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THE n-DIMENSIONAL ANALOGUE OF THE CATENARY:
EXISTENCE AND NON-EXISTENCE

U. DIERKES AND G. HUISKEN

We study “heavy” n-dimensional surfaces suspended from some
prescribed (1 — 1)-dimensional boundary data. This leads to a mean
curvature type equation with a non-monotone right hand side. We
show that the equation has no solution if the boundary data are too
small, and, using a fixed point argument, that the problem always has
a smooth solution for sufficiently large boundary data.

Consider a material surface M of constant mass density which is
suspended from an (n — 1)-dimensional surface I" in R” x R*, Rt =
{t > 0}, and hangs under its own weight. If M is given as graph of
a regular function u: Q — R* on a domain Q Cc R", n > 2, then u
provides an equilibrium for the potential energy & under gravitational

fOl'CCS,
gu——/u\/l+Du2.

Thus u solves the Dirichlet problem

(1) div{\/lu—_"_ll)——_DLulz}z\/l+|Du|2 in Q,

u=g¢ on 9Q

The corresponding variational problem

1 .
(2) /Qu\/l + |Duj? + z/m|u2 — 9% d#,_; — min

in the class
BVH(Q):={ue Ly(Q): u>0, u* € BV(Q)}

has been solved by Bemelmans and Dierkes in [BD]. It was shown in
[BD, Theorem 7] that the coincidence set {# = 0} of a minimizer u is
non-empty provided that

1]
3 0,00 < A A
( ) |¢| ,0Q %_](69)
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where |Q| denotes the Lebesgue measure of Q and %, denotes n-
dimensional Hausdorff measure.

We want to show here that (1) has no solution in case (3) holds,
whereas (1) has a/ways a solution for sufficiently large boundary data.
More precisely we prove the following existence-non-existence result.

THEOREM. Let Q C R", n > 2, be a bounded domain of class
C%, a > 0, with non-negative (inward) mean curvature. Suppose
p € C>*(Q) satisfies

2
(4) ko (= 1011Qf¢20(n) (1+\/2n+1) IQ!l/n’

where c(n) = n~'w;, /" is the isoperimetric constant. Then the Dirich-
let problem (1) has a global regular solution u € C 22(Q). Moreover, if
u € C%Y(Q) is a weak positive solution of (1) with Lipschitz constant
L, then we have

||

5 h:=supp > (1+ L /2L
®) AR )
for every Caccioppoli set A C Q.

Since c(n) is the isoperimetric constant, we have
1|
Zn-1(09)
and therefore it is an interesting question whether our existence result
remains true if we replace (4) with an inequality of the form

1<}
Zn-1(0Q)

The proof of the theorem is based on a priori bounds for solutions to
the related problem

c(mQ'" >

ko > const.

D,'uD U

1 + [Dul?
which enable us to apply a fixed point argument. Notice that the
operator

Au DiDju= 1,

D,~uD iU
1+ [Duf?
where Ay, is the Laplace-Beltrami operator on M = graph u.
Let us make some comments on the literature. For two dimensional
parametric surfaces in R3? the existence problem has been investigated

D;D; = (1+|Du)?) - Ay



THE n-DIMENSIONAL ANALOGUE OF THE CATENARY 49

by Bohme, Hildebrandt and Tausch [BHT]. To our knowledge the first
existence result for the Dirichlet problem (1), in case n = 2, is due
to Dierkes [D1]. The variational problem (2) is solved in [BD]. It is
shown in [D2] that minima « of (2) are regular up to the boundary pro-
vided only the boundary is mean curvature convex. A non-existence
result of a different type has been proved by J. C. C. Nitsche in [N].

Proof. We consider regular solutions u, € C 22(Q) of the related
problem

. Du
/ 2 e -
(6) 1 + |Du|? div RV =f in Q,

u=¢ on 9Q,

where f € C1(Q) and 0 < d < f. As a first step we establish a priori
bounds for supg # and infq, u.

LEMMA. Let u; € C** (Q) be a solution to the Dirichlet problem (6).
If
f2d> (14 V2r0) c(m)@)!/

and
R 2
ko =infaqp > (1+V2m+1) e(m)|Q)'/",

then we have h > u; > d.

Proof of the Lemma. The first inequality follows immediately from
the maximum principle since f is positive. To prove the second re-
lation we chose 6 > —kg and put w = min(u + 6,0), A(J) = {x €
Q: u < —J}. Multiplying (6) with w, integrating by parts and using
wlyq = 0, we obtain

2
/ |Dw)| = [w] hence
Q

VI+Dw? i) fV/1+|Dup’
/ Dw| < |A@)| +d~! / ).
Q A(5)

We use Sobolev’s inequality on the left and Holder’s inequality on the

right hand side and get with ¢(n) = n~!w), /"

[W]njny - {7 () = d7'|QIV"} < |4(9)],
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where |w/|,/,—; stands for the L,,,_;-norm of w. Another application
of Holder’s inequality yields
c(n)d 1+1
- 5)|A4 <{d——"= ___Li4(5,)I*1/n
(01~ 214(60)| < { g 14662

for all ; > &, > —ky. In view of a well-known lemma due to Stam-
pacchia, [St, Lemma 4.1], this is easily seen to imply

|[A(=ko + 2! - c1|A(=ko)|'/™)| = 0, where
o = c(n)d
LT d—c(m)Q]l/"

Clearly this means that
2n+1dc(n)lgll/n

> ko — :
uz ko= = QN
Since ko > (1 4+ V2"+t)d and d > (1 + V2"+1)c(n)|Q|Y/" we finally
obtain u > d. O

To derive a gradient estimate at the boundary, we rewrite (6) into
(7) (1 + |Du*)Au — D;uD;juD;Dju = f~'(1 + |Duj?).

