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UNITARY COBORDISM OF CLASSIFYING
SPACES OF QUATERNION GROUPS

ABDESLAM MESNAOUI

The main purpose of this article is to prove that the complex cobor-
dism ring of classifying spaces of quaternion groups I'; (|| = 2*) is
a quotient of the graded ring U*(p?)[[X, Y, Z]] (dimX = dimY =
2,dim = Z = 4) by a graded ideal generated by six homogeneous
formal power series.

0. Introduction. Let I'; be the generalized quaternion group. I
is generated by u,v, subject to the relations u! = vZ, uvu = v, t =
2k=2_ In order to calculate U*(BT) we first consider the case k = 3,
ie. I'; = I. We recall that I" = {£1, i, +j,+k} with the relations
i2 =j2=k?=-1,ij =k, jk =i, ki = j. We shall define
A e UXBT), B € U%BT), D € U*(BT) as Euler classes of complex
vector bundles over BI” corresponding to unitary irreducible represen-
tations of I'. Let A, be the graded U*(pt)-algebra U*(pt)[[X, Y, Z]]
with dimX = dimY = 2, dimZ = 4, Q, = U*(p?)[[Z]] € A« and
U*(pt)[[D]] = {P(D), P € Q.}. Then by using the Atiyah-Hirzebruch
spectral sequence we obtain the following results where 7T(Z) € Qy4,
J(Z) € Qg are well defined formal power series.

THEOREM 2.18. (a) As graded U*(pt)-algebras we have:
U*(pt)[[D]] ~ Q./(T(Z)).
(b) As graded U*(pt)[[D]}-modules we have: U*(BI') ~ U*(pt)[[D]]

oU*(pt)[[D]]- A® U*(pt)[[D]]- B and A, B have the same annihilator
(2+J(D)) - U*(p))I[D]}.

THEOREM 2.17. The graded U*(pt)-algebra U*(BT') is isomorphic to
A./L. where I, is a graded ideal generated by six homogeneous formal
power series.

The method used for I is extended to I'y, £ > 4. As before we
shall define B, € U%(BTk), C, € U*(BT}), D, € U4BI}) as Eu-
ler classes of complex vector bundles over BT, corresponding to uni-
tary irreducible representations of I', and elements G'(Z) € Q,
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Ti(Z) € Q4. If B, = By + G (D), C, = Cy + G\(Dy) then we
get:

THEOREM 3.14. (a) U*(pt)[[Dy]] =~ Q. /(T}) as graded U*(pt)-alge-
bras.
(b) As graded U*(pt)[[D]}-modules we have:

U*(BTy) = U*(p0)[[Di ]l © U*(pOI[Di]]- B © U™ (pO)[[Di1]- Cy,
and By, C; have the same annihilator (2 + J(Dy)) - U*(pt)[[Di]].
THEOREM 3.12. The graded U*(pt)-algebra U*(BT'}) is isomorphic

to A./I, where I, is a graded ideal of A, generated by six homogeneous
formal power series.

In the appendix, part A, we give a new method of calculating
U*(BZ,,). Let A/, be the graded algebra U*(p?)[[Z]], dim Z = 2.

THEOREM A.l. U*(BZ,,) ~ A /([m)(Z)) as graded U*(pt)-algebras.
In part B we show that:

THEOREM B.2.
U%+2(BSU(n)) ~ U¥*2(BU(n))/e(A"y(n)) - U¥(BU(n))

and U+ (BSU(n)) =0, i € Z.
In this theorem e(A"y(n)) is the Euler class of A"y(n) where y(n)
denotes the universal bundle over BU (n).

In part C we calculate H*(BT'), k > 4.

THEOREM C. If k > 4 then we have H*(BT'}) = Z[xy, Yk, zx] with
dim x; = dimy, = 2, dim z; = 4, subject to the relations:

20 =2 =X =252, =0, xf=yi=2"z.

Theorem C is certainly known to workers in the field.
The layout is as follows:

I Preliminaries and notations.

IT Calculation of U*(BI').
III Calculation of U*(BTI}), k > 4.
IV Appendix.
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In the course of the computations we have determined the leading
coefficients of some formal power series with the purpose of using
them in a subsequent paper where the bordism groups U, (BT}) are
calculated.

We shall use the same notation for unitary irreducible representa-
tions of I'; and corresponding complex vector bundles over BI';. The
notation y(n) will be used for the universal complex vector bundle
over BU(n). The notation Z will be for the ring of integers and C for
the complex number field.

The results of this paper have been obtained in 1983 under the
supervision of Dr. L. Hodgkin, University of London. I thank him
sincerely for having proposed the subject, for his advice and encour-
agement. I would like to express my deep thanks to the referee who
made many useful suggestions; they helped to improve the exposition
of this paper and the statement of some results, particularly Theorems
2.18 and 3.14.

I. Preliminaries and notations. 1. Let X be a CW-complex; we de-
fine a filtration on U”(X) by the subgroups

JP4 =Ker(i*: UM(X) — U"(Xp-1)),

X, being the p-skeleton of X, i: X,_; C X, p+qg =n; U'(X) isa
topological group, the subgroups J#:¢ being a fundamental system of
neighbourhoods of 0; we denote this topology by 7. If the U*-Atiyah-
Hirzebruch spectral sequence (denoted by U*-AHSS) for X collapses
then T is complete and Hausdorff (see [3]). The edge homomorphism
u: U(X)— H"(X) is defined by u = 0if n < O0and if n > 0 it is
the projection U”(X) = JO" = Jn0 — gn0/jn+l—l = gr0  gr0 =
H"(X). By easy arguments involving spectral sequences we have the
following basic result:

THEOREM 1.1. Let X be a CW-complex such that:

(a) The U*-AHSS for X collapses.

(b) For each n > 0 there are elements a;, generating the Z-module
H"(X).

Then for each n > 0 there are elements A;, € U"(X) such that:

(a) U(Ain) = ain-

(b) If E denotes the U*(pt)-submodule of U*(X) generated by the
system (A;,) and if E, is the n-component of E then E, = U"(X), E,
being the closure of E,, for T.
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Moreover (b) is valid of we take any system (A4},), A}, € U"(X) such
that u(A4;,) = a, for each (i, n). 0

(See Theorem 2.5 for a proof of this result in a special case.)

2. Let X be a skeleton-finite CW-complex, which is the case we
are interested in. There is a ring spectra map f: MU — H (see [1]);
by naturality of AHSS the map f*(X): U*(X) — H*(X) induced by
f is identical to the edge-homomorphism described above. Let & be
a complex vector bundle over X of dimension n; the Conner-Floyd
characteristic classes of £ will be denoted by cf;(£); the Euler class
e(&) of & for MU is cfy(¢) and the Euler class e,(¢) for H is the
Chern class c,(¢). As f#(X) maps Euler classes on Euler classes we

have u(e(C)) = e (¢) (see [7]).

3. Consider the formal power series ring E, = U*(pt)[[c1, 2, --.,¢]]
graded by taking dim¢; = n; > 0,...,dim¢, = n, > 0. Given
P(cy,...,cr) € E, with P #£ 0,

Uu r _—
P=Zau-cl‘---c;‘, u=(Ug,...,U),

we define v(P) = {inf(nyu; + --- + n,u,),a, # 0} and v(0) = +oo.
Let J, be {P € E,|lv(P) > p}; we have E, = Jy D J; D ---, and
since (o Jp =0, Ex = Lj_m E,/Jp,, it follows that E, is complete and
Hausdorff for the topology defined by the filtration (J,).

Suppose that B is a CW complex such that the associated U*-
AHSS collapses; if 4; € U™(B), i = 1,2,...,r, then there is a unique
continuous homomorphism y: E, — U*(B) such that y(c;) = 4;,
i=12,...,r.

Now in a different situation consider the case where B; is a CW-
complex such that U*(B;) = E,.. There are two topologies on U*(B;)
defined respectively by the filtration (J,) on E, and by the filtration
(JP*7) deduced from the U*-AHSS for B;. If B is a CW-complex such
that the U*-AHSS for B collapses, (J79) the corresponding filtration
on U*(B) (see §I) and g a continuous map: B — B; then from J, C
JPe, g*(JP%) c JP4 it follows that g*: E, — U"(B) is continuous
for the topologies defined by v on E, and (J?9) on U*(B). As a
consequence if (Py,) is a sequence of polynomials such that (P,,) — P
in E, and if g*(c;) = A4; then P, (4,,...,4,) — g*(P) in U*(B); so if
P =3 ayc{" ---c" € E, we can write g*(P) = }_a, A" --- A},

In the sequel we shall also be concerned with A, = U*(pt)[[X, Y, Z]],
dimX = dimY = 2, dimZ = 4; A, has the topology defined by v.
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The following assertions are clear:

(a) In Ay, (Rp) — 0 iff v(R)) — 0.

(b) If P(X,Y,Z) € Apmion, Q(X,Y,Z) € Ay, and (R)) a sequence
in Aj,,, such that R, — R and v(P — R,Q) — oo then RQ = P.

(c) If ¥(R,) — oo then the sequence (M),) defined by M, = Ry +
++++ R, converges to a unique limit denoted by 3_ -, R,.

In Sections IT and III we shall define three elements 4, € U%(BT}),
B, € U?(BT}), D, € U*(BTI'}); as the U*-AHSS for BT collapses
there is a unique continuous homomorphism ¢ of graded U*(pt)-
algebras: A, — U*(BI'y) such that ¢(X) = A4, ¢(Y) = By, 9(Z) =
D,.

