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UNITARY BORDISM OF CLASSIFYING SPACES
OF QUATERNION GROUPS

ABDESLAM MESNAOUI

Let I, be the generalized quaternion group of order 2~. In this ar-
ticle we determine a set of generators for the U.(pt)-module U, (BT})
and give all linear relations between them. Moreover their orders are
calculated.

0. Introduction. In this article we first study the case I', = I the
quaternion group of order 8. We recall that

= {tl,+i,+j,+k}, P=j2=k’>=-1,ij=k, jk=1i, ki=1ij.

I" acts on S4"3 by using (n+1)n where n denotes the following unitary
irreducible representation of I: i — (4 9%,), j — (97!) and we get
the element wy,,3 = [S*"*3/T,q] € I~J4n+3(BI“ ), ¢ being the natural
embedding: S*+3/T" ¢ BT. In [6] we have defined three elements of
f]z(Bl") denoted by A, B, C as Euler classes for MU of irreducible
representations of I" of dimension 1 over C. Let uy,,1 € (74,,+1(Bl“),
Usny1 € (~J4n+1 (BT) be respectively A Nwy,,3 and B N Wy, 3. Our first
result is:

THEOREM 2.2. The set {Uuany1,Vant+1> Wani3}n>0 IS @ system of gen-
erators for the U.(pt)-module U,(BT).
Their orders are given by:

THEOREM 2.6. We have: ord wg,,3 = 22"+3,
THEOREM 2.8. We have: ord uy, ., = ord v, = 2"

Now let Q. be U*(pt)[[Z]] graded by taking dimZ = 4. If
P(Z) = Y5, 0Z' € Q, and o, # 0 then we denote v(P) = 4r.
Let W, V}, V, be the submodules of (7*(31") generated respectively
by {Wan+3}n>0, {#an+1}n>0, £v4n+1}n20. The following result gives the
U.(pt)-module structure of U,(BT') and uses the elements 7(Z) € Q4,
J(Z) € Qq as defined in [6], Section II.
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THEOREM 2.4. (a) U.(BD) =W o V| @ V5.

(b) In l~]2p+1(Bl") we have 0 = agws +a; w7+ - -+ anWapi3 = bouy +
-+« + byUsme iff there are homogeneous polynomials M(Z), M,(Z)
and homogeneous formal power series N(Z), N\(Z) of Q. satisfying:
bmZ + by \Z% + -+ bgZ™Mt = M(Z)(2+ J(Z)) + N(Z), anZ +
an1Z2 + -+ agZ"! = M(Z)T(Z) + Ni(Z), v(N) > 4(n + 1),
v(Ny) > 4(n + 1). Moreover bou; + - - + bpugmer = 0 iff bovy + -+ +
bmvams1 = 0.

In Section III we consider U, (BI), k > 4. The generalized quater-
nion group Iy, is generated by u,v with u = v2, t = 2572, yvu = v.
T, acts on S%"*3 by means of the irreducible unitary representation

n of I'y:
Y 0 v — 0 -1
0 w!)’ 1 0)°

o being a primitive 2¥~!th root of unity. We get:
Wines = (ST, ¢'1 € Usny3(BTx), q': S*"+3/Ty C BT

Now we use the elements B} = By + Gi(Dy) € U2(BTY), r=Cr +
Gi(Dy) € U*(BT) (see [6], Theorem 3.14) to define u,,, = B, N
Whn3 € Usny1(BTy), vy, = CLNwy,, 3 € Ugny1(BTy). Then we
have Theorems 3.1, 3.2 identical respectively to the above Theorems
2.2, 2.4 where W4p 3, Uant1, Vany1 are replaced by wy, 5, Wy, 15 Vi, -
However:

THEOREM 3.4. We have: ordw), ;= 2*"+%, n > 0.

THEOREM 3.5. We have: ordu), | = ord v}, , = 2"*!, n > 0, which
are therefore independent of k.

The layout is as follows:

I Preliminaries and notations.
IT Calculations in U.(BT): generators, orders and relations.
IIT U.(BI'}), k > 4: generators, orders and relations.

We assume that the reader is acquainted with the notations and
results of [6].

