SHEAVES AND FUNCTIONAL CALCULUS

G. Deferrari, A. Larotonda and I. Zalduendo

Let A be a commutative Banach algebra with identity over the complex field, \mathbb{C} . Let a_1, \ldots, a_n be elements of A, and $\operatorname{sp}(a)$ their joint spectrum. In this paper we seek to characterize the functional calculus

$$T_a : \mathscr{O}(\operatorname{sp}(a), A) \to A$$

as part of a cohomology sequence of certain sheaves, and the algebra \boldsymbol{A} as the algebra of sections

$$H^0(\operatorname{sp}(a), \mathscr{A}) = A$$

of a sheaf \mathscr{A} , which is related to the Putinar structural sheaf. This is obtained under certain conditions on a_1, \ldots, a_n . The problem is related also to the unique extension property and to the local analytic spectrum $\sigma(a,x)$ of x with respect to a.

Section 2 is devoted to attacking this problem. In §1, some preliminary results are obtained. We also prove that if $\sigma(a,x)$ is empty, then x is nilpotent.

1. Let us start by briefly recalling (some details may be found in [2], [5]) the construction of a holomorphic functional calculus morphism

$$T_a : \mathscr{O}(\operatorname{sp}(a), A) \to A.$$

Let U be an open neighborhood of $\operatorname{sp}(a)$, and u_1, \ldots, u_n , ψ infinitely differentiable A-valued functions defined on U and verifying:

- (i) $\sum_{i=1}^{n} u_i(z)(z_i a_i) + \psi(z) = 1$, for all z in U.
- (ii) ψ has compact support contained in U.
- (iii) $\psi = 1$ in some neighborhood of sp(a).

Then

$$T_a^U(f) = f(a) = n!(2\pi i)^{-n} \int_U f \, du_1 \, dz_1 \cdots du_n \, dz_n$$

defines a continuous A-linear morphism from $\mathcal{O}(U, A)$ to A. The compatibility of these morphisms as U varies over open neighborhoods of $\operatorname{sp}(a)$ produces T_a . We have the following theorem, where U denotes a neighborhood of $\operatorname{sp}(a)$.

THEOREM 1.1. Let $f \in \mathcal{O}(U, A)$, and suppose there are g_1, \ldots, g_n in $C^{\infty}(U, A)$ such that

$$f(z) = \sum_{i=1}^{n} g_i(z)(z_i - a_i) \text{ for all } z \text{ in } U.$$

Then there exists an A-valued differential 2n-form α over U, verifying:

- (i) $(z_i a_i)\alpha = 0$ for i = 1, ..., n; and $f\alpha = 0$.
- (ii) For every h in $\mathcal{O}(U, A)$.

$$n!(2\pi i)^{-n}\int_{U}h\alpha=f(a)^{n}h(a).$$

Proof. Let u_1, \ldots, u_n , ψ be as above, and let $f_k = u_k f$, $q_k = g_k \psi$, and $r_{jk} = g_k u_j - u_k g_j$. Then

$$g_k - f_k = g_k \left(\sum_{j=1}^n u_j (z_j - a_j) + \psi \right) - u_k \sum_{j=1}^n g_j (z_j - a_j)$$
$$= \sum_{j=1}^n r_{jk} (z_j - a_j) + q_k.$$

Also

$$\sum_{j=1}^{n} f_j(z_j - a_j) = (1 - \psi)f = f - \psi f$$

and therefore, differentiating and multiplying by $dz_1 \cdots dz_n$,

$$\sum_{j=1}^{n} (z_j - a_j) df_j dz_1 \cdots dz_n = -d(\psi f) dz_1 \cdots dz_n.$$

Since $\operatorname{supp}(\psi f)$ and $\operatorname{supp}(q_k)$ are compact sets contained in U, we may proceed as in [5] (III, 4.9), and obtain an n-1 differential form τ with $\operatorname{supp}(\tau)$ contained in U and such that

(1)
$$d\tau dz_1 \cdots dz_n = dg_1 dz_1 \cdots dg_n dz_n - df_1 dz_1 \cdots df_n dz_n$$
$$= dg_1 dz_1 \cdots dg_n dz_n - f^n du_1 dz_1 \cdots du_n dz_n$$

