x (y € A) [A, 1.2]. Let t € T with w(A4t~!') = 1. Let y € At~'. Then
yt € 4 and ytt, — x. Thus y(it,) — x (v € At~!) from which it
follows readily that wtt,, — J,. The result now follows from 3.3.

3.5. DerFINITION. Let 1 € T. Then w is regular at t if there exists
0 > 0 such that C closed with w(C) > 1 — ¢ implies that CN Cs # &
for all s in some neighborhood U of t.

3.6. THEOREM. Let (1,), (Sn), (t,) be sequences in T such that t,s, =
Futy for all n, (s,), (r,) converge to s,r € T respectively, w regular at r,
and xt, — b (x € A) with w(A) = 1. Then bs = b.

Proof. Let d be as in 3.5 guaranteed by the regularity of w at r. By
Egoroff’s theorem there exists a subset C of 4 such that w(C) > 1-¢
and the functions x — xt,: X — X converge uniformly on C to the
constant function x — b: X — X.

Now let V' be a neighborhood of b. Then there exist neighborhoods
W ofsand Uof bsuchthat UC V andxteVs (xeU,te W).

There exists N such that yz, € U, S, € W and r, € Ur (y € C,
n > N) where U is the neighborhood of r guaranteed by 3.5.

Since CNCry # @, CNCry! # @. Let xy € C with xyry €
C. Then on the one hand xyryty € U and on the other xyryty =
xnytnsy € Usy C Vs. Thus VN Vs # . The proof is completed.

The aim of the next few results is to determine some conditions
which will ensure regularity.
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3.7. PROPOSITION. Lett € supp u be such that the map s — w(As™1'):
T — R is continuous at t for all Borel subsets A of X. Then (i) there
exists 5 > 0 such that w(C) > 1 -6 implies w(Ct™') > 6 for all Borel
subsets C of X and (ii) w is regular at t.

Proof. Assume (i) false. Then there exist a sequence of Borel sets
(Cp) with w(Cy,) > 1 = 2=+ and w(Cyt) < 27D n = 1,.... Set
K,=U{Ci|l <i<n}, K={Knn=1,...}. Then

n
w(K,t) < Z w(Cit) < Z -+ l for all n,

whence w(Kt) = lim,_. o(K,t) < % However w(K) > w(K,) >
w(Cy) > 1 = 2-(n+1) implies that w(K) = 1 and this contradicts 3.3.
(ii) Let d be as in (i) and C a closed subset with w(C) > 1 — 4.
Then w(Ct~') > § whence there exists a neighborhood Uc of ¢ such
that w(Cs™!) > J (s € Up). Hence CNCs™ ' #@# CN Cs (s € Ug).

3.8. DEFINITION [A, pg. 21]. The measure u is spread out (etalée)
if either of the following equivalent conditions is satisfied: (i) there
exists an integer »n such that u” is not singular with respect to a Haar
measure m on 7T, (ii) the set X, is not empty where X, is the set
of elements ¢ of 7 for which there exists an integer p such that u”
dominates a multiple of m on some neighborhood of ¢.

3.9. REMARK. In Proposition 1.6 of [A] Azencott shows that every
bounded measurable y-harmonic function is continuous if u is spread
out. Thus in this case w is regular at ¢ for every ¢ in the support of u.

3.10. Review. We now deduce other results similar to 3.6 but before
doing so we review some measure theory. Let X be a locally compact
space, Meas(X) the set of measures on C, Z (X) = (f € C(X): supp f
compact}, and «a, f € Meas(X). Then || = sup{(f,a)|f € K(X),
I/l =1}, a < Bif (fia) < (f, B) (f €7 (X) with 0 < f) and a A B =
infimum of « and S.

When X is compact, .#(X) = {a € Meas(X): ||« = 1}.

The proof of the following proposition is straightforward and will
be omitted.

3.11. ProrosiTiON. Let (X, T) be a flow, y € #(X) and o, f €
M (BT). Then (i) a > B implies yo > yf, (il) ya AyB > y(a A B), (iii)
[va AyBl 2 Iyl la A Bl = [l A B
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3.12. PROPOSITION. Let A,n,p € #(X) and (A,), () be nets in
M (X) such that A, — A, o — n and Ay Ao — p. Then AAn > p.

