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THE ^-DIMENSIONAL ANALOGUE OF THE CATENARY:
EXISTENCE AND NON-EXISTENCE

U . DlERKES AND G. HUISKEN

We study "heavy" A?-dimensional surfaces suspended from some
prescribed (n — 1) -dimensional boundary data. This leads to a mean
curvature type equation with a non-monotone right hand side. We
show that the equation has no solution if the boundary data are too
small, and, using a fixed point argument, that the problem always has
a smooth solution for sufficiently large boundary data.

Consider a material surface M of constant mass density which is
suspended from an (n - 1 )-dimensional surface Γ in Rn x R+, R+ =
{t > 0}, and hangs under its own weight. If M is given as graph of
a regular function u: Ω —• R+ on a domain Ω c Rw, n > 2, then u
provides an equilibrium for the potential energy g7 under gravitational
forces,

= ί
JΩ

\Du\
Ω V

Thus u solves the Dirichlet problem

Γ 7 ^ i n α

u = φ on <9Ω

The corresponding variational problem

(2) ί uJ\ + \Du\2 + ]r ί \u2-φ2\dJrn_{-
JΩ V 2 JdΩ

in the class

:= {u e L2(Ω): u > 0, u2 e BV(Ω)}

has been solved by Bemelmans and Dierkes in [BD]. It was shown in
[BD, Theorem 7] that the coincidence set {u = 0} of a minimizer u is
non-empty provided that

(3) \φ\oo,da
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where |Ω| denotes the Lebesgue measure of Ω and ^n denotes n-
dimensional Hausdorff measure.

We want to show here that (1) has no solution in case (3) holds,
whereas (1) has always a solution for sufficiently large boundary data.
More precisely we prove the following existence-non-existence result.

THEOREM. Let Ω c Rπ, n > 2, be a bounded domain of class
C2>a, a > 0, with non-negative (inward) mean curvature. Suppose
φ e C2'rk(Ω) satisfies

(4) k0 := inf> > c(n)

where c(n) = n~xω^x^n is the isoperimetric constant. Then the Dirich-
let problem (1) has a global regular solution u e C2>α(Ω). Moreover, if
u G C0>1(Ω) is a weak positive solution of (I) with Lipschitz constant
L, then we have

(5) h := sup^ > (1 + L-2)1'2 ]A]

for every Caccioppoli set A cΩ,.

Since c(n) is the isoperimetric constant, we have

and therefore it is an interesting question whether our existence result
remains true if we replace (4) with an inequality of the form

ko> const '
Λn-\\d\l)

The proof of the theorem is based on a priori bounds for solutions to
the related problem

which enable us to apply a fixed point argument. Notice that the
operator

where AM is the Laplace-Beltrami operator on M = graph u.
Let us make some comments on the literature. For two dimensional

parametric surfaces in R3 the existence problem has been investigated
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by Bόhme, Hildebrandt and Tausch [BHT]. To our knowledge the first
existence result for the Dirichlet problem (1), in case n — 2, is due
to Dierkes [Dl]. The variational problem (2) is solved in [BD]. It is
shown in [D2] that minima u of (2) are regular up to the boundary pro-
vided only the boundary is mean curvature convex. A non-existence
result of a different type has been proved by J. C. C. Nitsche in [N].

Proof. We consider regular solutions Uf e C 2 α (Ω) of the related
problem

(6)

u = φ on <9Ω,

where / e C l r"(Ω) and 0 < d < / . As a first step we establish a priori
bounds for suρΩ u and info u.

LEMMA. Let Uf e C2'f*(Ω) be a solution to the Dirichlet problem (6).

\ + v / 2 ^ ) c{n)\Q\χlnf>d>(

and

k0 = inf^Q φ >

then we have h> Uf> d.

Proof of the Lemma. The first inequality follows immediately from
the maximum principle since / is positive. To prove the second re-
lation we chose δ > —ko and put w = min(u + δ,0), A(δ) = {x e
Ω: u < —δ}. Multiplying (6) with w, integrating by parts and using
w\ϋQ = 0, we obtain

\Dw\2 f \w\
1 — ' hence

r \Dw\ι r
JΩ \/\ + \Dw\2

 JA{S) fy/l

ί \Dw\<\A(δ)\ + d'1 f
JΩ JA

\w\.
A{δ)

We use Sobolev's inequality on the left and Holder's inequality on the

right hand side and get with c{n) = n~xω^x'n

w
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where \w\n/n__x stands for the Ln/n_\-noτm ofw. Another application
of Holder's inequality yields

for all δ\ > δ2 > -&o In view of a well-known lemma due to Stam-
pacchia, [St, Lemma 4.1], this is easily seen to imply

\A(-k0 + 2n+x cx\A(-h)\λ/n)\ = 0, where

c{n)d
C{ ~ d-c(n)\Ω\1/"'

Clearly this means that

2n+xdc{n)\Ω\χln

u>k0- d-c(n)\Ω\ι/» '

Since k0 > (1 + y/2n+x)d and d > (1 4- V2n+ι)c(n)\Ω\ι/n we finally
obtain u > d. π

To derive a gradient estimate at the boundary, we rewrite (6) into

(7) (1 + \Du\2)Au - DiUDjuDiDjU = f~ι(l + \Du\2).