The next well known result will be useful:

ProrosITION 1.2. Suppose X a CW-complex such that H*(X) =
Z[a]. Then there is an element A € U*(X) such that u(A) = a and
U*(X) = H*(X)®U*(pt) = U*(pt)[[A]]. Moreover for any A' € U*(X)
such that u(A') = a we have U*(X) = U*(pt)[[4']]. O

I1. Computation of U*(BI'). We recall that the quaternion group I'
consists of {1,+i,+j,+k} subject to the relations ij = k, jk = i,
ki = j, i* = k? = —1. The irreducible unitary representations of I are
li—-1L,j-L¢&:i—-1,j—--1L¢:i—-—-1,j—-1&:i— -1,
J==Lni—( _Ol_), j— (? —01 ); the character table of T is:

(Conjugacy classes)

1| =1 +i | +j |k

1111 |1]1
Sl 1|1 |=1]=1
Elil1 =11 |-
Gl1l 1 |=1|-1]1
nl2/-210]0]0

We have the following relations in the representation ring R(I):

G=8=¢=1, &&=&, &-&=¢& &&=¢,
n-&=n-&=n n=1+&+&+&  (see[6), [2]).
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We have HO(BT) = Z, H*(BT) = Zg, n > 1, H*+2(B") = 7, & 1,,
n >0, H¥"*1(BT') = 0. Moreover if d is a generator of H*(BI') and
if a, b are generators of H2(BT) then d” is a generator of H*"(BI),
n > 1, and ad”, bd" are generators of H**+2(BT"), n > 0 (see [5]).
Since H™(BT') = 0, m odd we have:

PROPOSITION 2.1. The U*-AHSS for BT collapses. O

There are four important complex vector-bundles &;,&;, & ET xr
C — BT and 5: ET xp C? — BT where the actions of I' on C and
C? are induced by the representations &;, & i» & and . We have a
canonical inclusion ¢: Z, C T obtained by identifying {1, %} with Z5;
let p be the unitary representation of Z, given by p(1) = 1, p(i?) = —1;
the restriction map: R(I') — R(Z;) sends ¢&;, &, & to 1 and 7 to 2p;
$O:

PrROPOSITION 2.2. (Bq)*(&,),h = i, j, k, are trivial and (Bq)*(n) =
2p. 0

1. Chern Classes of &;, £;, n. The canonical isomorphism
Hom(T", U(1)) — H?*(T)

is given by d — ¢;(g(d)) where g denotes the canonical map: R(I') —
KO9(BT) and ¢, the first Chern class (Sec. [2]). Since Hom(I, U(1)) =
{l’éhéjsék} and HZ(BF) = ZZ ) ZZ we have:

PROPOSITION 2.3. H%(BT) is generated by {c,(&;), c1(&))}. ]

Now we consider the topological group Sp(1) of quaternions of ab-
solute value 1; Sp(1) is homeomorphic to S and H*(BS?) = Z[u],
dim u = 4, u being the first symplectic Pontrjagin class of the univer-
sal Sp(1)-vector bundle 0. If we consider 6 as a U(2)-vector bundle,
then u = ¢,(6) (see [12], page 179). Let p: I’ c Sp(1) = S3 be the
natural inclusion; then it is easily seen that (Bp)*(6) = n, 6 being
regarded as a U(2)-vector bundle.

PROPOSITION 2.4. We have c,(n) = 0 and H*(BY) is generated by
().

Proof. Since detn = 1 we have c¢;(n) = 0. From the transgression
exact sequence of the fibration: S3/I" — BT 5 BS3 we get the exact
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sequence: H*(BS?) (Ba)" H4(BT) — H*(S3/T) = 0 and the result
follows (see [11], page 519). O

From 2.3, 2.4 we may take the Euler classes e¢;(n) = d as a generator
of H4(BT) and {a = e,(&;),b = e;(&;)} as a system of generators of
H?(BT'). Moreover e;(n-n) = e;(n)" = d" and {e;(&; + n - n) = ad™,
ei1(&j+n-n) = bd"} are generators of H**(BI'),n > 1 and H*"+2(BI),
n > 0, respectively.

2. Computation of U*(BI'). Let A, B, D be the Euler classes for
MU of &, &, n: e(&i) = A € UX(BT), e(¢)) = B € U(BY), e(n) =
D € U4BI). We recall that A, = U*(pt)[[X, Y, Z]] is graded by
taking dim X = dimY = 2, dim Z = 4; there is a unique continuous
homomorphism ¢: A, — U*(BTI') of graded U*(p¢)-algebras such that
9(X) =4, p(Y) =B, ¢(Z) = D. In particular if P(Z) = ag+ a1 Z +
vt a;Z 4 --- € Ay, then ¢(P) = P(D) = Lim,,_,oo (g + - - - + a, - D)
in U2*(BY). If U*(pt)[[D]] = {R(D), R(Z) € Q.}, then U*(p)[[D]] is
a sub-U*(pt)-algebra of U*(BI).

THEOREM 2.5. U*(BY) is concentrated in even dimensions and as a
U*(pt)[[D]]-module U*(BT') is generated by 1, A, B.

Proof. We have U%"*+1(BT) = 0 because J?9 = Jr+La=l if p 4 g =
2n + 1 and then U?"*}(BT) = Jo2+l =, JP4 = 0 (see
Section I).

Suppose 2n = dm + 2 > 0. If x € U¥"+2(BIN) = JO4m+2 = j4m+2,0
then u(x) = amad™+ Bmbd™ = u(amAD™ + B,,BD™), a,, € U%(pt) =
Z, B € U%pt) = Z. It follows that u(x — (amAD™ + B,,BD™)) =0
and x; = x—(amAD™+ B,,BD™) € J4m+3—1 = Jém+4=2 ] et s, be the
quotient map: Jam+4-2 _, J4m+4,—2/J4m+5,—3 — H4m+4(Br’ U_z(pt))
= U~%(pt)@H*"*4(BT'). Then s51(X1) = Ym+1®d™ ), i1 € U(p1).
From the following commutative diagram where y is induced by the
U*(pt)-module-structure:

U=2(pt) ® U%m+4 (BT) = U~2(pt) @ J4m+40 % jim+4-2
B l lS|
U-Z(pl) ® H4m+4(Br) - H‘*’”*“(BI“, U_Z(pt))

it follows that sl(xl) =9 (}’m+le+l) and then 51 (-xl _ym+1Dm+l) — O;
SO (X1 = PYmy1) DML € JHmH373 = JAmtD+2-4 We have x; = x; —
Imet D" = X (4 @D + B fuD" + 1y D) € JHH24,
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By using again the products y we see that after a finite number of
steps there are three polynomials in Z:

Py(Z)=anZ™ + i1 ZM 4t am+q—-lzm+q_l,
0i(Z) = BmZ™ + Bt 2™ + - + Brugq1 2™,
Ry(2) = ym+lzm+l 4 4 Ymeg 2™, with
degPyj=m+(q—1), degQ,=m+(q-1),
degR; = m+q such that
(1) x — (A- P4(D)+ BQ4(D) + Ry(D)) € JAm+q)+2,-4q
Furthermore
Pi1(Z) = Py(Z) + amsgZ™H,
Qy+1(Z) = Qu(Z) + Bm+gZ™ "4,
Ry1(Z) = Ry(Z) + Ymygr1 Z™HIHL

If -
P(Z)=) a;Z' € Aym
i=m
m .
QZ) =Y BiZ' € Agm
i=m
w .
R(Z) = Z 2Z' € Ay
i=m+1
then by using (1) and Section I we have x = AP(D) + BQ(D) + R(D).
The cases 2n = 4m + 2 < 0 and 2n = 4m are similar. O

The next two propositions will be used later on.

PRroOPOSITION 2.6. If
H(Z)=) aZ' €Ay,
i=0
is such that H(D) = 0, then oy = 0 and if a, is the leading coefficient,
we have ap € 8 - U*(pt).

Proof. Since D € U*(BT") we have

iaiDi =D (i aiDi“') e U*(BY);

i=1 i=1
then ap - 1 € U*(BI) N U*(pt) = {0} and ag -1 = 0. If i denotes
the inclusion {*x} C BI" we have i*(ap-1) = ap = 0. Then H(Z) =
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pZP + -+ amZ™+ -+, ap # 0, p > 1. From a,D9 € J4:21—4 C
Jap+42n—(4p+4) g > p 4 1, it follows that t; = a, | DP*?+---+a,D? €
Jap+4n—(4p+4) 0 > p 1 1. Since J4P+42n—(4r+4) i5 closed for the topol-
ogy T of U?"(BT’) we have

i a; D} € JHH4m—(Ap+4)  pap+12n-(4p+1)
i=p+1
Let s be the quotient map
J4p2n=4p _, yap2n=dp | yap+12n—(4p+1)
= H¥ (BT, U*"~*(pt)) = H*(BT) ® U**~* (pt)
=Z3@ U ¥ (pt) = U>~*(p1)/8 - U*"~* (p1).
Then:

0 =s(H(D)) = s(apD?) +s ( Z aiDi) = S(apD?) = ap, @ d¥;

i=p+1
since d” is a generator of H*”(BI") we have a, € 8U*"~4(pt). i

Let F be the formal group law and [2](Y) = F(Y,Y); if p is the
nontrivial unitary irreducible representation for Z, then we get (see

[9)):

ProrosITION 2.7. U*(BZ,) = U*(p)[[Y1l/([2)(Y)) and the image
of Y by the quotient map: U*(pt)[[Y]] — U*(BZ,) is the Euler class

e(p). o

We have adopted the following graduation in 2.7: if
FX,Y)=X+Y+anXY+ > a;X'Y/,

i>1,j>1
then |a;;| = 2(1-i—)), |X| =|Y| = 2;s0 F(X,Y) € A,. We shall often
make use of the coefficient a;;. We know that there is a unique formal
power series [—1](Y) € U*(pt)[[Y])(C A;) such that: F(Y,[-1](Y))
=0.

PROPOSITION 2.8. There is Py(Z) € Qy, Po(Z) = biZ + Y_;5 biZ!
such that c fi(n) = Py(D). The coefficients b;, i > 1, are determined by
the relation } ;- | bi(Y - [-1)(Y))' = Y+[~1]Y; in particular b; = —ay,.

Proof. We have seen that if 6 is the universal Sp(1)-bundle over
Sp(1) = BS3 considered as a U(2)-vector bundle then n = (Bp)*(0),
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p:T c Sp(1). As H*(BS3?) = Z[u], u = c,(0), we have U*(BS?) =
U*(pt)[[V]], V = e(0), the Euler class of 8 for MU. Hence there is
Py(Z) =35 biZ' € Q, such that Py(V) = cf1(); it follows that

cfi(n) = (Bp)*(cfi1(0)) = (Bp)* Z V' | = Z b;D' = Py(D).
i>1 i>1
The relation 3,5 b;(Y - [-1]Y)' = Y + [-1](Y) is proved in the Ap-
pendix part B and gives b; = —ay;. O

We recall that 4 = cfi(&;) € U?(BY), B = cfi(&;) € U*(BT), D =
cfr(n) € UA(BT); let C € U?(BT) be cfi(&).

PROPOSITION 2.9. (a) There are P(Z) € Q,, Q(Z) € Q4, P(Z) =
—4a1Z + ¥ sy iZ, Q(Z) = AZ + Y5, BiZT, By ¢ 2U*(p1), such
that cfi(n?) = P(D) = A+ B + C, cf,(n?) = Q(D) = AB + BC + CA.

(b) cf3(n?) = ABC =0,

(c) A*> = —AQ(D) + A’P(D), B® = —BQ(D) + B*P(D).