Proof. Let 0< f € C(X) and ¢ > 0. Since
Ann(f) =inf{A(g) +n(h)[0< g, he C(X);8+h=f}

[B1] there exist g,h € C(X) with0< g,h; g+h = fand AAn(f) >
A(g) +n(h) —e.

There exists o such that A, An,(h) > p(h)—e, A.(g) < A(g) +¢, and
Na(h) < n(h)+ée, whence AAN(f) > Aa(8) +Na(h) —3€ = Aa Ana(h) — 3¢
> p(h) — 4e.

3.13. COROLLARY. LetA,n € #(X). Then the map (t,s) — ||AtAns||:
T x T — R is upper semicontinuous.

Proof. This follows from 3.12 and the fact that ||A|| = A(1) (A €
M (X)).

3.14. THEOREM. Let r € T and (t4|a € I) a net in T with wt, —
x € X. Then xr = x if either (i) there exists s € T with wst, — x and
t; sty — r or (ii) there exist r, € T (a € I) and 0 < C € R such that
ro = r €T and || A wt,rat;!| > C for all a.

Proof. (i) This follows immediately from the continuity of the map
(n,t) - nt: #£(X)x T — H(X).

(i) Since wt, — Jx, Wi,ra — Oxr and |wty, A Wi r.| =
lo A wtyrat; ]| > C for all o, ||dx A dxr|| > C by 3.13. This implies
that x = xr.

3.15. REMARKS. 1. Let X be metrizable and (¢,) a sequence in
T with wt, — x € X. Then there exists A C X such that w(4) =
1 and yt, — x (y € A). Now let s € T with w(4s~!) # 0 and
t;'sty — r € T. Then there exists y € AN As~! whence yt, — x and
yst, — x. Consequently xr = (limyt,)lim(¢; !st,) = limyst, = x.
Thus when X is metrizable (i) can be strengthened. Moreover in this
case u{slw(4s~ 1) =1} = 1.

2. Let t,s € T. Then one way to ensure that ||wtAws| > C is to find
measures A, p € #(BT) such that wd = w = wp and ||At A ps|| > C,
for by 3.11 ||wtAws|| = ||wit A wps|| > ||At A ps|| > C.

The following result due to Furstenberg [F2] (see above [A, p. 76])
is thus relevant for our considerations.
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3.16. LEMMA. Let t;,t; € X,. Then there exist U open, ¢ > 0
and 6 € cnv{u"|n = 1,...} such that t|,t, € U and r,s € T with
UrnUs # @ implies ||0r A Os|| > €.

Proof. There exist open relatively compact neighborhoods V; and
V5 of t; and t, respectively, integers p, q and a,, a, positive elements
of R such that y3; u” > a)x7 m and xz,u9 > a; xz,m.

Now set U = V; U V; and a = min(ay,a;). Then

%xUm < xo((uP + u?)/2).

Consequently by [A, Lemma IV.3 p. 76] there exists ¢ > 0 such that
r,s € T with UrnUs # & implies ||n?rAn®s|| > ¢ where n = (uP +u?)/2
whence U, ¢, and 0 = n? = L (4% +uP+9+ §29) satisfy the requirements
of 3.5.

3.17. Standing notation. For the remainder of this section we again
adopt the notation of 2.5, with u € .#(T) and v € Z(u). (The
subscript v will be dropped.)

In addition (X, T') will now denote an arbitrary factor of (B, T) and
 the measure induced by the one on B.

3.18. THEOREM. Let p € S, (ta), (S.) nets in T such that t, — p,
So = S €T, and t,s,t7" — t € Z;'Z,. Then (i) wp € X and (ii)
(wp)s = (wp).

Proof . Statement (i) follows from 2.17.

To see (ii) let t = ¢ 't with 71,1, € £, and U, 6, ¢ as in 3.16. Since
tit = t, UtNU # O whence there exists ag such that Ut,s,t; ' NU # @
(a > ag). Hence |6 AOt,s.2;"|| > & > 0 (a > ag) and (ii) follows from
3.15 and 3.14.