We can then apply the results of Serrin [Sel], see also [GT, Chapter
14.3]. Equation (7) satisfies the structure condition (14.41) in [GT]
and the RHS is @(|Du|?). So we obtain a gradient estimate on the
boundary which is independent of |Df]:

S(;lg |Duf} o= c2(”5 Q; h9 l¢lZ,Q)s
provided only that €2 has non-negative (inward) mean curvature.

It is not possible to derive interior gradient estimates independent
of |Df]|, but we can prove

(8)  sup|Dus| < max {2, 1 sup [Df], 2e*d™' =D sup lDuf|} ,
Q 4 g 29

which will be sufficient for our fixed point argument. Estimate (8)
can be obtained from a careful analysis of the structure conditions in
[GT, Chapter 15]. Here we present a selfcontained proof, using the
geometric nature of equation (6). For a similar procedure we refer to
[X].
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In the following let v = (1 + |Du|?)!/? and denote by H and A the
mean curvature and the Laplace-Beltrami operator on M = graphu
respectively. Then equation (6) takes the form

9) vV:Au=fle H=flv7\

Let 7,,7,,..., Ty, v be an adapted local orthonormal frame on M, such
that v is the upper unit normal and

Viv=-hyt,  Vt;=hyv,

where V; is the tangential derivative with respect to 7; and 4;; is the
second fundamental form. Then we get for v = (1 + |Du|?)!/? =
(v,ens1)”! the Jacobi-Codazzi equation

Av =V Vi(v,en1) " = Vi (hyt), ns1))
= |4|?v + 2v~ 1| Vv|? + v¥(VH, e, ),

where |A4|2 = h;;h". Now (9) implies
(10)  Av = |APPv + 20~ [Vo? = f20(V f,en1) — [~ (VU e11).
If we now extend all functions from M to R**! by
(X, Xp41) = f(X)
such that
(11) Vf=Df-v(Df,v),D,,1f=0 and
(Vf.ens1) = —v~(Df,v)
then we derive from (10) and (11)
(12) Av > 2071V = 71V, e,01) - f2IDS].
Next we compute for a > 0 and g = e** - v the inequality

Ag > e™ {207 |Vu]* - f7(Vv,ens1) — f73DS]
+2aVuVu 4+ avAu + va?|Vul?}.

Using again the equation (9) and
Vig =Vve™ + ave*™V;u
we obtain

Ag >207'VuV,g — [TV g, eni1) + af e (Vi e,
— 4D fle™ + {v'af ! + va?|Vu|*}e.
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In view of relation (11) we finally conclude
Ag >207'ViwV,g— 1V g, en) +H{P|Vul*—af ' v 72D f|} g
Now let again d < f < h and choose a = 4d~!. Then, since

2-M>l >
|Vu|® = T+ Duf 2 2 for |Du| > 1,

we see that g cannot have an interior maximum if
v > max {2, 3 sgplDfl}.
Therefore we get the estimate

supv < max {2, Lsup|Df],ehd™'=1) supv}
Q Q 2Q
yielding (8).

To prove existence of a solution to equation (1) we now define the
set

M= {fe C'(Q):d < f < h,sup|Df] SM}
Q

for M > 0 large and consider the operator
T:# — Ch(Q),

f - Ur.
In view of our estimates for u, and |Du,| we may then choose M so
large that

T(#)C .

Moreover, standard theory ensures that 7" is continuous and 7(.#) is
precompact. So we can apply Schauder’s fixed point theorem, see e.g.
([GT], Cor. 11.2) to obtain the existence of a regular u € C>%(Q)
satisfying (1).

To prove the necessary conditions (5) we proceed similarly as in
[G]. To this end let 4 € Q have finite perimeter M(0 A4). There exists
a sequence of positive functions ¢, € C!(Q) such that ¢, — ¢4 in
L,(Q), and

/Q IDpe| — M(@4),

where ¢4 denotes the characteristic function of the set A.
We test (1) with ¢, and integrate,

uDuDg,,
13 / —_— 1+ |Dul?2} dx =0.
(13) Q{ T ¢ry\/ 1+ [Du| }
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Now, since u € Lip(Q) it follows from standard regularity theory that
u € C*(Q) and therefore

div——Q—u——— >0 on £, whence u < A.

V1+|Dul? ~

Using this in (13) we get

h-L
dx<—/D
Jyoedx < s [ 100

and, letting k — oo,

h-L
Al < ———=M(34), o
4] < =77 (04), or
—2y12_ |4
h>{1+L""} N(OA)

The general case follows by an approximation argument, using the fact
that

M(8[A N Q,]) — M(84) ase— 0,

where
Q. = {x € Q: dist(x,0Q) > ¢}.

This completes the proof of the theorem.

REMARK. With the same method we could as well deal with the

integral
u’y/1 + |Dul?, y >0,

the Euler equation of which is given by
Du _ Y
1+|Du?> u\/1+|Duf?>

Clearly, in this case the constants appearing in the theorem would
depend on y too, however we shall not dwell on this.

div
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