I. Preliminaries and notations. The notation U,-AHSS will be used
for the Atiyah-Hirzebruch spectral sequence corresponding to the ho-
mology theory determined by M U; u and ' denote the edge homo-
morphisms U*(X) — H*(X) and U.(X) — H.(X) obtained from the
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U.-AHSS for a CW complex X. We have the following well-known
result:

THEOREM 1.1. Suppose X a CW-complex such that:

(a) The U,-AHSS for X collapses.

(b) For each n > 0 there is a system (a;,) generating the group

Hy(X).

Then for each n > O there is a system (A;,) such that:

(@) Ain € Un(X), W'(Ain) = ain for every (i,n).

(b) The system (A;n) generates U.(X) as a U.(pt)-module.
Moreover, (b) is valid for every system (A;,) such that u'(A;,) = a;,. O

Consider the map of ring spectra f: MU — H (see [1]); by nat-
urality of spectral sequences it follows that if X is a CW-complex
then f*(X) = u and fy(X) = u' where f*(X): U*(X) — H*(X),
fe(X): U(X) — H.(X) denote the maps induced by f.

PROPOSITION 1.2. If X is a CW-complex then the following diagram
commultes:

U™(X) ® Up(X) —— Up-m(X)
u®u’l l#'
H™(X)® Hy,(X) SELLIN H,_,,(X) commutes.
Proof. Take E = MU. The cap product is the composite:

En(X*)® E,(X+) 128 Em(x*) @ By (X AX*) —— By m(X*),
\ being the slant product and A(x) = [x, x]. Since A. commutes with
f«(—) we have to prove that the diagram:

Em(x+) @ En(X* AX*) ——s Epom(XH)
lf"(—)@f»(—) lﬁ(—)

Hm(X+) ® Hy(X* A X+) —— Hy_m(X*) commutes.
More generally the diagram

En(Y)@Ea(Y A Z) —— En-m(Z)
l/"(—)@ﬁ;(—) lﬁf(—)
H™(Y)® Hy(Y NZ) —— H,_m(Z) commutes if ¥,Z
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are pointed CW-complexes: indeed let x and y be any elements of
E™(Y) and E,(Y A Z) respectively represented by g: ¥ — Y."E,
h:S" - EAY AZ. Then f#(=)(x) is represented by the composite

@Y — yE 2L s and fi(-)0)
by the composite:

hi:Sn s Eavaz ML gAY Az

If we denote by T the transposition and &, kK’ the ring-spectra products
then the diagram pictured on the next page commutes. Since the top
line represents x\y and the bottom line

A CIENVACIEY

we have fy(=)(x\y) = f*(=)(X)\fe(=)»). o

Let X be any CW-complex and £ a complex vector bundle of C-
dimension » over X. If 4 denotes a map: X — BU(n) classifying &
and M (&) the Thom space of £, then M (h): M(&) — MU (n) deter-
mines an element #y(&) € U?"(M (&) which is a particular Thom class
for &£ called the canonical Thom class for £&. Moreover if j: X — M (&)
is the zero section we have j*(¢yo(¢)) = cf,(&), the highest Conner-
Floyd characteristic class of &; j*(#(£)) is also called the Euler class
e(§) of €.

Fundamental classes for a U-manifold M” for E = MU or H
may be obtained in the following manner: M” can be embedded in
S"+2k for some large k and the normal bundle 7 can be given a U(k)-
structure; let N be a tubular neighbourhood of A", which we identify
with the total space of the normal disk bundle D(7); we have the map
n: S"2k _ M(t) defined as follows: if x € N then n(x) is the im-

age of x by the projection D(t) — M(1) and if x € §"+% — 1:/, then
n(x) = * the base point of M(7); let ¢ be a Thom class of ¢ for E;
we have the Thom-isomorphism ¢;: Ey, (M (1)) — E,(M") such that
#:(x) = p.(t N x), p being the projection D(t) — M"; let u: S® — E
be the unit of E; the map u is a map of spectra and is therefore a
collection of maps u,,: S™ — E,, satisfying well-known axioms; then
by [8], page 333, if [u,,,,;] is the element of En+2k(S"+2k ) correspond-
ing to u, -, then the element c(M) = ¢;(m.([Up12k]) € En(M") is a
fundamental class for M”. Evidently the same method produces fun-
damental classes for the homology theory defined by the spectrum H.
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From [8], page 335, §14-45, we have:

ProrosiTION 1.3. If M" is a closed U-manifold then [M",1] €
U,(M") = E,(M") is a fundamental class for M" deduced from the
canonical Thom class ty(t), T being the normal bundle of an embedding
M" c S"2 K large. o

PROPOSITION 1.4. Let M" be a closed U-manifold; then
Je(=)([(M",1]) € Hy(M")

is a fundamental class for M™.