Now set

(2)
$$\alpha = dg_1 dz_1 \cdots dg_n dz_n \quad \text{and} \quad$$

(3)
$$\omega = du_1 dz_1 \cdots du_n dz_n.$$

Differentiating f we obtain

$$df = \sum_{j=1}^{n} g_j dz_j + \sum_{j=1}^{n} (z_j - a_j) dg_j$$

and multiplying by $dg_1 dz_1 \cdots \widehat{dg_k} dz_k \cdots dg_n dz_n$,

$$0=(z_k-a_k)\alpha.$$

Multiplying by g_k and adding gives $f\alpha = 0$ and so, (i) is proved. Now let h be an element of $\mathcal{O}(U, A)$. By (1), (2), and (3) we have

$$h\alpha - hf^n\omega = h d\tau dz_1 \cdots dz_n = d(h\tau) dz_1 \cdots dz_n.$$

Hence, by construction of the functional calculus,

$$n!(2\pi i)^{-n} \int_{U} h - h(a)f(a)^{n} = n!(2\pi i)^{-n} \int_{U} d(h\tau) dz_{1} \cdots dz_{n}$$

but this is zero by Stokes' theorem, for $supp(h\tau)$ is contained in U.

COROLLARY 1.2. Under the hypothesis of the theorem, $f(a)^{n+1} = 0$.

Proof. Simply put h = f.

COROLLARY 1.3. Let U be an open neighborhood of $\operatorname{sp}(a)$, and $f \in \mathscr{O}(U,A)$. Suppose that for every z^0 in U, there are f_1,\ldots,f_n infinitely differentiable functions near z^0 such that

$$f(z) = \sum_{i=1}^{n} f_i(z)(z_i - a_i) \quad \text{for } z \text{ near } z^0.$$

Then $f(a)^{n+1} = 0$.

Proof. A partition of unity will put us in a situation where the theorem is applicable.

Now suppose x is an element of A and consider $\sigma(a, x)$, the local analytic spectrum of x with respect to a ([1], [4]). Putting f = x, we obtain that if $\sigma(a, x)$ is empty, then $x^{n+1} = 0$. The conclusion x = 0 is known only under additional hypotheses [4].

2. Let \mathscr{O}^A be the sheaf of germs of holomorphic A-valued functions over \mathbb{C}^n . If $a=(a_1,\ldots,a_n)\in A^n$, the morphism $\lambda_a\colon (\mathscr{O}^A)^n\to \mathscr{O}^A$ defined by

$$\lambda_a(f_1,\ldots,f_n)=\sum_{i=1}^n(z_i-a_i)f_i$$

induces an exact sequence of sheaves

$$0 \to \mathcal{N}_a \to (\mathcal{O}^A)^n \to \mathcal{O}^A \to \mathcal{A} \to 0.$$

Here the stalk of \mathcal{N}_a over z^0 , $\mathcal{N}_{a_{z^0}}$, consists of germs of *n*-tuples (g_1,\ldots,g_n) of functions analytic near z^0 and verifying $\sum (z_i-a_i)g_i=0$ in some neighborhood of z^0 . $\mathcal{A}_{z^0}=\mathcal{O}_{z^0}^A/\mathcal{J}_{z^0}$, where $\mathcal{J}\subset\mathcal{O}^A$ is the sheaf of ideals generated by (z_i-a_i) for $i=1,\ldots,n$. Note that if z^0 is not in $\mathrm{sp}(a)$, $\mathcal{J}_{z^0}=\mathcal{O}_{z^0}^A$, and therefore $\mathcal{A}_{z^0}=0$.

Clearly, if U is an open, holomorphically convex subset of C^n , then

$$H^{0}(U, \mathcal{N}_{a}) = \mathcal{N}_{a}(U)$$

$$= \left\{ (f_{1}, \dots, f_{n}) \in \mathscr{O}(U, A)^{n} : \sum_{i=1}^{n} (z_{i} - a_{i}) f_{i} = 0 \right\}.$$

On the other hand, if I(U) denotes the ideal generated by $(z_i - a_i)$, i = 1, ..., n in $\mathcal{O}(U, A)$, then $I(U) \subset H^0(U, \mathcal{I})$, but the equality does not, in general, hold.

Suppose U contains the joint spectrum of a_1, \ldots, a_n . Since $T_a^U(z_i - a_i) = 0$ for $i = 1, \ldots, n$; we have the inclusion $I(U) \subset \operatorname{Ker} T_a^U$. The following proposition shows that the ideals are the same.

PROPOSITION 2.1. Let U be a holomorphically convex open neighborhood of $\operatorname{sp}(a)$. Then $\operatorname{Ker} T_a^U = I(U)$.

Proof. The ideal of $\mathscr{O}(U \times U, \mathbb{C})$ generated by the functions

$$(z,w)\mapsto z_i-w_i, \qquad i=1,\ldots,n,$$

is the ideal of functions analytic on $U \times U$ and zero on the diagonal $\Delta \subset U \times U$, for both ideals are closed, and they coincide locally.