We can then apply the results of Serrin [Sel], see also [GT, Chapter
14.3]. Equation (7) satisfies the structure condition (14.41) in [GT]
and the RHS is (?(\Du\2). So we obtain a gradient estimate on the
boundary which is independent of \Df\:

sup \Duf\ <c2 = c2(n,Ω,h, |p| 2,n),
<9Ω

provided only that dΩ has non-negative (inward) mean curvature.

It is not possible to derive interior gradient estimates independent
of \Df\, but we can prove

(8) sup \DUf\ < max {2, \ sup \Df\, 2e^hd~{~^ sup \Duf\ \ ,
Ω I 4 Ω ΘΩ )

which will be sufficient for our fixed point argument. Estimate (8)
can be obtained from a careful analysis of the structure conditions in
[GT, Chapter 15]. Here we present a self contained proof, using the
geometric nature of equation (6). For a similar procedure we refer to
[K].
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In the following let v = (1 + \Du\2)1/2 and denote by H and Δ the
mean curvature and the Laplace-Beltrami operator on M = graph u
respectively. Then equation (6) takes the form

(9) v2Au = f~ι^H = f~xv-\

Let τ\, T2,..., τn, v be an adapted local orthonormal frame on M, such
that v is the upper unit normal and

V/i/ = -Λ//τ/, Vz τ 7 = hijv,

where V, is the tangential derivative with respect to τz and Λ// is the
second fundamental form. Then we get for υ = (1 + IDw
(v9en+\)~{ the Jacobi-Codazzi equation

where |^4|2 = Λz /Λ/7. Now (9) implies

(10) Av = \A\2v + 2v'l\Vv\2 - Γ

If we now extend all functions from M to Rn+ι by

f(x,Xn+l)=f(x)

such that

(11) Vf = Df-v{Df,v),Dn+xf = 0 and

then we derive from (10) and (11)

(12) Av >2v-ι\Vv\2 - f-ι(Vv9en^) - f-2\Df\.

Next we compute for a > 0 and g = eau -υ the inequality

+ 2αViVViU + avAu

Using again the equation (9) and

we obtain

2v-ι

- f~2\Df\enu + {υ-ιaf-{ + va2\Vu\2}eau.
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In view of relation (11) we finally conclude

Now let again d < f < h and choose a = 4d~ι. Then, since

we see that g cannot have an interior maximum if

υ >max

Therefore we get the estimate

< 2, i sup
I Ω

p max
Ω

yielding (8).
To prove existence of a solution to equation (1) we now define the

set

ί e Cι>a(Ω) :d<f<h,sup \Df\ < λf\

for M > 0 large and consider the operator

T\Jί -> Cι>a(Ω),

f -> uf.
In view of our estimates for Uf and \Duf\ we may then choose M so
large that

τ{jt) c jr.

Moreover, standard theory ensures that T is continuous and T{JT) is
precompact. So we can apply Schauder's fixed point theorem, see e.g.
([GT], Cor. 11.2) to obtain the existence of a regular u e C 2 α (Ω)
satisfying (1).

To prove the necessary conditions (5) we proceed similarly as in
[G]. To this end let A m Ω have finite perimeter M(dA). There exists
a sequence of positive functions φ^ G C\ (Ω) such that φ^ —• ΨA in
Li(Ω), and

f \Dφk\^M{dA),
JΩ

where φA denotes the characteristic function of the set A.
We test (1) with φk and integrate,

)u\2 \ dx = 0.
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Now, since u G Lip(Ω) it follows from standard regularity theory that
u G C°°(Ω) and therefore

div . = > 0 on Ω, whence u < h.
y/\ + \Du\2 "

Using this in (13) we get

ί φkdx<-^= ί \Dφk\
JQ VI+L2JQ

and, letting k —* oo,

The general case follows by an approximation argument, using the fact
that

M(d[A n Ωε]) -> M(dA) as ε -+ 0,

where

Ωε := {x G Ω: dist(*,0Ω) > ε}.

This completes the proof of the theorem.

REMARK. With the same method we could as well deal with the
integral

[ J y>0,[
Q

the Euler equation of which is given by

Du
div

Clearly, in this case the constants appearing in the theorem would
depend on γ too, however we shall not dwell on this.
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