Proof. From 1.3 we have

[M", 1] = ¢yy(me[ttni2k]) = ¢(M);
then
Je(=)(c(M)) = fa(=)ds (7 ([ns261))] = So(=) [P (0 N u([Un424]))]
= p[fe (=) (to N ([t 120 ]))]

= DL () (t0) N fo(=) (7 ([#n424]))]
—p*[f#( tO N7, f( )([un+2k]))]-

Since f is a map of spectra the unit of H is the composite v: SO %

MU L H and hence fy(=)([tns2k]) = [Unsax]- Now fH(=)(to) is a
Thom class ¢; for H and therefore

Se(=)(c(M)) = p[t1 N Tu([Vn42])]
= ¢, (u([Vn424])) = 1 (M") € Hy(M")
is a fundamental class for AM™". o

The notation ¢(M") will be for the fundamental class [M",1] €
U,(M") and c¢;(M") € H,(M") will be the fundamental class

u(c(M™)).
If PD or PD, denotes the Poincaré duality then we have:

PROPOSITION 1.5. The following diagram commutes

UMM") —— Up—m(M™)

b b

H"(M") —— Hy_m(M")
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Proof. We have

# (PD(x)) = p'(x ne(M™)) = p(x) N ' (c(M"))
= u(x) N ey (M") = (PD), (u(x))

by 1.2. O

Let N be a closed U-submanifold of a closed U-manifold M", and
i the inclusion N™ C M"; then the normal bundle 7 of N in M" is
a complex-vector-bundle if (n — m) is even and we have:

PROPOSITION 1.6. If (n — m) is even then (PD)~!([N™,i]) is repre-
sented by:

M" — M"/(M" — N) ~ D(1)/S(1) = M(z) 222 MU (n - m)),

where h is a map classifying T and N a tubular neighborhood of N™
homeomorphic to D(t) (see [3], [7]). O

The generalized quaternion group I'y, k > 4, is generated by u,v
subject to the relations #! = v2, t = 2¥-2 yvu = v. Consider the
irreducible unitary representation 7y of Iyt u — (% %,), v — (7 '),
o being a primitive 2¥~th-root of unity. The group I'; acts on S#"+3
by means of (n + 1)n; as a group of U-diffeomorphisms and we get a
canonical U-structure on $#*+3 /T, and a natural injection S#**+3/T", C
BT = U505 +3 /Ty (see [3], [10], page 508).

Let a be the complex vector bundle: S#"+3xp, C? — §47+3 /T, where
I, acts on S*+3 and C? respectively by means of (n+ 1)7; and 7;: if
a €Ty and (x,v) € S*+3 x C? we have a(s,w) = (as,av) = (sa~!,av)
and $#"+3xp, C? = (§4"+3x C?)/T;. Then by a result of R. H. Szczarba
([9]) we have T(S**+3/T;) + 1 = (n + 1)a where T(S"*3/T’;) denotes
the tangent bundle of $47=3/T";. As an easy consequence we have:

PROPOSITION 1.7. If i denotes the embedding S*"+3 T, c $4"+7 T},
such that

i([z1, 22,45 Z2n42)) = [21, 22, .. -, 22042, 0, 0],

then the normal bundle of S*"*3 /T in S*"+7 )T}, is isomorphic to the
complex vector bundle a. 0
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We shall give a proof of the next result which can be found in [7]:

ProOPOSITION 1.8. If i denotes the embedding S**+3 /T c S4+7/T;,
then i* o (PD)~1([S#+3 /T, i]) = e(a).