Since $\mathscr{O}(U \times U, A) = \mathscr{O}(U \times U, \mathbb{C}) \otimes_{\varepsilon} A$, it follows from [3] that all $g: U \times U \to A$ null over Δ belong to the ideal generated by $(z_i - w_i)$, for $i = 1, \ldots, n$.

Therefore, it $f \in \mathcal{O}(U, A)$, there are analytic $g_k : U \times U \to A$, such that

$$f(z) - f(w) = \sum_{k=1}^{n} g_k(z, w)(z_k - w_k).$$

Applying the functional calculus morphism in the w-variable,

$$f(z) - f(a) = \sum_{k=1}^{n} g_k(z, a)(z_k - a_k).$$

Hence, if f(a) = 0, $f \in I(U)$.

Now we can relate this fact with the homological approach of Putinar ([7]; see also [6]); to do this we consider the presheaf \mathscr{P} over \mathbb{C}^n defined by

$$\mathscr{P}(U) = \mathscr{Q}(U) \hat{\otimes}_{\mathscr{Q}(\mathbb{C}^n)} A \qquad (U \text{ open, } U \in \mathbb{C}^n),$$

and let \mathscr{F} be the sheaf defined by \mathscr{P} . The standard definitions ([6]) give the identification

$$\mathscr{P}(U) = \mathscr{O}^A(U)/I(U).$$

Hence looking at the germs we have

Lemma 2.2. The sheaf $\mathscr A$ is the sheaf $\mathscr F$ defined by the presheaf $\mathscr P = \mathscr O \hat{\otimes}_{\mathscr O(C^n)} A$.

We also have the following fact:

Proposition 2.3. Let U be a holomorphically convex open neighborhood of sp(a). Then

(i) The functional calculus induces a topological isomorphism

$$\mathscr{P}(U) \approx A$$

(ii) The kernel of the canonical map

$$\mathscr{P}(U) \to \mathscr{A}(U)$$

consists of nilpotent elements.

Proof. The first assertion follows easily from Proposition 2.1 and (*) above, since I(U) is closed in $\mathcal{O}(U,A)$. For the second, let $f \in \mathcal{O}^A(U)$ and assume that the image of f is zero in $\mathcal{A}(U)$; this means that the class of the germ of f in \mathcal{A}_z is zero for every $z \in U$.

Then for every $z^0 \in U$ we have an *n*-tuple $(g_{g_1}^{z^0}, \ldots, g_n^{z^0})$ of functions analytic near z^0 such that $f = \sum (z_i - a_i)g_i^{z^0}$ in some neighborhood of z^0 .

Using a partition of unity we are in the situation of Corollary 1.3; hence $f(a)^{n+1} = 0$. But this implies $f^{n+1} \in I(U)$ and this means that $f^{n+1} = 0$ in $\mathcal{P}(U)$.

We shall now study, for a neighborhood U of sp(a), the cohomology sequence resulting from the exact sequence of sheaves

$$0 \to \mathcal{J} \to \mathcal{O}^A \to \mathcal{A} \to 0.$$

Note that when U is holomorphically convex, $H^p(U, \mathcal{O}^A) = 0$, for all p > 0, due to [3] and the well-known case $A = \mathbb{C}$. We have then the commutative diagram

The ideal Ker L is isomorphic, because of the snake lemma construction, to the A-module $H^0(U, \mathcal{F})/I(U)$. In fact, $H^0(U, \mathcal{F}) \simeq \text{Ker } L \oplus I(U)$. We obtain also the exact sequence,

$$0 \to I(U) \to H^0(U, \mathcal{J}) \stackrel{T_u^U}{\to} A \stackrel{L}{\to} H^0(U, \mathcal{A}) \to H^1(U, \mathcal{J}) \to 0$$

and therefore, $H^1(U, \mathcal{J}) \simeq H^0(U, \mathcal{A}) / \operatorname{Im} L$.

On the other hand, the exact sequence of sheaves

$$0 \to \mathcal{N}_a \to (\mathcal{O}^A)^n \xrightarrow{\lambda_a} \mathcal{J} \to 0$$

produces the exact cohomology sequence

$$0 \to \mathcal{N}_a(U) \to \mathscr{O}(U,A) \xrightarrow{n} H^0(U,\mathcal{J}) \to H^1(U,\mathcal{N}_a) \to 0 \to \cdots$$
$$\cdots \to 0 \to H^{p-1}(U,\mathcal{J}) \to H^p(U,\mathcal{N}_A) \to 0 \to \cdots$$

We then have

$$H^1(U, \mathcal{N}_a) \simeq H^0(U, \mathcal{J})/I(U) \simeq \operatorname{Ker} L$$

and

$$H^p(U, \mathcal{N}_a) \simeq H^{p-1}(U, \mathcal{J}), \text{ for } p > 1.$$

We have proved:

PROPOSITION 2.4. The morphism $L: A \to H^0(U, \mathscr{A})$ is

- (i) a monomorphism iff $H^0(U, \mathcal{J}) = 0$ iff $H^1(U, \mathcal{N}_a) = 0$
- (ii) an epimorphism iff $H^1(U, \mathcal{J}) = 0$ iff $H^2(U, \mathcal{N}_a) = 0$.