3.19. CorOLLARY. Let h € T be such that given p € S there exist
a net (t,) in T and t € Z;'%, with t,ht]! — t and t, — p. Then (i)
xh=x (xe€B)and (i) hf = f (f €%).

Proof. Statement (i) follows from 3.18 with X = B and the fact that
X = {wp|p € S}.

The second part of 3.19 follows immediately from the first.

3.20. REMARKs. 1. An element 4 in T with hf = f (f € %) is
what Azencott [A, p. 7] calls a u-period. Corollary 3.19 is intimately
related to Theorem IV.1 of [A].
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Another result along these lines is the following which relies on 3.6
rather than 3.18.

3.21. THEOREM. Let T be second countable, i spread out and h € T
be such that given p € S there exists a net (t,) in T and t € supp u
with t, — p and t,ht;' — 1. Then hf = f (f € 7).

Proof. It suffices to show that x4 = x (x € B) and since 7 is second
countable we may restrict ourselves to a metric factor X of B.

Now let x € X. Then there exists a sequence (¢,) in 7 such that
wt, — x and t1,ht; ! — r for some r € supp u. Set s, = h, r, = t,ht; !,
n=1,.... Then t,s, = ryt,, S, — h, r, — r and by 3.7 w is regular
at r. Since wt, — x, there exists a subset 4 of X with w(A4) = 1 and
yt, — x (y € A). Consequently x4 = x by 3.6.

4.0. Actions of subgroups on the Poisson space. In this section we
study the action of a subgroup K of 7 on the space B, when the only
K-invariant harmonic funtions are the constants. The idea is to reduce
the study of the Poisson flow (B, T') to the flow (B, K).

4.1. NotAaTION. In this section x will denote an element of .Z(T)
with suppu = T and v a fixed element of .#(u). The notation of 1.3
will be used except that the subscript “v” will be omitted.

Again (X, T') will denote a homomorphic image of B and w € .Z(X)
with wv = w.

Let H C T. Then #y will denote the right uniformly continuous
and %y the bounded Borel functions fon 7 such thathf = f (h € H),
and ., the bounded Borel functions g on 7" such that gu = g.

4.2. PROPOSITION. Let K be a subgroup of T and U a non-vacuous
open subset of B. Then w(UK) = 1 if either (i) Bx N %, = R, (ii)
Rk NZBy, =R and p spread out, or (iii) Zgx N B, = R and K compact.

Proof. (i) Set C = UK and assume that w(C) < 1. Let f € C(X)
with 0 < f < xc, [|[f] = 1. Then fo(t) < xco(t) = o(Ct™') = Q(C)
since ycw € Bx NF,. Thus || ful < w(C) < 1 and this contradicts
the fact that g — gw: C(X) — %, is an isometry.

(ii) In this case ycw € Zx N %, and the proof proceeds as in (i).
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(iii) Again let f and C be as in (i) and let
g(x) = sup{f(xk)lk € K}.
Then g is a K-invariant continuous function on X with ||g|| = 1 and
g < Xxc, whence gw € Zx N %, with ||gw| < 1. The proof is com-
pleted.

4.3. REMARKS. 1. Since suppw = X, UK = X under any of the
conditions of 4.2.

2. The group T satisfies (i) of 4.2 whence (B, T) is topologically
transitive i.e. UT = B for all non-vacuous open subsets of B.

3. Let X be a metric fator of B, wy the measure induced on X by w,
(Ujli = 1,...) a countable base for the topology on X and K as in 4.2.
Then E = N2, UK is a residual subset of X such that wy(E) = 1
and xK = X (x € E).

4. Let K be as in (iii) of 4.2. Then xK = B (x € B). (This follows
from 4.2 and the fact that B = UK = UK for every neighborhood U
of x.)

4.4. PROPOSITION. Let (X,T) be a metric factor of (B,T), K a
compact second countable normal subgroup of T with Zx N7, = R,
and u spread out. Then X is a point.

Proof. Let n be the measure on X induced by w and (z,) a sequence
in T such that xt, — z € X (x € 4) with n(4) = 1.

Let k € K and set r, = t,kt;!. Then r, € K for all n and we may
assume that r, — r€ K.

Now r,t, = t,k for all n, and 7 is regular at r by 3.9. Consequently
zk = z by 3.6. Thus X = zK = z by 4.3.