Proof. (a) Let g: BT — BU(2) be a map classifying 7; then 5? is
classified by the composite: BT % BT x BT ¥ BU(2) x BU(2) &
BU(4), where m is a map classifying y(2) ® y(2) and A the diago-
nal map. We have U*(BU(2) x BU(2)) = U*(p?)l[lci, 2, ¢}, Sl ¢,
02, ¢}, ¢, being respectively the images of c¢fi(7(2)) ® 1, cf/2(y(2)) ®
1, 1 ®cfi(y(2)), 1 ® cfa(y(2)) by the canonical map: U*(BU(2)) ®
U*(BU(2)) XU *(BU(2)x BU(2)). Since the following diagram com-
mutes:

U*(BU(4)) ™ U*(BU(2) x BU(2)) ®X8" U*(BT x BI) & U*(BI)
x 1 T/ U
U*(BU(2)) ® B*(BU(2)) X U*(BT) ® U*(BT)

we must substitute c fi(n) for ¢y, ¢}, cfa(n) for ¢, ¢ in m*(cfi(y(4))),
m*(cf2(y(4))), m*(cf3(y(4))) in order to calculate cfi(n?), cfr(n?),
cf3(n?) (see Sec. I).

We have m*(cfiy(4)) = X auwci'cyrciV ey, u = (u,up), v =
(v1,v2), uy 2 0, up >0, vy >0, v, > 0. It is important to calculate
Q) When u; = up =0, or vy = v, = 0.

Suppose u; = u; = 0. We denote by 0 the pair (0,0). Then the
coefficients a(y,) are given by i* o m*(cfi(y(4))), i being the natural
inclusion: ,

{*} x BU(2) 5 BU(2) x BU(2).
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Since i* o m*(y(4)) = (2) + y(2) we have i* o m*(cfi(7(4))) = 2c].
Similarly a, ) = 2¢;. Hence

m (i) = 2(c1 + ) + Y Al e e
fluf|>1
lvli>1
where ||u|| = u; + uy, ||v|| = vi + V3.
We recall that cfi (1) = Py(D), Po(Z) € Qo, V'(Py) = 1, V' = Lv (see
Sec. I). Consider

P(Z)=2(P(Z)+ Py(Z)) + Z a(u,v)P641+U1(Z)Zu2+vz

flul]>1
llvli=1

=4bhZ + Za;Zi,
i>2
b, being the first coefficient # 0 of Py(Z) because u; +v; +uy+vy > 2
when |lu|| > 1, ||v|| > 1. Hence cfi(n*) = P(D). We remark that
P(Z) e Q,.
There are unique elements b, ,,) € U*(pt) such that m*(cf,(7(4))) =
Y bwicicyic¥ ey, Then the coefficients b, o) and b, are given

by cfa(y (2) + ?(2)) = cfZ(7(2)) + 2¢/2(¥(2)). Hence
m(ch(y@) =cl+cl+2ca+c)+ D, bl ™

a2 1, o) >1
Consider
QZ)=4Z +2P}(Z)+ Y. bunPit(Z)zwt
a2 1,21
=4Z + Z ﬂ,’Zi.
i>2

Then cf;(n?) = Q(D), Q(Z) € Q.

Let g be the inclusion Z, C T since (Bq)*(&,), h = i,j,k, are
trivial by 2.2 we have (Bq)*(A4) = (Bq)*(B) = (Bq)*(C) = 0 and since
Q(D) = cf2(n?) = AB+BC+CA we have (Bq)*(Q(D)) = 0. It follows
by 2.7 that (Bq)*(D) = d?, d being the image of Y by the quotient
map:

U (on)IlY]] = U (el Y 11/([21(Y ).
Thus:
aY 4+ B Y =[2](Y)- G(Y)
i>2
=QRY +anY?+a3Y3 4+ ) eV +6Y? +&Y3+---) and
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eg=2, 0=2;+a1& =2(e +a1); so

&1 =-ay, Pr=2e—a +2a;s;
since a?; ¢ 2U*(pt) (because U*(pt) = [X1,Xx2,...], aiy = —xy) it
follows that B, ¢ 2U*(pt). The relations P(D) = A+ B+ C, Q(D) =
AB+BC+C A are easy consequences of the relation 7% = 1+&;+&;+&.

(b) The above relation gives cf3(n2) = ABC; in order to show

that ABC = 0 we consider the Boardman map Bd: U*(BI') —
K*(BI'&Z[a,,ay,...] (see [8], page 358). This map is a ring-homomor-
phism which is injective because BI" has a periodic cohomology; fur-
thermore if 7 is a line complex vector bundle over BI" we have:

Bde(t)=(1-1D+(r-120a+(t-1>®a +--;
as (& —1)(& —1)(& — 1) =0 we get Bd(ABC) =0 and ABC = 0.
(c) We have Q(D) = A(B+C)+BC = A(P(D)—A)+BC;as ABC =

0 we obtain 43 = —AQ(D) + A*P(D); similarly B3 = —AQ(D) +
A*P(D). o

PROPOSITION 2.10. There is S(Z) = —anZ +3 ;5 Si- Z' e Q, such
that A2 = AS(D), B* = BS(D). Moreover:

AB = (4 + B)(P(D) - $(D)) - Q(D),
P(Z), Q(Z) being as in 2.9.

Proof . Consider the relation n&; = 5. If the vector bundle y(2)®y(1)
over BU(2)xBU(1) is classified by m;: BU(2)xBU(1) — BU(2) and
if g: B — BU(2), h: B — BU(1) are classifying maps for 5 and &;,
then n¢; is classified by:

BT A BT x BT %" BU(2) x BU(1) ™ BU(2).
We have the following commutative diagram:

U*(BU(2)) ™ U*(BU(2)) x BU(1) 8" y+(BT x BI) & U*(BI)
X T X T / cup-product
U*(BU(2)) ® U(BU(1)) & xh U*(BT") ® U*(BI).
Moreover U*(BU(2) x BU(1)) = U*(pt)l[c1, c2,ci]] where ¢y, ¢, ¢}
are the images respectively of cfiy(2)® 1, cL7(2)® 1, 1 ® cf;7(1) by
the canonical map: U*(BU(2)) x U*(BU(1)) X U*(BU(2) x BU(1)).
Then
mi(ch(r(2) =) eumciicyiel”s u= (w1, u).
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If i and j are the natural inclusions: BU(2) x {x} — BU(2) x BU(1)
and {*} x BU(1) — BU(2) x BU(1), then the coefficients ¢, ) and
e(,v) are given respectively by i* o m*(c2(7(2))) = c/2(y(2)) = ¢; and
Jrom*(cfa(7(2))) = cfo(y(1) + 7(1)) = ¢} . Hence

mi(chr(7(2) = 2 + > + Z el cyicl’
Jlul|>1
v>1
=y + |2+ ¢ Ni(c1, ¢3) + ¢} 2 Na(c1, ¢2)
+ -+ " Np(cr,02) + - .

To calculate ¢ f>(n-&;) we substitute cf;(n), cf2(n), cf1(&;), respectively
for ¢y, ¢z, ¢}. We recall that cfi(n) = Py(D), v'(Py) = 1 (v' = jv; see
Sec. I). We can substitute Py(Z) for ¢; and Z for ¢, in Ny (cy,¢3) to
obtain M,,(Z) € Q., v'(M,,) > 1, m > 1. We need to calculate the
leading coefficient of M;(Z). To this purpose consider 7' = BU(1) x
BU(1) and r: T — BU(2) a map classifying nj(y(1)) + #3(y(1)), 7,
7, being respectively the first and second projections 77 — BU(1);
we have U*(T x BU(1)) = U*(pt)lle1, fi,e1]] with (r x 1) *(¢;) =
e; + f1, (r x 1)*(c2) = eifi, (r x 1)*(c}) = ej; it is easily seen that
(rx 1)*(micf2(7(2))) = F(e1,e))F (fl,el) where F denotes the formal
group law. It follows that e 0)1) = 1, €(0,1),1) = 2a1; and M|(Z) =
anZ + Y5, 02!, v'(My) = 1.

Now from the relation 43 = —AQ(D) + A2P(D) we deduce that
A" = AQu(D) + A2P,(D), n > 3, with Qu(Z) € Qy,_2, Py(Z) €
Qon-4, Q3(Z) = —Q(Z), K(Z) = P(Z), Qu1(Z) = —Q(Z)Pn(2),
P, 1(Z)=P(Z)Py(Z)+Qu(Z). Then V' (P, ) > inf(v'(P,), V' (Py—1))
and v'(P,y1) > (n+1)/2; so:

Lim v'(P,) = Lim v'(Qy) = +oo0.

n—00 n—00
Consider
My(X,Z)=Z + X[l + My(Z) + P(Z)M3(Z) + - + Po(Z)My(Z)]
+ X[M(Z) + Q3(Z)M3(Z) + -+ - + On(Z)Mn(Z)] € As.

As

Lim v(P,M,) = Limv(Q,M,) = +00

n—oo n—0o0
it follows that Lim,_,,, M, (X, Z) exists (see Sec. I) and may be writ-
ten as: Z + X?[1 + H(Z)] + XH\(Z) with H(Z) € Q, V'(H) > 1.
We remark that the leading coefficient of H,(Z) is that of M,(Z);
so: H\(Z) = anZ + Y ;5,diZ" € Q. Thus: cfh(né) = D+
A1 + H(D)] + AH{(D) = cfs(n) = D and A4?*[1 + H(D)] =
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—AH (D). Let E(Z) € Qg be such that E(Z)(1 + H(Z)) = 1; hence
A% = AS(D) with S(Z) = —H\(Z)E(Z) = —a,Z + Yis2SiZ' € Q.
Similarly B? = BS(D). Now
AB=AB+BC+CA-C(A+B)

=Q(D) - [P(D) - (4+ B)]-(A+ B)

= Q(D)—-P(D)-(A+B)+2A4B + (A + B)S(D)

=2AB + Q(D) + (A + B)(S(D) — P(D)).
Then:

AB = (A + B)[P(D) — S(D)] - Q(D). O

LEMMA 2.11. There is T(Z) = 8Z + 2A,Z% + ¥ ;534 Z' € Qu, 12 ¢
2U*(pt) and T(D) = 0.