Proof. Denote by t the normal bundle of $4**3/T; in S4**7/T,
and by 4 a classifying map: $4*3/T, — BU(2) for 7. Then by 1.6,
(PD)~1([S*"+3 /T, i]) is represented by the composite:

S4n+7/rk N (S4n+7/l'*k) / (S4n+7/r*k _ Xf)

D(r) M(h)

N being a tubular neighbourhood of $4"*+3 /T", homeomorphic to D(z).
Since the composite:
S4n+3/r __l_> S4n+7/rk N S4n+7/1"k / (S4n+7/rk _ ;{7)

. D(m)

~ S()
is the zero section: $4*3/I";, — M(1), it follows that

i* o (P(D)"H)([S*"+3 /T, 1]) = e(1).

Since 7 and a are isomorphic as complex vector bundles by 1.7 the
proposition is proved. o

M, MU (2),

= M(7)

In Section III we shall use the following Euler classes for MU (see
[6]):
Ay =e(ér) € U(BTy), By =e(&) € UX(BTy),
Cy = e(&3) € U*(BT), Dy =e(m) <€ U*(BTy)

where &,,&,,&3, 1 are the complex vector bundles corresponding to
the irreducible unitary representations &;: u — 1,v — =1, &:u —
—-l,v—1,&:k — —1,v — —1 and n, as defined above.

In order to calculate U, (BI';) we first consider the case k = 3: I'; =
T', the quaternion group of order 8. We recall that I' = {1, +i, +j, £k}
subject to the relations i2 = j2 = k2 = -1, ij = k, jk = i, ki = j.
The irreducible unitary representations of I are 1: i — 1,j — 1,
Cini—» 1,j—-1,¢:i—--1,j - 1,&:i— —1,j - -1 and
nii— (4%),J = (97). The character table of I is drawn on the
next page.

The group I acts on $%"*3 by means of (n + 1)n as a group of U-
diffeomorphisms; as with I';, we get a U-manifold $*+3/T ¢ BT =
UnsoS4"+3/T. There will be no ambiguity if we use the same notation
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conjugacy classes

1| -1 4i|+j|+k
L1141} 1]1

sl ]|1]1|=1
Gllt] 1 ]-1]1|-1
Ell1l 1 |=1]-1]-1

a as for I', for the complex vector bundle S#*+3 xp C? — §4+3/T.
Evidently the Propositions 1.6 and 1.7 are valid if I'; is replaced
by I.

In Section II the following Euler class for M U will be of fundamen-
tal importance (see [6]):

A =e(&) € U(BY), B =e(¢;) € UX(BD),
C=e(&) e UXBI) and D =e(n) e U*BT).

I1. Calculation of U, (Bf ): generators, orders and relations. The re-
duced homology groups H,(BI) are such that:

Hy,(BT) =0, Hypy((BT) =2,®2;, Hypps(BD) =25, n>0.
The U,-AHSS of BI' collapses and we have a filtration of I~J,,(BI‘):
Jins1=0C Jon C-  CIpnep C -+ C Jyo= Un(BT)

with J, , = Im(U,p14(X?) — U,44(BT)), X? being the p-skeleton of
BT'. Moreover J,4/Jp—1,4+1 = Hy(BT, Uy(pt)).

ProrosiTION 2.1. (a) (72,,(31“) = 0, (72,,+1(BF) = Uypy1(BT),
Uzn(BI) = Usu(p2).
(b) Ord(Usn+3(BTI)) = 27,

r=3 (zn: Rank U4,~(pt))

=0

n
+2 (Z Rank U4,~+2(pt)) : Ord(Usp41(BT)) = 2,
i=0
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n—1 n
=3 (Z Rank U4,-+2(pt)) +2 (Z Rank U4,-(pt)) .

i=0 i=0
Proof. (a) From the filtration J_; 3,41 =0C Jo2, C - C Jp 20— C
- C JZn,OL and Jp,Zn—p/Jp—l,Zn—p+l = HP(BF, U2n—p(pt)2 = 0 it fol-
lows that U,,(BT') = 0. Hence U,,(BTI') = U,,(pt) and Uy, (BI) =

Uzn1(BT) because U,y 1(pt) = 0.
(b) The orders are easy consequences of:

J4p+3,2q/J4p+2,2q+l = H4p+3(Bra U2q(Pt))
= Z3 ® Uyy(pt) = Uy(pt)/8.Upy(p1),
Japs2,2941/Japr1,2g+2 = 0,
Japs1,2g+42/Jap2q+3
= Uzg42(Pt)/2U2442(pt) ® Uzg12(pt)/2Ua442(p1),
J4p,2q+3/J4p—l,2q+4 =0. o

Let Wapr3 € Usnys(BT) be [S4”+3/F g], q being the inclusion
S43IT C BT, Ugnsy = AN Wapy3 € Usn11(BT), Vans1 = BN Wapy3 €
U4n+1 (Br)-

THEOREM 2.2. The set {Uan i1, Vant1, Want3 tn>0 IS a System of gen-
erators for the U.(pt)-module U.(BT).