4.5. ProposITION. Let (X,T) be a metric factor of (B,T), K a
compact normal subgroup of T with ZxN%, =R, and {adxrlr€ T} a
relatively compact subset of the group of automorphisms of K. Then X
is a point. (Here adg t: K — K is the map such that (adg t)(k) = tkt™!
(k€ K).)

Proof. Let a € X and ¢: K — X the map such that ¢(k) = ak
(k € T). Then ¢ is an open surjective map (4.3).

Now let 4, (¢,), and b be as in the proof of 3.6, and « an auto-
morphism of K adherent to the sequence adg z;!. Then ¢~!(4) is
a dense subset of K and k € ¢~!(4) implies that b = limakt, =
limat, adg t; ! (k) = ba(k). Since p~!(A) is dense, this implies that
b = bh (h € K). The proof is completed.
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The following is surely well known. We include a proof for lack of
a reference.

4.6. LEMMA. Let K be a compact analytic Lie group. Then the
identity component auty(K) of the group of automorphisms, aut(K) of
K is compact.

Proof. 1t follows from [H] that K is isomorphic to (R" x G)/H
where G is a simply connected compact semi-simple group and H is
a discrete group containing Z” x e. Hence aut(K) = aut(R" x G, H) =
{u € aut(R x G)|u(H) = H} [B2].

Let u € auty(K), n, k the canonical maps of R” x G onto R” and
G respectively. Since R" has no non-trivial compact subgroups the
homomorphism g — w(u(0,g)): G — R" must be the trivial one.
Also G semisimple implies that the homomorphism r — x(u(r,e)) is
trivial.

Since u is homotopic to the identity, H is discrete and u(H) = H,
u(h) = h (h € H). In particular u(z,e) = (z,e) (z € Z") whence
u(r,e) = (r,e) (r e R"). Hence u(r, g) = u(r,e)-u(0, g) = (r,e)(0,u(g))
= (r,u(g)) where % is the automorphism of G given by g — xu(0, g).
Thus auty(K) is isomorphic to auty(G) which is compact [H].

4.7. PROPOSITION. Let T be connected and K a compact normal
subgroup of T such that Zx N %, =R. Then %, =R.

Proof. It suffices of course to show that the Poisson flow (B, T) is
trivial. Since (B, T') is topologically transitive, we need only show that
T acts trivially on B.

Let U be a neighborhood of the identity of 7. Then there exists a
compact normal subgroup L of 7 such that L Cc U and T/L is a Lie
group [M.Z.]. Then T/L acts on B/L which is then an image of the
Poisson flow associated with the measure induced by x4 on 7/L. Thus
we may assume that 7 is a Lie group.

It follows readily from 2 of 4.3 that B is connected. Also K acts
transitively on B by 3 of 4.3. Since K/Kj is finite, this implies that
the component of the identity, K, of K acts transitively on K. Hence
Fk, N ¥, =R. ‘

Finally adg,(T) is contained in auty(Kj) and so is relatively compact
by 4.6. Proposition 4.7 now follows from 4.5.
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5.0. The solvable group case. In this section we show that when T
is a solvable second countable connected group and M is spread out
with u = pu~!, #, =R (see [B.R.]).

Let ¢: T — T be such that ¢(t) =t~! (t€ T) and f € %#. Then in
general fog & %. Thus in order to take advantage of the assumption
U = po @ we must work with a larger algebra than %, one on which
u is defined and which is invariant under ¢. In this section we use
Cy(T), the algebra of bounded continuous functions on 7.

The group T acts on the Gelfand space |C,(T)| of C,(T), but the
map (x,t) — xt: |Cp(T)| x (T,9) — |Cyp(T)| is in general not contin-
uous. However this is unnecessary for our purposes.

5.1. Standing notation. In this section 7 will denote a connected
Lie group, u a spread out probability measure on 7 with u = u~! (i.e.
u(A) = u(A=") for all Borel subsets of T) and v € cav(u|n = 1,...)
with v € Z(u) and k,(S,) = B,. (Such exists by 2.17.).

Again the notation of §1 will be used with the subscript ¥ omitted.