Note that Ker L consists of the elements x in A whose local analytic spectrum is empty. Therefore, L(x) = 0 implies $x^{n+1} = 0$. If A has no nilpotent elements, Ker L = 0 and $H^0(U, \mathcal{J}) = I(U)$.

DEFINITION. We shall say that A is a-representable if

- (i) sp(a) is holomorphically convex, and
- (ii) $H^1(sp(a), \mathcal{N}_a) = 0$, $H^2(sp(a), \mathcal{N}_a) = 0$.

Note that the first condition ensures the existence of a basis for neighborhoods of sp(a) made up of holomorphically convex open sets,

while the second says that L is an isomorphism for a basis of neighborhoods of sp(a). Hence, $A = H^0(sp(a), \mathcal{A})$.

If n=1, and $\operatorname{sp}(a)$ has no interior, A is a-representable: in this case, $\mathcal{N}_a=0$, for if $g\in \mathcal{N}_a(V)$, then $g|_{V\cap(\mathbb{C}-\operatorname{sp}(a))}=0$, and hence, g=0.

Finally, we wish to compare a-representability and the unique extension property [4].

THEOREM 2.5. Suppose that sp(a) is holomorphically convex, and that the n-tuple $a = (a_1, ..., a_n)$ (considered as a family of operators from A to A) has the unique extension property. Then A is arrepresentable.

Proof. Consider the sheaf complex $K = K(\mathcal{O}, \alpha)$, where, for each open set V,

$$K^r(V) = \mathscr{O}(V, \Lambda_A^r(A^n))$$

consists of analytic A-valued r-forms over V, and

$$\alpha_r \colon K^r \to K^{r+1}$$

is induced by the exterior product $\eta \to \sum_{j=1}^{n} (z_j - a_j) dz_j \wedge \eta$. For n-1, α may be written as

$$\alpha_{n-1} \left(\sum_{i=1}^n f_i dz_1 \cdots d\hat{z}_i \cdots dz_n \right)$$

$$= \sum_{i=1}^n (-1)^{i+1} f_i(z_i - a_i) dz_1 \cdots dz_n$$

so that $\operatorname{Ker} \alpha_{n-1}(z)$ is the stalk \mathcal{N}_{a_z} (save a sign), and $\operatorname{Ker} \alpha_{n-1} = \mathcal{N}_a$. Now the unique extension property expresses that cohomology $H^r(K) = 0$, for $r = 0, \ldots, n-1$, that is, the sequence of sheaves

$$0 \to K^0 \xrightarrow[\alpha_0]{} K^1 \xrightarrow[\alpha_1]{} \cdots \to K^{n-2} \xrightarrow[\alpha_{n-2}]{} \mathscr{N}_a \to 0$$

is exact. Since the sheaves K^r are acyclic, that is, $H^i(U, K^r) = 0$ for holomorphically convex U and i > 0, we obtain $H^p(U, \mathcal{N}_a) = 0$ for all p > 0.

REFERENCES

- [1] E. Albrecht, Functionalkalküle in mehreren veränderliche für stetige lineare Operatoren auf Banachraumen, Manuscripta Math., 14 (1974), 1–40.
- [2] N. Bourbaki, *Théories Spectrales*, Hermann, Paris, 1967.

- [3] L. Bungart, Holomorphic functions with values in locally convex spaces and applications to integral formulas, Trans. Amer. Math. Soc., 111 (1964), 317-344.
- [4] S. Frunza, The Taylor spectrum and spectral decompositions, J. Funct. Anal., 19 (1975), 390-421.
- [5] T. Gamelin, Uniform Algebras, Chelsea (2nd ed.), N. Y., 1984.
- [6] A. Khelemskii, Homological methods in Taylor holomorphic calculus of several operators in a Banach space, Russ. Math. Surveys, 36 no. 1, (1981), 139-192.
- [7] M. Putinar, Elemente de teorie spectrala a reprezentarilor algbrelor Stein, Stud. Cerc. Mat., 29 (1984), 193-219.

Received October 20, 1987 and in revised form September 26, 1988.

Universidad de Buenos Aires Pabellon I, Ciudad-Universitaria (1428) Capital Federal Buenos Aires, Argentina