Proof. Since the U,-AHSS for BT collapses we can use 1.1. If u/
denotes the edge homomorphism it is enough to prove that u'(wsy,.3),
L,u’(u4,,+1), u’(v%“)} are systems of generators respectively for
Hypy3(BT) and Hypy (BT).

(a) Consider the following commutative diagram:

(74,,+3(S4"+3/1") 2 64n+3(BF)

. I
Hypy3(S4+3/T) —2— Hypy3(BT).

We have u/([S*"*3/T,1]) = c¢;(S$*"+3/T), where ¢;(S***+3/T") denotes
the fundamental class of S*'t3/T" (for H). Since ¢;(S*"*3/T) is a
generator of Hapi3(BT) it follows that g,(c;(S**3/T)) is a generator
of Hy,,3(BT) because S4*+3/T is the (4n + 3)-skeleton of BI'. Now
q.([S*"+3/T, 1]) = [S**+3/T, q] and then p'([S***3/T’, q]) is a generator
of Hypy3(BT).
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(b) By [6], Section II, u(A) and u(B) generate the group H?(BI') and
then if 4, = q*(A) € UZ(S4"+3/F), B, = q*(B) c U2(S4”+3/F), then
the elements u(A4;), u(B,) generate H2(S*"+3/T’) because the following
diagram commutes:

U2(BT) 9, 2 (S47+3 1)

al |
H?(BY) N H2(S*+3)T)

and the bottom line is an isomorphism. Consider t4,,3 = [S*"*3/T, 1]
€ Usp3(S*+3/T); then w4 (t4n43) = ¢1(S¥*3/T). Since the diagram:

U(s43r) S Uy, (ST

/| I
H2(s%+3 /1) —C200, Hy (541431

commutes by 1.5 and since the bottom line is an isomorphism it
follows that u'(A4; N t4,43) and u'(B; N t4,,3) generate the group
Hy, 1 (S*+3/T). Now by using the commutative diagram:

Usn+1(S#1+3/T) —2— Uypy1 (BT

|« 15
Hipy(S4+3/T) —— Hyp,,((BT)

we see that g.(A4; N t4,43) and g.(B) N t4,,.3) generate the group
Hypyy(BY). Since g. (A1 Ntgni3) = g:(g*(4) N tans3) = AN Gu(tany3) =
AN w4uy3 and g«(By N t4,43) = B N wyy, 3 the assertion (b) has been
proved. O

(1) Relations between the generators. We first recall the definition
of the pull back transfer. Let M” be a closed U-manifold, N a
closed U-submanifold of M” with (n — m) even and i the inclusion
N™ c M. If [V", f] € U(M"), then there is a weakly complex
representative map g: V" — M™" transversal to N". Hence g~!(N™)
is a smooth closed submanifold of V" and dim g='(N") = r + m —
n. Since N is a U-submanifold of M" the normal vector bundle t
of N™ is in fact a complex vector bundle and by transversality we
have T(W"m=")+ g¥(t) = j*(T(V")) (1) where W+m=" = g=}(N™),
g1 = glg Y (N™), j: Wrtm=n c V' and T(-) being the tangent vector
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bundle. Since V" is a U-manifold the stable tangent bundle of V" has
a complex structure and the above relation (1) determines a unique
complex structure on the stable tangent bundle of W/+t™m=" (see [5],
page 16). Then we define i!: U,(M") — U,sm—n(N™) by i/([V", f]) =
[wrtm=n_g 1. Moreover, the following diagram is commutative:

Uk(M")y —S—  UK(N™)

- [0

Up_x(M") —L— U,,_ i (N™)

PD being the Poincaré duality (see [2], [7]).

Now, there is a map A: U,(BT') — U,(BT) defined by A(x) = DNx,
with D = e(#n), the Euler class of #. The map A is a homomorphism
of graded U.(pt)-modules of degree —4.