Proof. From n* = 1 + & + &; + & we get n3 = 41. Let g,: BT —
BU(4) and g: BT — BU(2) be classifying maps (respectively) for
n? and 7; then %3 is classified by: BT & BT x BT 3% BU(4) x
BU(2) % BU(8) m, being a map classifying y(4) ® y(2). Then we get
m3(cf2(7(8))) = X fruw)Cricy sy eV ey, with u = (uy, ua, us, ug),
v = (v, v;). The coefficients f, o) and f ) are given respectively by
cfr(y(4) +7(4)) = ¢ + 2¢; and cf>(4y(2)) = 6¢,2 + 4ch. Thus

m3(cfr(7(8))) = ¢ + 2¢; + 6¢;2 + 4ch

+ Z Suv)cl csregieyici ey,
[l >1
flvli>1

In order to calculate cf,(n3) we must substitute cfi(n?) = P(D),
ch(n?) = Q(D), cfs(n?) = 0, cfa(n?) = 0, cfi(n) = Po(D), cfa(n) =

respectively for ¢y, ¢, ¢3, ¢4, ¢}, ¢;. Consider
E(Z)=PXZ)+2Q(Z)+6P}(Z)+4Z
+ Y. funP(Z2)Q“(2Z)P)(Z)-Z",

fffl =1, l|v)| 21
u = (u1,u3,0,0), v = (v;,v5). Hence E(D) = cf(n?); but as the
leading coefficients of P(Z) and Q(Z) belong to 4U*(pt), E(Z) has
the form: 2Q(Z) + 6P3(Z) + 4Z + 41Z% + Y153 T:Z'. So: E(D) =
2Q(D) + 6P¢(D) + 4D + 41D% + Y531, D' = cfr(n?) = chr(4n) =
6¢f2(n) + 4cf>(n) = 6P3(D) + 4D. Hence if T(Z) = 2Q(Z) + 41Z% +
Y53 TiZ! € Q, then T(D) = 0. As Q(Z) = 4Z + X5, BiZ', P2 ¢
2U*(pt), we have: T(D) = 8Z + 24, Z% + ;53 4iZ', Ay ¢ 2U*(pt). O
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THEOREM 2.12. If M(Z) € Q. is such that M (D) =0, then M(Z) €
Q.T(Z).

Proof. We may suppose M(Z) € Q,,, n € Z. If M(Z) = wy +
> ;> @iZ', then by 2.6 we have w = 0 and the first coefficient w; # 0,
say wp,, is such that Py > 1, w,, € 8U*(pt). Thus M(Z) = 8w, ZP +
Yisp @iZ'. Consider M\(Z) = M(Z) — oy - ZP™! - T(Z) € Q.
We have v(M(Z)) > v(M(Z)) and M (D) = 0. Then M,(Z) =
80wh ZP + 3, p 0i-Z', Py > Py. We form

My(Z) = My(Z) - o Z" 7' T(Z)
and then v(M;) > v(M;), M>(D) = 0. After a finite number of steps
we get M, ((Z) = M(Z) — (0 ZP~! +-- -+ wlp ZF~1)T(Z) such that
P>P_y>-->P >P,v(M,)>v(M)> - >v(M)>vM)
and M, (D) = 0. Since Lim,_,,,v(M,) = oo it follows that M(Z) =
(Xkso @hp, - ZP71) - T(Z) (see Sec. I). O

LEMMA 2.13. Thereis J(Z) = i1 Z+Y 5, liZ' € Qo, 1 ¢ 2U*(pt),
such that A[2 + J(D)] = B[2+ J(D)] = 0.

Proof. We have [2(Y) = 2Y +ay Y2 + X534, As &2 is trivial
we have [2](4) = 0 and from 42 = AS(D) (S(Z) € Q,) we get A" =
AS" (D). Consider H,(X,Z) = X[2+ a1S(Z) + --- + a,S"Y(2Z)].
Since Lim,_, v (S") = oo it follows that Lim,,_,, H,(X, Z) exists and
has the form X[2 + J(Z)], with

J(Z)=anS(Z)+)_ anS" N Z)=-a},Z + > _ wZ'.
n>3 i>2
If 4y = —a?, wesee that u; ¢ 2U*(pt). Thus A4(2+J (D)) = [2](4) = 0.
Similarly B(2 + J(D)) = 0. 0

LEMMA 2.14. Suppose XM (Z) + YN(Z) + E(Z) € Q. is such that
AM(D) + BN(D) + E(D) = 0. Then the first coefficient # 0 of M(Z)
and the first coefficient # 0 of N(Z) belong to 2U*(pt).

Proof. We may suppose XM (Z) € Q,,, YN(Z) € Xy, E(Z) € Qy,,
n € Z. We shall give a proof in the case: 0 # M(Z) = a,Z? +
Ay 1 ZPT 4+ ay #£0,0# N(Z) = bgZ9 + by Z9" 4+ -+, by #£ 0
and p < g. We observe that if s > p then 4(a,D? + --- + a,;DP*S) €
J4p+2.2n=4p=2 and consequently AM (D) € J4+221=47=2 pecause the
subgroups J** are closed in U*(BT'). Similarly

A(ap+1D”+1 +--+aD +--)e€ J4p+6,2n—4p—6
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and consequently
A(ay  DP* 4 @D+ -) € JPH32n=4p=3,
There are similar remarks concerning BN(D). Since by hypothesis
p < g wehave 4p+2 < 4g+2 and J4+22n—4p=2 5 Jg+2.2n-44-2 We
shall denote by g the quotient map:
J4p+2,2n—4p—2 N J4p+2,2n—4p—2/J4p+3,2n—4p~3

= [U"(p1)/2U" (pt)] @ [U*(p2) /2U" (p1)],

with & = 2n — 4p — 2. Then g(AM(D)) = a,, a, being the image of
ap by the quotient map

U (pt) — Ut (p1) /20" (p1),

U"(pt)/2U"(pt) being the first summand.

(a) Suppose E(D) = 0.

(i) p = g. We have g(AM (D)) = @, and g(BM(D)) = b, respec-
tively in the first and second summand of the sum [U”(pt)/2U"(pt)]®
[U"(pt)/2U"(pt)]. Since AM(D)+BN(D) = 0 we have @, =0, b, =0
and thus a, € 2U*(pt), b, € 2U*(pt).

(ii) p<q. From J4r+2.2n—4p-2 ») J4p+3,2n—4p—3 ») J4q+2,2n—4q—-2 it
follows that g(BN(D)) = 0 and consequently @, = 0 which means
that a, € 2U*(pt).

(b) Suppose E(D) # 0.

Take E(Z) = do + 3>, d;Z'. As E(D) = —(AM (D) + BN(D)) €
U*(BT') we have dy = 0. Hence:

E(Z)=)_dZ', d#0, r>1.

i>r
If d, = 8e,,, we form
E\(Z)=E(Z)-e,2""'T(Z)
=Y diZ', r>r d,#0orv(E)>v(E).

i>r
If d!, = 8e,, we form Ey(Z) = E\(Z) — e,Z""'T(Z) and so on.
But after a finite number of steps we have E,(Z) = > ;5,4 Z' and
t, ¢ 8U*(pt) because, if not, we would have E(Z) € Q.T(Z) and
thus E(D) = 0 which contradicts the hypothesis (b): E(D) # 0 (see
the proof of 2.12). Hence there is a formal power series F(Z) € Q,,
such that F(D) = E(D) and F(Z) = Y_,5;>, LiZ', t; ¢ 8U*(pt). This
means that E(D) € J*-2=4" and E(D) ¢ J4h+1.2n=4h=1,
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()p=gq,4h<4p+2=4q+2.

Then: J4h2n—4h ~ jéh+12n—4h—1 - Jap+22n—-4p-2  Qipce ED) =
—(AM (D) + BN(D)) we have E(D) € J*+1.2n=41=1 which is impossi-
ble.

(i) p=q,4p+2=4q9+2 < 4h.

Then J4+2.2n—4p=2 = j4p+3.2n—4p-3 ~ j4h2n—4h 4p9q AM(D) +
BN(D) = —E(D) € J%+32n-4-3  Consequently @, = 0, b, = 0
and thus a, € 2U*(pt), by € 2U*(pt).

(i) p<q,4h <4p+2<4g+2.

Then J4h.2n—4h ») Jap+2.2n—4p=2 — Jaq+2.2n-49-2  From E(D) —
—(AM(D) + BN(D)) it follows that

E(D) € J4r+2m—4p=2  j4h+12n—4h=1 (. yih2h—4h)

which is impossible.
(iv)p<q,4p+2<4h<d4g+2o0rdp+2<4q+2<4h.
We have either

4p+2,2n—4p-2 4p+3,2n—4p-3 4h,2n—4h 4q+2,2n—4q-2
J >J oJ oJ

or
J4p+2,2n—4p—2 ») J4p+3,2n—4p—3 > J4q+2,2n—4q—2 S J4h,2n—4h

It follows in both cases that a, = 0 and a, € 2U*(pt). Hence
we have proved that if p < q we have a, € 2U*(pt) in both cases
ED)=0,ED)#0. SoM(Z)=apyZP+ay, ZP*' + -, a, = 2¢, # 0.
By 2.13 if K(X,Z) = X(2+ J(Z)) then K(4,D) = 0. We form
XM(Z) - e,ZPK(X,Z) = XM(Z), M\(Z) = e, ZP' + ---, p; > D,
and we get: AM,(D)+ BN (D) + E(D)=0. If p; < g we carry on the
same process and after a finite number of steps there is M,(Z) € Ay, _»
such that AM,(D)+ BN(D)+ E(D) =0 and g < p,, p, being such that
M(Z) = wp,ZP + @y ZPH + -, wp, # 0. Thus the argument used
is the case p < g (above) shows that b, € 2U*(p?). O

Let I, the graded ideal of A, generated by K(X,Z) = X(2+J(Z)) €
Ay K(Y,Z)=Y -2+ J(Z))e Ay and T(Z) € Q4 (see 2.13, 2.12).

LEMMA 2.15. Let M(Z), N(Z), E(Z) be elements of Q. such that
AM(D) + BN(D) + E(D) = 0. Then: XM(Z) + YN(Z) + E(Z) €
K(X,Z2)Q. + K(Y,Z)Q, + T(Z)Q. C I' and AM(D) = BN(D) =
E(D) = 0.