Since T is second countable, the flow (B, T') is the inverse limit of
its metric factors. In this section (X, T') will denote an arbitrary one
of these, kxy or simply x the canonical map of S onto X and wy or
simply w, the measure on X induced by v.

Finally ¢: BT — BT will denote the continuous extension to ST
ofthemapt—t"': T — T C BT, and Co(T) = {f € C(BT): fl1 is
continuous}. We shall also denote the affine extension of ¢ to .Z(S7T)
by ¢.

5.2. Remarks. 1. Cy(T) is a uniformly closed 7-invariant subalge-
bra of C(BT) which may be identified with the algebra of bounded
continuous funtions on 7.

2. Z C Cp(T).

3. fop e G(T) and u(f) = u(f - 9) (f € Cp(T)).

5.3. LEMMA. (i) There exists y € cav{u"|n = 1,...} C #(Cy(T))
such that y* =y = ¢(y) and yu =y. (ii) (f,7) = (f,v) (f € %)

Proof. Let K = cav{u"|n = 1,...} € #(Cy(T)), r the restriction
mapping of .Z(Cy(T)) onto .# (%) and L = r(K). Then clearly L =
cnvi{u’|ln=1,...} C #(#) whence v € L.

Now au € K (a € K) whence aff € K (a, f € K). Consequently
C = r~!(v)NK is a non-empty convex compact subset of K such that
C? c C and Cu C C. This in turn implies that 4 = {a € Clou = a}
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is a non-empty compact convex subset of C with 42 = 4. Hence there
exists y2 =y € 4.

To see that ¢(y) = y observe that ¢(5,6;) = ¢(ts) = s~ =
9 (05)p(d;) (s,t € T). Since ¢ is linear this implies that ¢(af) =
o(B)e(a) (a,B € cnv(T) ¢ #(Cy(T))) and by continuity of ¢ and
the maps p — pa: #(Cy) — #(Cp) and p — ap: #(Cp) — #(Cyp)
(e € #(T)) that p(u™) = p” for all n. Hence ¢(y) = y. The proof is
completed.

5.4. Standing notation. For the remainder of this section K will
denote a closed subgroup of T with #x N 7%, = R.

5.5. LeMMA. Let E = {x € X|xK = X}. Then there exists a
sequence (t,) in T such that wt, — x| € E and wt;! — x, € E.

Proof. Let y be as in 5.3, £ = supp y, and # the canonical map of X
onto S = supp.

By 2 of 4.3 w(E) = 1 whence y(F) = 1 where F = 1~ (x"1(E)).

Now let y: |Cy(T)| — |Cp(T)| be the map induced by ¢. Since
e(y) =7, w(X)=Z and y(w(F)) = 1. Hence there exists p € fT such
that n(p) € F and n(¢(p)) = w(n(p)) € F, and so wp, we(p) € E
(where n: (B(T,e) — (|Cp(T)|, e) is the natural map).

When p is viewed as an ultra filter on T, ¢(p) = {U~!|U € p} and
wp = lim, wt, wp(p) = lim,,) wt.

Let V,, (W,) be a neighborhood base for wp and we(p) respectively
and choose U, € p such that wt € V,, and ws € W, for all n, t € U,,
seU;l.

Finally choose t, € U, n = 1,.... Then ;! € U;! so that wt, —
wp, wt;' — we(p).

5.6. LEMMA. Let K be normal, H the identity component of the
center of K, and assume Hy # {e}. Then there exists h € H with h # e
and xh = x (x € X).

Proof. Assume 5.6 false and let (¢,) be a sequence in T such that
wt, — x;, ot;' — x; and x,K = X = x;K.

Since K « T, adt,(H) = H = adt;'(H). Let ./ be the set of
open connected neighborhoods of the identity in H, V, W € 4", and
AV, W) = {n|t; Vi, N W' # D}.

We claim that n € A(V, W) implies that ¢, ' Vt, N (W\W) # @. To
see this assume ;' Vi,N(W\W) = @. Then t; ' Vi,nW = ;' Vi,nW
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is both open and closed in ¢,!V'¢,. Since ¢;!Vt, is connected and
ect;'\VtynW, t;'Wt,=t;'Vt,nW C W a contradiction.