PRroPOSITION 2.3. We have

A(Wany3) = Watn-1)+3>  AlUans1) = Uagn—1)+15
A(Van+1) = Vau-1)+1, 1 =0.

Proof. Let p,r,s be respectively the inclusions S**~D+3/T ¢
§4n+3 T, §4n+3 /[  §4n+7 /T, §41+7 /T BT Then
[S4"*3 /T, r] € Ugn43(S¥"*7/T0).
We have the pull back transfer
12 Ugne3(S*™7T) = Uyne1)43(S*" T
and the commutative diagram:

U4(S4”+7/r‘) _r . U4(S4n+3/r)

- [

Usns3(S4+7 1) —Ls Uyyy43(S4+3/T0).

The element #!([S4**+3/T, i]) is [g~1(S*"*3/T), g|g~1(S*+3/T")] where
g is the map: S*'*3/T" — $4+7/T defined by g([z1, 22, .- -, Zons2]) =
[z1,22,.-.5221,0,0, z2,47] because g is homotopic to r and transversal
to S4"+3/F. But g~1(S4n+3/r') — S4(n-—1)+3/1" and glg—l(S4n+3/r) —
p. It is easily seen that

PI([S* 3T, 7)) = [S*" V3T, p] € Us(n-1)13(S* /1),



UNITARY BORDISM 61

the U-structure on S**~D+3/T being the canonical one (this result
can be found in [7], Lemma 2.5, page 145). Now by 1.8 we have r* o
(PD)~1([S*"+3/T, r]) = e(a), a being C-vector bundle S**+3 xr C? —
S47+3 T, T acting on S4"*3 and C2 respectively by using (n+1)5 and 7
(see Section I). Since a = (sor)*()(n: E xpC?* — BT), we have e(a) =
(s o r)*(D) and then r* o (PD)~!([S4**+3/T', r]) = (s o r)*(D). From the
above diagram it follows that (s o r)*(D) = (PD)~!([S**~1+3/T, p)).
The fundamental class of $**+3/T" for MU involved in the Poincaré
duality being [S4"*3/T, 1] € Usp43(S4*3/T) (see 1.3) we have:

(s or)*(D)N[S**+3/T, 1] = [S*"~D+3 /T, p]
and consequently

Wa(n—1)43 = (5 0 1)« ([S*"~ V3T, p])
= (sor)(sor)*(D) NIS*+3 /T, 1]]
= DN (sor).([S**/T, 1))
=Dn [S4”+3/F,S or] = DN W3 = A(W3n+3)

We have

A(uan+1) = A(ANwape3) = (D - A) N (Wany3)
=AN[DNwWaps3]1 = AN Wu_1)+3 = Ugn-1)+1-

Similarly A(v4,-1) = V4(n—1)+1- 0

REMARK. The homomorphism A is sometimes called the Smith-
homomorphism.

We recall from [6], Lemma 2.11 and Theorem 2.12, that if A, de-
notes the U*(pt)-graded algebra U*(p?)[[X, Y, Z]], dimX = dimY =
2, dimZ = 4 and Q. the sub-U*(pt)-algebra U*(pt)[[Z]] then there
is T(Z) = 8Z + 24,22 + Y53 MZ' € Qu, Ay ¢ 2U*(pt), such that:
M(D) =0 (M(Z) € Q.,) iff M(Z) € T(Z)Q.. Moreover by [6], Lem-
mas 2.13, 2.15, there is

J(Z)=mZ+) mZ' €Qo,  m ¢2U"(pt),
i>2

such that: E(D) + AM(D) + BN(D) = 0 iff M(Z), N(Z) belong to
2+ J(Z))Q. and E(Z) to T(Z)Q. (M(Z), N(Z), E(Z) are ele-
ments of Q,.). We also recall the following notation: if M(Z) =
Yisr@iZ' € Q) with a, # 0 then v(M) = 4r. Let W, V},V; be the
U.(pt)-submodules of ﬁ*(BI‘) generated respectively by {Wani3}n>0,
{uan+1}n205 {Van+1}n>0-
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THEOREM 2.4. (a) U.(BT) =W o V; @ V5.