Proof. Suppose XM(Z) € Ay, YN(Z) € Ay, E(Z) € Ay, n € L.
We shall give a proof in the case M(Z) # 0, N(Z) # 0, the other cases
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being simpler. Take P(X,Y,Z)=XM(Z)+ YN(Z)+ E(Z), M(Z) =
Ap ZP + Ay ZP o ap # 0, N(Z) = bgZ% + bgy Z%H! + ..
by, # 0. By 2.14 we have ap, = 2a,,, by, = 2b;, and then: P(X,Y,Z)~-
(ap,ZPK(X,Z) + by Z*K(Y,Z)) = X[M(Z) — a, Z7(2 + J(Z2))] +
Y[N(Z) - by Z*(2+ J(Z))1 + E(Z) = XM\(Z) + YN(Z) + E(Z)
with v(M) < v(M,), v(N) < v(N;). Moreover we have AM,(D) +
BN(D)+E(D) = P(A,B,D) = 0. The same process can be carried out
for XM (Z)+Y Ny(Z)+ E(Z) and after a finite number of operations

we get My(Z), My(2),..., My (Z), N\(Z), Nx(Z), ..., Nr+1(Z),

P(X,Y,Z) - [(Za zpl) (X,Z) + (Zb’ zqr) K(Y,Z)}

=0
=XM,.1(Z)+ YN,,.1(Z) + E(Z)

with pg = V(M) < p; = V(M) < --- < ppy1 = V(Mpyy), Qo =
V'(N) < g =V'(N1) <+ < gpp1 = V'(Npy1). Take

(o] oo
H\(Z)=) a,ZP', Hy(Z)=) b,Z%

i=0 i=0
Since Lim,_, o,V (M,) = Lim,_V(N,) = +oo we have Lim,_,,c X M,(Z)
= Lim,- Y N,(Z) = 0 and there are H,(Z) € Q., Hy(Z) € Q. such
that: P(X,Y,Z) — [H|(Z)K(X,Z) + H,(Z)K(Y,Z)] = E(Z). Since
P(A4,B,D) = K(A,D) = K(B,D) = 0 we have: E(D) = 0 and then
by 2.12 there is H3(Z) € Q. such that E(Z) = H3(Z) - T(Z). Finally
we have P(X,Y,Z) = H{(Z)K(X,Z)+ Hy,(Z)K(Y,Z)+ H3(Z)T(Z) €
KX, Z2)Q+K(Y,Z)Q+T(Z)Q. CcI,and XM(Z) = H(Z)K(X, Z),
YN(Z) = Hy(Z)-K(Y,Z), E(Z) = H3(Z) - T(Z). Consequently:
AM(D) = BN(D) = E(D) =0. m]

Consider S(X,Z) = X?—XS(Z) € Ay, S(Y,Z) = Y2-YS(Z) € Ay,
RX,Y,Z)=XY - (X+Y)P(Z)-S(Z2))+Q(Z) € Ay. By 2.10 we
have: S(A4,D) = S(B,D) = R(A4,B,D) = 0. Let I/ be the grade ideal
of A, generated by S(X,Z), S(Y,Z), R(X,Y,Z).

LEMMA 2.16. For any P(X,Y,Z) € A. there are M(Z), N(Z),
E(Z), elements of Q. such that P(X,Y,Z) — [XM(Z) + YN(Z) +
E(Z) eI

Proof. From X*—XS(Z) = S(X, Z) we see that there is M, (X, Z) €
A, such that X"~ XS"1(Z)=S(X, Z)My(X, Z), n > 2, with M>(X, Z)
=1land M, (X,Z) =S""Y(Z)+XM,(X,Z), n > 2. It is easily seen
that Lim, v (S”) = Lim,_,oc¥(M,) = +o0o. If P(X,Y,Z) € Ay, We
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can write P(X,Y,Z) = Y22, X'P,(Y, Z) with dim P; = 2(m — i). We
have X'Pi(Y,Z) = XS'""YZ)P(Y,Z) + S(X, Z)Mi(X, Z)P(Y, Z), i >
2. From Section I and the fact that the multiplication by an element
of A, is continuous we see that there are H(Y,Z), H(X,Y, Z) such
that: P(X,Y,Z)=XH(Y,Z)+S(X,Z)H\(X,Y,Z) + Py(Y,Z). Simi-
larly there are Fo(Z), F\(Z), F>(Y,Z) such that H(Y,Z) = YF|(Z) +
S(Y,Z)F,(Y,Z) + Fo(Z) and Go(Z), G1(Z), G,(Y,Z) such that
P(Y,Z) =YG(Z)+ S(Y,Z)Gy(Y,Z) + Go(Z). Then a straightfor-
ward calculation shows that with M(Z) = Fy(Z) + Fi(Z) - (P(Z) —
S(Z)), N(Z) = G\(2) + F\(Z) - (P(Z) — §(Z)), E(Z) = Go(Z) —
QZ) Fi(Z)weget P(X,Y,Z)-[XM(Z)+YN(Z)+ E(Z))elI!. O
Let I, be I, + I!'.

THEOREM 2.17. The graded U*(pt)-algebra U*(BT') is isomorphic to
A./I. where I, is a graded ideal generated by six homogeneous formal
power series.

Proof. Consider the map ¢ : A, — U*(BT) of graded U*(p¢)-algebras
such that ¢(X) = 4, ¢(Y) = B, ¢(Z) = D. By Theorem 2.5 ¢ is sur-
jective and by Lemmas 2.15, 2.16 ¢ is injective. O

REMARKS. (1) Consider the involution #: A, — A, suchthat A(Y) =
X, h(X) =Y, H(Z) = Z. We have h(l,) = I, and thus there is an
isomorphism 4 of graded U*(pt)-algebras: U*(BI') — U*(BT) such
%(A) = B, h(B) = A, h(D) = D. Consequently %~ = Id.

(2)If g: Z, c T denotes the canonical inclusion, then (Bq)*: U*(BT)
— U*(B1,) is neither injective nor surjective.

An important and easy consequences of Theorem 2.12 and Lemma
2.15 is the following theorem which gives the structure of U*(pt)[[D]]-
module of U*(BT).

THEOREM 2.18. (a) 4s graded U*(pt)-algebras we have:
U*(p)[[D]] = Q./(T(Z)).

(b) As graded U*(pt)[[D]]-modules we have. U*(BTI') ~ U*(pt)[[D]]
oU*(pt)[[D]14 ® U*(p?)[[D]]. B and: A and B have the same annihi-
lator

2+ J(D)U*(p)I[D]]- o

I11. Computation of U*(BI'}), k > 4. The group I';, k > 4, is gener-
ated by u, v, subject to the following relations u! = v2, uvu = v,
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t = 2k- 2 Tkl = 2k, We have HO(BI"k) Z, H4p(BFk) = Zx,
p>0, Ho+2 = Z,®1,,p >0, H?»*(BT}) = 0, p > 0. Furthermore
if d, {a1,b;} are generators of respectively H*(BT'y) and H?(BT}),
then d?, {a\d?,b,d?} are generators of respectively H* (BI';) and
H*+2(BT}),p > 0 (see [5]). The irreducible unitary representations
ofTyarel:u—-1lL,v—-1¢&:u—-1L,v—->-1,&u—-1,v—1,

&GGiu—--—-1,v—- -1,
(@ 0 (0 (=D _ k=2 _
Ne:u (0 w")’ (1 0 ), r=1,2,...,2 1

and w a primitive 2~ !th root of unity (see [6]).

The relations between the irreducible unitary representations of I';
are as follows: &2 =& =¢2 =1,¢& - & =83, 68 =6, &8 =
&, if we introduce 5y = 1 + &, nyu-2 = & + &;, then we can define
Ns,8 € Z, by the relations #y-2,, = Npx-2_,,, = N, and we have:
NrNs = Nras + Nr—s, ¥ € Z, s € Z (see [10]). As in Section II we shall
be working with 4, = cfi(&) € U*(BTy), By = cfi(&) € U?(BTy),
Cy = cfi(&) € UX(BT}), Dy = cfo(m1) € U*(BT). We have as in 2.5
with U*(p0)[[Di]] = {R(Dy), R € Q. }:

THEOREM 3.1. U*(BI'},) is concentrated in even dimensions and as
a module over U*(pt)[[Dy]], U*(BT}) is generated by 1, By, C,. O

The following proposition is proved in the same way as 2.8 and 2.6,
Py(Z) being the formal power series of 2.8:

PROPOSITION 3.2. (a) We have c fi(n1) = Po(Dy).
) IFH(Z) =50 a;Z' € Qy, is such that H(Dy) = 0, then ag =0
and the leading coefficient of H(Z) belongs to 2KU*(pt). O

LEMMA 3.3. For each n € Z there is a polynomial P, ,(X) € Z[X]
such that Pyp11(0) = 0, Prp11(2) = 2, Pans1(m1) = N2nt1-

Proof. Since n—, = n,, we may suppose n > 0. Then the as-
sertion is evidently true if » = 0 with P;(X) = X. Suppose that
there are polynomials P;;(X) € Z[X], 0 < i < n — 1, such that
Pyiv1(M) = Mair1, Pais1(0) = 0 and Py;y1(2) = 2. Then #? P,y (1) =
N Nan—1 = (M+NM0)M2n-1 = N2ns1+2M2n—1+M2n—3. Henceif Py, (X) =
(X2 =2)Pyp_1(X) — Pyy_3(X) we have Py, 1(X) € Z[X], P3p11(0) =0,
Prni1(2) = 2 and Prpy1(M1) = Man+1- ul
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In the sequel we shall consider the sequence P,,;, n > 0, deter-

mined by P;(X) = X, P;(X) = X3 — 3X and the relation
(X% = 2)Pyp_1(X) = Pop_3(X) = Prpiy(X).

If P(X) € Z[X] we shall denote by P’ the derivatives of P.

ProrosiTiON 3.4. If { is a complex vector bundle over BT';, such that
¢ = P(n) where P € Z[X], P(0) = O, then there is a formal power series
P(2)Z + 3215, 0iZ" € Qq such that c () = P'(2)Dy + -5, 6:D.

Proof. For each ¢ > 1 the complex bundle n? is classified by the

composite: T, & (BT, )7 £ (BU(2))? ™8 BU(29) where A is the di-
agonal map, g a map classifying 7, and m, a map cla551fy1ng ®q (2).