Now fix W € .#". We claim that there exist ' € .#" and an integer N
with ¢;1Vt, c W for all n > N. Otherwise by the preceding remark
there would be a subsequence (¢,,) of (¢,) and a sequence (r;) — e
with s; = t;!rit, € W\W for all i. We may assume s; — s € W\W.
Then r;t,, = t,s;, ri — e, s; — s # e whence by 3.6 x5 = x;. (Recall
that u spread out with supp u = T implies that every element of T is
regular with respect to @.) Then xk = x5k = x1ks (k € K) and so
xs = x (x € X), a fact which contradicts our original assumption that
5.6 was false.

A similar argument replacing the sequence (¢,) by the sequence (z,,!)
shows that given W € ./ there exist an integer N and V € ./ with
t,Vt;' c W forall n > N.

Finally choose V, W as above with W compact and lete #r € V.
Then we may assume s, = t,rt;! — s € W. Again by 3.6 x5 = X
and so xs = x (x € X). Moreover the preceding paragraphs show that
s # e, which again contradicts our original assumption. The proof is
completed.

5.7. ProPOSITION. Let K be normal and H the identity component
of the center of K. Then H acts trivially on X.

Proof. Let G = {t € T|xt = x (x € X)}. Then G is a closed normal
subgroup of 7.

Let n: T — T/G be the canonical map. Then uzn~! is a spread
out measure on 7/G with (un=')~! = un~!, T/G acts on X and
(X, T/G) is a metric factor of the Poisson flow associated with un~!.
Consequently the results of this section apply with 7', K, u replaced
by T/G, n(K), un~! respectively.

Now n(H) is contained in the identity component of the center of
n(K) so that the latter would not be trivial if H were not contained

in G. But this would contradict 5.6.

5.8. THEOREM. Let T be a connected solvable Lie group, p a spread
out measure on T such that p = p~! and the subgroup generated by
the support of p equals T. Then %, = R.

Proof. Set u =322 1 27"p. Then p = pu~!, supppu = T, and %, C
#,. Thus it suffices to prove that 7, = R where u is as before.
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Theorem 5.8 is clear if dim 7T = 0. Let n > 1 and assume 5.8 for
all positive integers less than n. Set N = [7,T]. Then N is a closed
normal subgroup of 7 with dim N < n.

If dim N = 0, T is abelian and the result is well known in that case.

Now assume dim N > 0. Then dim7/N < n and so #,,—+ = R
where n: T — T/N is the canonical map. Since every element of
Zn N #, induces an element of 7,1, Zy N7, =R.

Let H be the identity component of the center of the nilpotent group
N. Then dim H > 1 and by 5.7 H acts trivially on every metric factor
of B and since (B, T) is the inverse limit of its metric factors, H acts
trivially on B. Then (B,T) = (B, T/H) is a factor of the Poisson flow
of the measure induced by x4 on 7/H and the latter is trivial since
dim T/H < n. The proof is completed.

6.0. The semi-simple case. In this section we use the methods
developed in this paper to prove Furstenberg’s result [F2]: let T =
K AN be the Iwasawa decomposition of the semi-simple Lie group T
with finite center and no compact factors; then K acts transitively
on the Poisson space of u for every supported spread out measure u
onT.

6.1. Notation and review. In this section we retain the notation of
5.1 with the assumption that 7 is an analytic semi-simple Lie group
with finite center and no compact factors.

Let t be the Lie algebra of T, t = k + p a Cartan decomposition of
t, a a maximal abelian subspace of p and A the roots of the pair (t,a).
Order A and let A* be the positive elements of A.

For A€ Asettt = {Y € t|[H,Y] = A(Y), H € a} and define the Lie
subalgebras n* by n* = ¥, ,,, t* and let K, 4, N* be the analytic
subgroups of T corresponding to k, a, n* respectively.

Let at = {H € a|A(H) > 0, A € A*} and A" the corresponding
analytic subgroup of 7.

Then K is compact, KATK =T = KAN* = KAN~.