(b) In Usp11(BT) we have 0 = ayws +a w7+ - -+ anWant3 = bouy +
o+ + bpUsmey iff there are homogeneous polynomials M(Z), M\(Z)
and homogeneous formal power series N(Z), N\(Z) of Q. satisfying:
bnZ + by Z%2 + -+ bZ™ = M(Z)2 + J(Z)) + N(Z), anZ +
an_1\Z*+ -+ qgZ™! = M{(Z)T(Z) + N\(Z), v(N) > 4(m + 1),
v(Ny) > 4(n+ 1). Moreover: bou; + - - - + bpyttgmy1 = 0 iff bovy + -+ - +
bmVams+1 = 0.

Proof. (a) Suppose that (agws + --- + @pWany3) + (b + -+ +
bmuamy1) + (cov1 + -+ + ¢V4p41) = 0. Then a proof similar to that
of Lemma 2.14 of [6] shows that b,, = 2d,,, d,, € U.(pt). Con-
sider H(Z) = bmZ + by_Z? + --- + byZ™*!; we have: H(Z) —
dnZ(2+ J(Z2)) =¥, _Z?+---+ byZ™ 1 + F(Z), v(F) > 4(m + 1).
Then AH(D) = A[b!,_D? + --- + bjD™*!] + AF(D) and by tak-
ing the cup product by wg,,,7 we obtain bou; + - + bplamer =

o1 + -+ b}, Usm—1)+1. As seen before, we have: b, _, =24, _,,
d),_, € U.(pt). We repeat the same process and after a finite num-
ber of operations we get by, Z + -+ + boZ™! = M(Z)(2+ J(Z2)) +
N(Z),M(Z) being a homogeneous polynomial and N(Z) a homo-
geneous formal power series such that v(N) > 4(m + 1). Hence
bouy + -+ + bygmer = M(D)A(2 + J(D)) N Wapme7 = 0. Similarly
CoV1 + - - + CVary1 = 0 which ends the proof of part (a).

(b) Suppose that agws + - - - + a,w4,43 = 0. As in Proposition 2.6
of [6] we have a, = 8¢y, e, € U,(pt). We form a,Z + --- + apZ"+! —
enT(Z) =al,_Z? + -+ ahZ""! + F\(Z), v(F;) > 4(n + 1) and by
taking the cup-product by wy,,.7 we obtain: aows + - - + a@,Wqp43 =
ayw3+a,_,W4n—1)+3- As before, we have a),_, =8¢, _,,e,_, € U.(p?).
We repeat the same process with a),_,Z2+a!, ,Z3+---+ayZ"*! and
after a finite number of operations we get: a,Z + --- + qpZ"t! =
M(Z)T(Z)+ Ny(Z), v(Ny) > 4(n+ 1), M|(Z) being a homogeneous
polynomial and N;(Z) a homogeneous formal power series. The proof
of part (a) shows that b, Z + - -+ by Z"+! = M(Z)(2+J(Z))+ N(Z),
V(N) > 4(m + 1). The remaining part of (b) is evident. O

(2) Orders of the Generators.

LEMMA 2.5. Suppose t € l~/2,,+1(Bl"), t # 0. If a € Uy(pt) is such
that a ¢ 2U4(pt) then a -t # 0.

Proof. Since t # 0 there is an integer ¢ > 0 such that t € J; 75414
and ¢ ¢ J;_12p41-(g—1)- We have either ¢ = 45 +3 or ¢ = 45 + L.
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Suppose g = 45 + 3. We have the following commutative diagram:

Us(Pt) ® Jasssonsi-4s+3) —— Jas+32(n-2s+1)

l®hl lh

i
Us(pt) ® Us(n—25-1y(0t) ® Ly =2 Upn_2541) ® Lg

where £ is the canonical map: J.. — EX = H.(BI, U.(pt)) = U.(pt)®
H.(BT). It is enough to prove that in U.(pt) = Z[x,X2,...,X4,...]
if a € Uy(pt), a ¢ 2U4(pt), b € Uy (pt), b ¢ 8Uy(pt) then ab ¢
8U,(k+2)(pt); we may suppose that a and b are monomials and then
the assertion is clear. The case ¢ = 4s + 1 is similar. O

THEOREM 2.6. We have ord w3 = 22"+3,

Proof. (a) ordwsz = 23,
We have 0 = T(D) = 23D + H(D)D? and 0 = T(D) Nw; = 2%w; +
H(D)N (D? N ws) = 23w; because D2 N w7 € U_(BT) = 0. Then
by using the edge homomorphism u': 53(81") — ﬁ3(Bl") = 73 we see
that 22w; # 0. Hence ord w3 = 23.