We have U*(BU(2)7) = U*(p0)llc}”, &, i), 57, ..., c}?, 1] where
c,((’), k =1or k =2, is the image of a; ® a,--- ® aq, a1 = a; =
=aiy=La=cfi(y(2) (k=1ork =2), 841 = =a4 =

1, by the canonical product XRIU*(BU(2 )) — U*(BU(2‘1)). Then
my(cfrr(29) = Cau(ei )4 - ()4 ()" - (¢7)". If we sub-
stitute Z for c2’ and Py(Z ) for cg’), i=1,2,...,q9, we have a formal

power series R,(Z) € Qg4 such that R,(Dy) = cfo(n]). If {p;} denotes
the base point of BU(2) and k; the inclusion:

{p1} x{p2} x -+ x{pi=1} x BU2) x {piy1} x - x {pg} C (BU(2))4,

we see that kf o m}(cf2(y(29)) = cf(29719(2)) = 2971 fo(y(2)) +
20722471 — 1)c f2(v(2)). Consequently Ry(Z) = q297'Z+ Y, e, Z".
Similarly there are formal powers series H;(Z) € Q,, Hy(Z) € Qy;, 5 >
3, such that Hy(Dy) = cfi(n?) and Hy(Dy) = cfs(n?), s > 3; we have
v'(Hy) > 1, V/(Hs) > 2,5 > 3. (We recall that v'(P(Z)) = tvP(Z).) It
follows that if { = Y}, m,n{, m; > 0, there is a formal power series
H(Z) € Q4 such that H(Dy) = cf,({) and H(Z) = (X}, im;21)Z +
> >, €iZ!. Now suppose that { is a complex vector bundle such that
(=Y mmi —,_ nini, m; >0, n; > 0. The above remarks show

that
cf(Q)=1+cfi(0) +cfa(l) +
= [1 + M (Dy) + ¢ /(1) + Ma(Dy)]
X [1+ M (Dy) + cf2(2) + M5 (D)™
with {, =3 mint, { =Y ninl, My, M, M}, M, being elements
of Q, such that v'(M,) > I, V/(M]) > 1, V(M) > 2, V'(M;) >
2. It follows that ¢ f,({) = M(Dy), with M(Z) € Q4 and M(Z) =
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Ef=1(imi2i“ —in2™NZ + 35, 6;Z". Then if P(X) = 3°]_, miXi -
i niX' € Z[X] we see that M(Z) = P'(2Q)Z + 3_;5,6;Z", P'(X)
being the derivative of P(X). m]

LEMMA 3.5. There is a formal power series
Q1(Z)=(1+22n(n+1))Z+)> BiZ' € Q4
i>2

such that Qi(Dy) = cfr(12n+1)-

Proof. Since Mapy1 = Pany1(m) with Poyyy € Z[X], Pryny1(0) = 0,
then by 3.4 it is enough to prove that Py, (2) = 1 + 2?n(n + 1).
This assertion is true when n = 0 because P;(X) = X. Suppose that
P (2)= 1422i(i+1),0< i < n—1. Wehave Py, | = (X?=2)Py,_|—
P,,_3 and then P;, ,(2) = 22Pyy1(2) + 2P}, (2) = P}, 5(2) = 23 4
2[1+22(n—1)n]-[1422(n-2)(n—1)] = 1+22n(n+1) (Py,—1(2) =2
by 3.3). Hence the lemma has been proved. O

In Lemma 3.5 the coefficients f; depend on n; however we have
chosen not to complicate the notation.

ProrosITION 3.6. There is a formal power series
T (Z) = 2KZ + 2%22,72 4 2k=3), 73
+o 2 ZET 1Y NZT ey,
i>k
with A, & 2U*(pt), such that T (Dy) = 0. Moreover if R(Z) € Q. and
R(D,) =0 then R(Z) € T, (Z)Q..

Proof. From 3.5 there is a formal power series
Q1(Z)=[1+222*3-2)2* -1z + Z BiZ' € Q4
i>2
such that Q;(Dy) = cfo(fye-2_3). We have 1+22(2k-3-2)(2k-3-1) =
9 4 22k—4 _3.2k-1 Now
M Mae-a—y = (M2 + M) M2y
= Nok-241 + Mop-2-3 + 2Mok-2-1 = M2 + Noe-2-3

and consequently if P(X) = (X?—3)Py-._,, we have P € Z[X], P(0) =

0 and P(n;) = np-2_3. Then from 3.4 there is a formal power series
Q2(Z) = P'(2)+) 5, BI Z" € Qq such that O (Dy) = ¢ fr(12x-2-3). We
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have P'(2) = 22Py—_1(2) + Py, (2) = 23 + 1 +22(2k-3 — 1)2k3 =
9 4 2%—4 _ 2k=1 Hence
0= Q2(Dy) — Q1(Dy)
=[9 4+ 2% —2k=1 (94 2%4 _ 3.2k ),
+> (B! - B)D;
i>2
= 2ka + Z,u:-D,’;, wo=pr—p.
i>2
Then if Tj(Z) = 2Z + 3,5, #}Z' € Q4 then we have 0 = Ty (Dy). By
3.2 and a proof similar to that of 2.12, Section II, if R(Z) € Q. is such
that R(D;) = 0 then R(Z) € T} (Z)Q.. Now we want to show that
py = 257220, 2 ¢ 2U*(pt), wy = 2kf3l’3, oo M_y = 2%_,. Instead of
T3(Z) we take the formal power series 7(Z) defined in Section II (see
2.11). We recall that T(Z) = 22Z + 22, Z% + Y53 A, Z1, A2 ¢ 2U* (p1).
Hence if k = 3 the assertion concerning the coefficients of 7 (Z) is
true. Suppose that

T (Z) = 2%Z + 252,722 4 2k-3), 73
o 20 ZRN YT NZE, My ¢ 20 ().
i>k
Consider the inclusion
ke T ={@®)™", n=0,1, 0<m <21~ 1} c Ty,
={u™", n=0,1, 0<m <2 -1}.

It is easily seen that (Bix,1)"(Dxy1) = Dy. We haver T, ((Z) =
2K Z 435, w!Z  and Ty (Dy,y) = 0. It follows that T, (Dy) = 0

and consequently there is an element o)+ o Z + a4 Z% +- -+ € Qg such
that:

2HZ > z!
i>2
= (2kz + 2887 20 ZF T 4 Zz;zf) (Z a',.zi) .
i>k i>0

Then af = 2; uy = 2Ka) + 257220l = 2K=1[2a) + 24] = 2K-14%, 24 ¢
2U*(pt); if 2 < i < k we have:
=2kl 42572 0l 4+ 253 Mal s 4 - 4 2K Akal = 2+ =i

!

Hence the proposition has been proved. a
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Suppose k > 4; the inclusions i;: I',_; € I'y and j;: ' c T, are
given respectively by {(u2)™v", 0 < m < 2k2 -1, n = 0,1} C
{uv", 0 < m <21 -1, n=20,1} and ji = ixo0---0iy Iy is
normal in I'y; and Ty, /Ty = {1,u} > Z,; if g;: I’y — I’y is the
conjugation by u € I'y,; — I'y then g (1?) = u?, gx(v) = v(u?)~L. Let
fi: BTy — BTy_y, g: BT — BTy, h;: BT, — BT} be respectively
Bik, Bjk and qu.

LEMMA 3.7. Suppose k > 4.

(@) fi(Ak) = Ax—1, [ (Bi) =0, ff(Cy) = A1, f (D) = Dy
(b) g;(Ar) = A, g;(Bx) =0, g;(Cy) = A4, g{(Dy) = D.

(©) hi(Ax) = Ak, hi(By) = Cy, hg(Cy) = By.

Proof. The proof is easy; for example f(Ax) = Ax_; because i :
R(Ty) — R(Tx_;) maps & to the similar representation: u? — 1,
v — —1. (R(T'x) and R(T'x_;) denote the representation rings). O

The role played by 4, B, C in Section II was symmetrical. Unfor-
tunately this is not the case for 4, By, C; (k > 4) as we shall see in
the forthcoming propositions. We recall that there are formal power
series S(Z) € Q,, J(Z) € Qq such that 42 = AS(D), B> = BS(D),
C? = CS(D), A2+ J(D)) = B2+ J(D)) = C(2+ J(D)) = 0 (see
2.10, 2.13).

The formal power series S(Z), J(Z) will play an important role in
the calculations ahead.

ProprosITION 3.8. Suppose k > 4.

(a) AkBka =0.

(b) Ax(2+ J(Dy)) =0.

(c) There are E; € Q,, F;, € Q4 such that Ay = By + Cy, — Ei(Dy),
B Cy = Fi(Dy).

Proof. (a) The relation 4, B, C;, = 0 is proved in exactly the same
way as in 2.9(b).

(b) By 3.1 there are Hy(Z) € Q,, H\(Z) € Q,, Hy(Z) € Q4 such
that: BZ, | = ByyyHo(Dis1)+Crs1(Dis1)+Ha(Disy). By 3.7(c) we get
C]%H = C41Ho(Dy 1)+ By 1 Hy (Dyyy) + Hy(Dy 4y ) and C]%H —B,%_H =
(Cky1 — Bry1)H3(Dyyy) with H3 = Hy — H; € Q,. By using 3.7(a)
we see that: A2 = A, - Hy(Dy); as in 2.13 the relation cfj(¢?) =
0 shows that there is J,(Z) € Qy depending on H3(Z) such that
A (2+ J1(Dy)) = 0 and by 3.7(b) we get A(2 + J1(D)) = 0; so there is
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Hy(Z) e Qy, v'(Hy) > 1suchthat 2+ Ji(Z) = 2+ J(Z))(1 + Hy(Z))
(see 2.15) and comsequently 2 + J(Z) = (2 + Ji(Z))Hs(Z),
Hs5(Z) € Q being such that: (1 + Hy(Z))(1 + Hs(Z)) = 1. Hence
A2+ J(Dy)) =0.

(c) By using the relations 7,1 = 9,45 +0r—s, r € Z, s € Z, g = 1+&4,
na-2 = &y +&;, then a straightforward calculation shows that there is a
polynomial R,,[X] € Z[ X] such that R,,(0) = 0 and #,» = R,,(n1)+ "o,
2 < m < k —2; in fact R,,(X) is determined by R,(X) = X* — 4X,
Rn(X)=R2,_|(X)+4Rp_1(X); 50: & +&3 = M2 = R (m) + 1m0 =
Ry _5(n1)+1+¢&;. Then the proof of 3.4 shows that there are E; (Z) €
Q,, Fi(Z) € Q4 such that: B, + C;, = cfi(Rx_2(m)) + Ar = Ex(Dy) +
Ay and By Cy = A Ep(Dy) + cf2(Ri—2(m)) = AxEx(Dy) + Fi(Dy). As
0 = AE, (D) + Fi.(D) by 3.7(b) we see that E;(Z) € (2+ J(Z))Q. and
consequently B, C, = F; (D) since A, (2 + J(Dy)) = 0. Hence (c) is
proved. O

ProPosITION 3.9. Suppose k > 4.

(a) There is M(Z) € Qj such that: By (2 + J(Dy)) + M(Dy) =
Ci(2+ J(Dy)) + M(Dy) =0 and M(Dy) # 0.

(b) There is N(Z) € Qu, such that: B} = B;.S(Dy) + N(Dy), C} =
Ci.S(Dy) + N(Dy) and N(Dy) # 0.

(c) There are Gi(Z) € Q,, Li(Z) € Q4 the coefficients of which can
be computed from those of J(Z), S(Z), Ex(Z), Fi.(Z) and satisfying
Gi(Dy) = M(Dy), Ly(Dy) = N(Dy).