6.2. LEMMA. There exist sequences (k,) in K and (a,) in At such
that wkna, — xo € X, with xoT = X.

_Proof. Let (¢,) be a sequence in T with wt, — x € X and with
xT = X, such exist by 4.3. Write ¢, = k,a,l, with (k,),(l,) C K and
(an) € A*. We may assume /, — [ € K and wkpa, — p € #(X).
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Then wt, = wk,a,l, — pl, whence lim wkp,a, = p = xI~' € X. Set
xo = xI~!. Then xoT = xI-'T =xT = X.

6.3. Standing notation. For the rest of this section (a,), (k,) will
denote fixed sequences in A" and K respectively such that wk,a, —
Xo € X with xoT = X. We shall also assume that k, — k € K.

Our aim is to show that xoK = X.

6.4. LEMMA. Let a € A. Then xpa = X,.

Proof. Since A is abelian, k,a,a = kjaa, = kyak;'k,a,. Now
knak;! — kak~! whence xpa = xy (apply 3.6 to the sequences (¢,) =
(knan), (sn) = (@), (rn) = (knak, ).

The proof of the next lemma is standard and will be omitted.

6.5. LEMMA. Let Y,H € t with [H,Y] = AY for some . € R. Then
(exp H)(exp Y)(exp(—H)) = exp(e’Y).

6.6. LEMMA. Let —A€ AT, Y €t} andt =expY.
Then xyt = xo.

Proof. Let a, = exp H, with H, € a* for all n. Then a,ta;! =
exp(e*")Y) and since A(H,) < 0 we may assume that the sequence
e*Hn) converges. Hence the sequence r, = a,ta;! converges to r € T.
Finally k,ant = knrnan = knrok; 'kya, and so again xot = xo by 3.6
since kyrok; ! — krk=' € T.

6.7. LEMMA. The group K acts transitively on X; indeed xpK = X.

Proof. Let H = {t € T|xot = xo}. Then H is a closed subgroup of
T which contains 4 by 6.4. By 6.6 expY € HY, for all Y € t* and
—A € A*. Hence the Lie algebra of H contains that of N~ and so
N~ CH.

Finally X = X()T = X()N—AK = X()K = X()K.

6. THEOREM (Furstenberg [F2]). (1) The group k acts transitively on
B, (ii) Zx N%, =R.

Proof. Let b € B and assume ¢ & bK. Then cK NbK = & and there
exists f € C(B) with f(x) =0 (x € bK) and f(x) =1 (x € cK).
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Set R = {(x,y)|f(xt) = f(yt) (t € T)}. Then R is a closed invariant
equivalence relation on B and (X, T) = (B/R, T) is a metric factor of
B since T is 2nd countable.

Let n: B — X be the canonical map. Then f(c) # f(bk) shows that
n(c) # n(b)k (k € K). Thus K does not act transitively on X, a fact
which contradicts 6.7.

(i1) This follows immediately from (i).
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(D]

(E]
[F1]

[F2]
[G]

[H]
M.Z.]

REFERENCES

R. Azencott, Espace de Poisson des Groupes Localement Compact, Berlin,
Springer-Verlag, 1970 (Lecture notes in mathematics 148).

N. Bourbaki, Elements de Mathematique X111 Integration, Hermann, Paris
1965.

—, Elements de Mathematique, Groupes et algebres de Lie, Chapitres 4, 5,
6, Hermann, Paris 1968.

L. Berge and A. Rauge, Fonctions harmoniques sur les groupes moyenable,
Comptes Rendu 278 Serie A (1974), 1287.

D. Dokken, u-Harmonic functions on locally compact groups, (to appear in
Journal d’Analyse Mathematique).

R. Ellis, Lectures on Topological Dynamics, W. A. Benjamin, New York 1969.
H. Furstenberg, Random walks and discrete subgroups of Lie groups, Adv.
Prob. and related topics (1).

—, A Poisson formula for semi-simple Lie groups, Annals of Math., 77
(1963), 335-383.

S. Glasner, Proximal Flows, Springer-Verlag, Berlin (Lecture notes in mathe-
matics 517).

G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco, 1965.
D. Montgomery and L. Zippin, Topological Transformation Groups, New
York, Interscience Publishers (1955).

Received March 2, 1988 and in revised form November 8, 1988. Research partially
supported by NSF grant 8701857.

COLLEGE OF ST. THOMAS
ST1. PauL, MN 55105

AND

UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MN 55455