Proof. (a) As in 3.1 there are Hy(Z) € Q,, Ko(Z) € Q,, K{(Z) € Q4
such that: BZ = B, H,(D;) + A, Ko(Dy) + K;(Dy); hence: AKy(D) =0
which imply by 2.15 that Ko(Z) € (2+J(Z))Qu; so: B = B H;(Dy)+
K, (Dy) because A4;(2 + J(D;)) = 0 by 3.8(b). We have B/?H =
B, H,(Dy) + K, (Dy) with Hy(Z) € Qj,, Ky(Z) € Q,47 satisfying:
Hy(Z) = Hi(Z)H,—(Z) + Ky—1(Z2),Kn(Z) = K\(Z)Hy—1(Z), n 2
2. It follows easily that Lim,_ v (H,) = Lim,_ v (K,) = +o0; as
¢/1(¢3) = 0 we have 2B, + 3,5, a,B} = 0 with a, = 3, ;_, a;j, the
a;j,i > 1,j > 1, being the coefficients of the formal group law. A proof
similar to that of 2.13 shows that there are P,(Z) € Qq, P»(Z) € Q,,
v'(Py) > 1, V/(Py) > 1 such that B, (2 + Pi(Dy)) + P,(Dy) = 0; by
3.7(a) we have C(2 + P;(Dy)) + P5(Dy) = 0; hence A(2+ P;(D))=0
and as a direct consequence of 2.15 there is P3(Z) € Qp such that
2+ J(Z) = (2+ P (Z))P3(Z) and then: By (2 + J(Dy)) + M(Dy) =
Ci(2+ J(Dy)) + M(Dy) = 0 with M(Z) = P,(Z). P3(Z) € Q,. Sup-
pose M(Dy) = 0; then By (2 + J(Dy)) = Ci(2 + J(Dy)) = 0; from
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3.8(c) we have A,2c = A (By + C;) — A Er(Dy) and consequently
AE; (D) = 0; so Ex(Z) € 2+ J(Z))Q. and A7 = (B + Cr)?. Let
6: MU — K being the canonical map between spectra; 6 sends Eu-
ler classes to Euler classes; the relation 42 = (B, + Ci)? becomes by
using 0: 1+ ¢, — & — & = 0 in KO(BT}) which is impossible since
1+¢,—¢,—¢3 # 0in R(T';) (the canonical map from R(Iy) to KO(BT)
is injective). Hence M (D, ) # 0.

(b) We have seen in (a) that B} = By H;(Dy) + K;(Dy); so: C} =
CiH(Dy) + K((Dy) and: 42 = AH\(D) + K{(D) = AS(D); then
A[H,(D) — S(D)] + K;(D) = 0 and there is Sy(Z) € Q, such that
H\(Z) = S(Z) + (2 + J(Z))So(Z); consequently: BZ = B;.S(Dy) —
M(Dy)So(Dy) + Ki(Dy) = B S(Dy) + N(Dy) with: N(Z) = K,(Z) —
M(Z)Sy(Z) € Qq4; by 3.7(c) C2 = CS(Dy) + N(Dy). If N(Dy) =0
then as in 2.13 we would have C(2+ J(Dy)) = 0 and then M(D;) =0
which is false by (a). Hence: N(Dy) # 0.

(c) We need to show first that 7;(Z) ¢ 2Q. (T3(Z) = T(Z) and
T, (Z) are defined respectively in 2.11 and 3.6). Suppose k = 3; from
AB+BC+ CA=Q(D)and A(2+ J(D)) =B(2+ J(D)) =0 (see 2.9
and 2.13) we get (2 + J(D)) Q(D) = 0; so:

Q+J(Z)NQZ) =R+ MmZ+mZ* +--)AZ + BrZ? + B3Z3 +---)
=8Z + (2B2 + 4w)Z? + (23 + 11 B2 + 4u2) Z°
+o e T(Z)Q

hence T(Z) ¢ 2. since u; B, ¢ 2U*(pt) (see 2.9 and 2.13). Sup-
pose that T;(Z) ¢ 2Q., 3 <i < k-1, and T} (Z) € 2Q,; as 4, =
B+ Ci—E;(Dy) (see 3.8(c)) we have E;(Dy_;) =0and then E;(Z) €
T 1(Z2)Qu; from T} (Z) € Ti_1(Z)Qu, T} (Z) € 2Q, and T},_(Z) ¢
2Q, it follows easily that 27;_;(Dy) = 0; consequently 2E; (D) =0
and 24, = 2(By + Ci) which is impossible (it can be seen by us-
ing §: MU — K as in (a)). Hence T;(Z) ¢ 2Q., k > 3. Let
q: Q. — Q./2Q, = (U*(pt)/2U*(pt))[[Z]] be the canonical projec-
tion and R(Z) the image of R(Z) by q. Now it follows easily from
3.8(c) and (a) that: 2M(Dy) + Ex(Dy)(2 + J(Dy)) = 0 and then
2M(Z) + Ex(Z2)2+ J(Z)) = T((Z) - H(Z), H(Z) € Q.. Hence
E(Z)-J(Z)=T(Z) -H(Z); as Ti(Z) # 0 the formal power series
H(Z) is unique and its coefficients which belong to U*(pt)/2U*(pt) =
Zy[x1,x1,...] (|xi| = —2i) are computable from those of E;, J and
Ty, if HZ) = 3.d;Z', d; # 0, then there is a unique element
e € I[x1,...,Xn,...] = U*(pt) whose coefficients as a polynomial
in xi,...,X%n,..., are odd and such that & = d;; it follows that
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EW(Z)2+J(2))-Ti(Z)- (X eZ') = =26 (Z) and Gy (Dy) = M(Dy).
The same method can be used to determine L, (Z) by considering the
relation 2N (D) = EZ(Dy) — Ex(Dy)S(Dy) — 2F (Dy) which is an easy
consequence of (b) and 3.8(c). m]

Let I’ be the graded ideal of A, generated by the homogeneous
formal power series G, (X, Z) = X(2+J(Z2))+Gi(Z) € Ay, G (Y, Z) =
Y2+ J(Z))+ Gp(Z) € Ay, TH(Z) € Ay (see 3.6 and 3.9) and I” the
graded ideal of A, generated by the homogeneous formal power series
Li(X,Z) = X>-XS(Z) - Li(Z) € Ay, L (Y,Z) = Y2 - YS(Z) -
Li(Z)e Ay, XY — Fi(Z) € A; (see 3.8(c) and 3.9). The proofs of the
following lemmas are quite similar to those of 2.15, 2.16 and will be
omitted.

LemMA 3.10. If H\(Z), Hy(Z), H3(Z) are elements of Q. such that
B, H(D;)+C; Hy(Dy)+H3(Dy) = 0 then XHI(Z)+YH2(Z)+H3(Z) €
G (X, Z2)Q + G (Y, Z)Qu + T} (Z)Q. C I. o

LEMMA 3.11. For any P(X,Y,Z) € A, there are H\(Z), Hy(Z),
H3(Z) elements of Q. such that P(X,Y,Z) — [XH\(Z) + YHy(Z) +
Hy(Z) el O

As a direct consequence of 3.10, 3.11 we get our main theorem
where I. = I, + I (see the proof of 2.17).

THEOREM 3.12. The graded U*(pt)-algebra U*(BTY},) is isomorphic
to A./I. where I, is a graded ideal of A. generated by six homogeneous
formal power series. O

REMARK. The homomorphism f; induced by the inclusion I';_; C
I’y (see 3.7) is such that f}(By) =0,

JE(C) = By + Gy — Ej 1 (Di—1)(Eg—1(Dr—1) #0),

f(Dy) = Dy_y if k > 5 (see 3.8). But f;(By) = 0, £;(Cs) = P(D) —
(B + C), P(D) # 0 (see 2.9, 2.6), f(Ds) = D.
Let U*(pt)[[D«]] be {R(Dy), R(Z) € Q.}.

THEOREM 3.13. (a) U*(pt)[[Di]] =~ Q./(Ty) as graded U*(pt)-
algebras.

(b) U*(BTy) is generated by 1, Ay, B as a U*(pt)[[Dy]]-module.
Moreover if V. = U*(pt)[[Dy]] then:

Vi NVieBie = Vie N Vi Gy = VB N Vi Ce = G(Dyc) - V.
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Proof. The assertion (a) is a consequence of 3.6; the first part of (b)
is proven in 3.1 and the second part is a consequence of 3.10. a

Now we are going to alter B,, Cj in order to improve 3.13(b).
From By (2 + J(Dy)) + Gi(Dy) = 0 it follows easily that G, (D) = 0;
$0 AG (D) =0 and G(Z) = (2+ J(Z))G)(Z), G}(Z) € L; hence

(B + Gi(Di))(2 + J (D)) = (Ck + Gi (D)) (2 + J(Dy)) = 0.

Furthermore if u: U*(BT'y) — H*(BI'}) is the edge homomorphism
(in connection with the U*-AHSS for BI';) then u(By + G}, (Dy)) =
u(By), u(Cx + G}.(Dy)) = u(Cy). This remark and Lemma 3.10 allow
the following rearrangement of Theorem 3.13 with B} = By + G (Dx),
Ci, = Ci + G (D).

THEOREM 3.14. (a) U*(pt)[[Dr]] =~ Q./(Ty) as graded U*(pt)-
algebras.
(b) As graded U*(pt)[[Dy]]-modules we have:

U*(BTy) =~ U*(pt)[[Di]1® U* (p1)[[Di]1- By ® U*(p0)[[Di]] - Gy,
and By, C; have the same annihilator (2+ J(Dy)) - U*(pt)[[D¢]]l. O

Appendix.

(A) Calculation of U*(BZ,,) by a new method. The method used in
the case G = I'; applies more simply in the case G = Z,,. Let w be
exp(2i/m) and p the irreducible unitary representation of Z,, defined
by p(q@) = w9, g € Z,,. Let n be the complex vector bundle over BZ,,
corresponding to p and D; = e(n) = cfi(n) € U*(BZy,).

Let A/, be U*(pt)[[Z]], graded by taking dim Z = 2. There is a topol-
ogy on A}, , n > 0, defined by the subgroups J, = {P eN,,,v(P) >
r}, with v(P) = 2s if P(Z) = asZ°% + ag 1 25+ + -+ ,a;, # 0; A,
is complete and Hausdorff. Furthermore, U2"(BZ,,,) is topologized
by the subgroups J"2"~" induced by the U*-AHSS for BZ,,, taken
as a system of neighbourhoods of 0. The group U?"(BZ,,) is com-
plete and Hausdorff because the U*-AHSS for BZ,, collapses. More-
over there is a unique continuous homomorphism of graded U*(pt¢)-
algebras ¢': A, — U*(BZ,,) such that ¢’(Z) = D, and ¢’ is surjective
(see Sections I and II).

The complex vector bundle #™ is trivial (dim #™” = 1) because p” =
1. Hence cfi(n™) = 0. If my denotes a map: BU(1)" — BU(1)
classifying @ y(1) (y(1) being a universal complex vector bundle over
BU(1)) and if ¢; = cfi(p(1)) then:

my(cr) Za efley? e, u=(uy,...,um).
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uy > 0,...,un > 0, ¢; being the image of a; R a, ® --- ® a,, with
ay=ay,=---a;-1 =1,a;=cy, ajy; =--- = ayu = 1, by the product:
Q™ U*(BU(1)) — UBU(1)™). The vector bundle 5™ is classified by
the composite:
/ m
BZ,, 4 (BL,) 8 BU()"™ BU(1),

d being the diagonal map and g a map classifying 7. It follows that
if T(Z) = Y aypyZu+et-t» ¢ A, we have T(cfi(n)) = T(e(n)) =
T(Dy) = 0. It is easily seen that T(Z) = [m](Z).

THEOREM A.l. U*(BZ,,) ~ A, /([m)(Z)) as graded U*(pt)-algebras.

Proof. Let I, be ([m](Z)). The homomorphism ¢’: A/, — U*(BZ,,)
of graded U*(pt)-algebras, defined above, is surjective; moreover ¢'(I,)
= 0. Hence ¢' gives rise to a homomorphism of graded U*(pi)-
algebras 9': A,/I. — U*(BZ,). Let P(Z) be any element of A},
(n > 0) such that P(D,) = 0; if P(Z) = ag+ a1Z + a,Z? + -- -, then
ap = 0 because ag = —(a, Dy + ayD} + ---) € U*(BZ,,) N U*(pt) = 0.
It follows that P(Z) = ap, ZP° + @y, ZP+! + - - -, with pg > 1, g, # 0.
We have

apo+1D11)0+1 4o+ apo+kDfo+k c J2(170+1),2(’1—Po—1);

since this group is closed in U?"(BZ,,), it follows that

o0
Zap+iD1170+i e J2(Po+l),2(n—po—1) c J2po+1,2(n—po)-1‘
i=1
Let s be the quotient map:
J2po,2(n—po) N J2po,2(n—po)/J2po+1,2(n—po)—1
= H?»(BZ,,) ® U"~P)(pt) = Z,, ® U*"~P)(pt)
= U2n=P)(pt) /mU "2 (pt)
(H?*(BZ,,) = I, because py > 1). It follows from s(P(D;)) = 0 that
ay, = ma, . We form P((Z) = P(Z)—a, Z»~'T(Z); then P;(D;) =0
and v(P;) > v(P). We repeat the same process, and there is an element
P,i1(Z) €A, r > 1, such that
P(Z)=P(Z)—(a),Z" ' +a, ZP -+ a, ZPNT(Z)

with the properties: P, (D)) = 0, v(Pry1) = DPpy1 > Dr--- > D1 >
po. Hence lim,_ o, v(P,,;) = +oo and by Sec. I we have P(Z) =
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(XC20a),ZP~1)T(Z) € I,. It follows that @' is injective and the

theorem has been proved. O

Note. P. S. Landweber has proved a similar result by using other
methods (see [13]).

(B) Calculation of U*(BSU(n)). Particular case n = 2: SU(2) =
Sp(1). Consider the S!-bundle U(n)/SU(n) = S' — BSU(n) &
BU(n), n > 2, p = Bi with i: SU(n) C U(n); let £ be the complex
vector bundle E = BSU(n) x5: C = BU(n), where S! acts on C by the
multiplication in C. If Ey = E — j(BU(n)), j being the zero-section
of £, then we have the Gysin exact sequence (see [4]):

- = UIBU(m) S U*A(BU(n)) & U(Ey)
- U*(BU(n)) - -,
where 7y denotes #|Ey. The map g: BSU(n) — E, defined by g(x) =
[x, 1] is an embedding; take E' = g(BSU(n)), j' the inclusion: E’' C
Ey and h: Ey — E' the map defined by A[x, z] = [xz/|z|, 1]; then by
using 2 and the homotopy H: Ey x I — Ey given by H([x, z],t) =
[x,tz + (1 — t)z/|z|] we see that E’ is a strong deformation retract of
Ey; it is easily seen that 7/ oh =g and 7' o g = p with n’ = #n|E’, g
being considered as a homeomorphism: BSU(n) = g(BSU(n)). So:
ny = h* o g*~! o p* and since h* o g*~! is an isomorphism the above
exact sequence gives the following one:
. > U(BU(n)) S U*2(BU(n)) & U*X(BSU(n))
— U*YBUn)) — ---.

Consider the canonical map of ring spectra f: MU — H (see [1]);
f#(-) maps Euler classes to Euler classes. Suppose e(¢) = 0; then
f#(=)(e(¢)) = 0, which means that the Euler class of & for H is
0. From the Gysin exact sequence of & for H it follows easily that
H?*(BU(n)) ~ H*(BSU(n)) which is impossible since H2(BU (n)) # 0
and H2(BSU(n)) = 0 (see [12], page 237). Hence e(¢) # 0 and the
map - — e(¢) is injective. Consequently the sequence:

0 — U%(BU(n)) Y U¥*2(BU(n)) &5 U**2(BSU(n)) — 0
is exact and U?+1(BSU(n)) =0, i > 0. So we have:
THEOREM B.1. We have U?*1(BSU(n)) =0, i > 0, and the map p*
induces an isomorphism:
U*+X(BU(n))/e(€)U%(BU(n)) ~ U***(BSU(n)), ie€l.
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Now let (g;;) be a set of transition functions for a universal U(n)-
bundle: EU(n) — BU(n). If g;; denotes the image of g;; by the
quotient map ¢: U(n) — U(n)/SU(n) = S! then (&;;) is a set of
transition functions for &; from ¢(g;;) = det(g;;) and dim¢ = 1, it
follows that £ is isomorphic to the complex vector bundle A”y(n), y(n)
being a universal vector bundle over BU(n). Hence:

THEOREM B.2.
U**2(BU(n))/e(A"y(n)) - U*(BU(n)) ~ U**2(BSU(n)).
and U?*1(BSU(n)) =0, i > 0. i

Particular Case n = 2; Sp(1) = SU(2). By Section II we have
U*(BSp(1)) = U*(BSU(2)) = U*(pt)[[V]], with V' = cf,(6), 6 being
a universal Sp(1)-vector bundle over BS(1), regarded as a U(2)-vector
bundle. Then cfi(0) = Py(V) = 32, b,V € UX(BSU(2)). If p de-
notes the projection: BSU(2) — BU(2), we have seen that the fol-
lowing sequence is exact: 0 — U2(BU(2)) "2 y2iv2(gy(2)) &
U2+2(BSU(2)) — 0. We wish to calculate the coefficients b;, i > 1.
The Sp(1)-vector bundle 6 considered as a SU(2)-vector-bundle is a
universal SU(2)-vector-bundle over BSU(2) isomorphic to p*(y(2))
as a complex vector bundle. We have U*(BU(2)) = U*(pt)[[c1, 211
¢ = cf1(y(2)), ca = cf2(y(2)) and consequently

pHe) =S bV =S bi(ch(6) =3 bip*(cr)

i>1 i>1 i>1

:p* (Z biCé) .
i>1

It follows that: ¢ — ;5 bich = e(A?(2)) - H(cy, ¢3) with H(cic)) €
UY%BU(2)).

Let k: BU(1) x BU(1) — BU(2) be a map classifying y(1) x y(1).
Hence k*(A%y(2)) = (1) ® y(1) and k*(e(A%y(2))) = F(X,Y), the
formal group law. Then k*(c; — Y ;5 bic}) = F(X, Y)k*(H(cy, c2)); as
k*(c;) = X +7Y and k*(c;) = XY we get:

X+Y =Y bi(XY) =F(X,Y)GX,Y) e U (p)[[X, Y]]
i>1
If i(X) = [-1](X) then we have:
X +i(X) =) bi(X-i(X)).

i>1
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This relation determines completely the coefficients b;, i > 1; for ex-
ample b; = —ay, by = a;;a;1a21 —ax; - - - the a;; being the coefficients
of the group law.

(C) Ring Structure of H*(BI';),k > 3. M. Atiyah has determined
the ring-structure of H*(BI3) by using K-theory (see [2]); namely
H*(BT'3) = Z[x,y, z] subject to the relations xy = 4z, 2x = 2y =
x2=y2=8z=0, dimx =2, dimy = 2, dim z = 4. We want to give
another proof of this result using complex cobordism and determine
the ring structure of H*(BI';), k > 4.

We have H?(BT) = Zx @ Zy, H*(BT') = Z - z with x = ¢((&)),
y = c1(&), z = ca(n) (see Section II). Moreover: 2x = 2y = 8z = 0.
We have

B?>=BS(D), C?=CS(D),
BC = (B + C)[P(D) - S(D)] - Q(D)

(4, B, C play a symmetrical role; see Section II). If u is the edge
homomorphism we have x = u(BS(D)) =0 (u: J40 — J40/ 51 =
H*(BT3); BS(D) € J%=2 c J5~1); similarly y? = 0; xy = —u(Q(D))
= —4z3 = -4z =4z because Q(D) =4D + Y ;5, BiZ' (see 2.9).
Suppose k > 4. We have H?(BT'}) = Ix; © Zy,, H*(BI}) =
Z - z; with x; = (&), yi = c1(&3), zi = ca(my) (see 2.3, 2.4). We
have 2x; = 2y, = 2%z, = 0. The proof of Proposition 3.8 shows
that x;y;, = u(Fi(Dy)), u being the edge homomorphism, F,(D;) =
cfa(Ri_>(m1)) with R;_,(X) € Z[X]); Ry_,(X) is determined induc-
tively by Ry(X) = X*—4X2, R, 1(X) = R%,(X)+4R,,(X), m > 2. By
3.4 we get Fi(Dy) = R _,(2)+ X5, viD}, vi € U*(pt), R}, _,(X) being
the derivative of R;_,(X). An easy calculation shows that R} ,(2) =
2%k=4 As 2k — 4 > k we get x;y; = 2%k~%z, = 0. As a consequence
of the relations in R(I';) stated in the beginning of Section III we get:
&My = Mye-a—y. Hence x2 +ca(m1) = ca(mpx-2—1) because ¢y (n;) = 0. By
3.5 chr(mpe-ay) = [142K71(2K3-1)1Dy +3 5, BiD: and consequently
e2(p-2-y) = (1 = 2k=1)z;. Therefore: x} = —2k=1z; = 2%=1z;. Sim-
ilarly: y,% = 2k=1z,. Hence we have proved the following result:

THEOREM C. If k > 4 we have H*(BT'}) = Z[xy, i, zx], dim x;,
dimy, = 2,dim z; = 4 subject to the relations: 2x; = 2y, = X3V, =
2kz) =0, x} =y} = 2k"1z. o
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