(b) Suppose ord w3 =2%+3,0<i<n-1.
We have 0 = T(D) = 23D+24,D*+23D3+- - -+ Any1 D" + H(D) D2,
2y € U 4(pt) = Us(pt), Ay ¢ 2Us(pt). Take the cup-product by
Want7: 22Wan43+240Wan—1)43+A3Wa(n-2)43+ - -+Ans1w3 = 0 and af-
ter multiplication by 227~! we get: 22"+ 2wy, 3 + 222" W4(n—1)43 = 0;
since ord wyn—1)+3 = 22"*! we have 22"wy,_1)43 # 0 and by 2.5
A222"Wan_1y+3 # O because A, ¢ 2Us(pt). Hence 222wy, 3 # 0.
Now we have: 22"*3wy, 3 = =222 wy,_1y43 = 0. It follows that
ord w43 = 223 which ends the proof of 2.6. ]

LEMMA 2.7. If Gy = Usp-2(pt)ws + Usn(pt)uy + Usn(pt)vy, G, =
Usn(pt)ws + Ugpia(pt)uy + Uspia(pt)vy then we have the exact se-
quences:

0 — Gy — Usp41(BT) & Usin—1)+1(BT) — 0
0 = G}, = Tany3(BT) = Usn-1)43(BT) — 0
Proof. We wish to show that the sequence:

0 — Gn — Usny1(BT) 2 Ugn1)41(BT) — 0
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is exact. It follows by 2.3 that A is surjective and G, C ker A. Suppose
0 = awsz + bu; + cvy, a € Uy,_2(pt), b € Uyu(pt), ¢ € Uyy(pt). Then
a- w3 € Jy4,—> and since bu; + cvy € Jy 4, we have a w3 € Jr 451 D
Jian. If h denotes the quotient map: J34n—2 — J34n-2/J24n—1 =
H3(BT, Uyp_2(pt)) = Usn_2(pt)/8Usn_2(pt), it follows that h(aw;) =
0 and consequently a = 234’. Hence aws; = a’23w; = 0 and then
bu; + cv; = 0. Similarly we have b = 2b', ¢ = 2¢’ which means
that 0 = aws + bu; + cv; (a € Uyy_2(pt), b € Uyy(pt), ¢ € Uyy(pt))
if and only if a = 23a', b = 2b', ¢ = 2¢'. Hence ord G, = 2k,
k = 3Rank U;,_»(pt) + 2Rank Uy, (pt). Now, we have ordkerA =
ord Uy 1 (BT)/ ord Usy—1)41(BT) = 2% by 2.1. From G, C kerA and

ord G, = ordker A we see that the sequence 0 — G, — l74n+1(Bl") 4
Usn—1)+1(BT) — 0 is exact. A similar proof shows that the sequence

0 — G, = Ugny3(BT) & Uyn_1)13(BT) — 0 is exact. o
THEOREM 2.8. We have ord ug,, = ord v4,, = 2"+1.

Proof. If n = 0 the assertion is clear. Suppose ord us;,; = 2/t1,
0 < i< n—1. Then A(2"u4p41) = 2"ugn—1y+1 = 0 and since the

sequence 0 — G, — Uy, (BT) 4, Us(n-1)+1(BT) — 0 is exact, (see
2.7), there are a € Usy—2(pt), b € Usy(pt), ¢ € Uyy(pt) such that
2"Ugn41 = aws + buy + cv;. It follows that —bu; + 2" - uy,,; = 0 and
2"+ y4ni1 = 0; hence ord uy,,; < 2"+t1. By Theorem 2.4 there are
M(Z),N(Z) in Q. such that: 2"Z —bZ"*' = M(Z)(2+J(Z))+N(Z),
v(N)>4(n+1). If M(Z) =hZ + hyZ? + - - -, then we have:

2"Z —bZ™" = Q4+ M Z + wZ 4+ Y Z + hZ? + )
ten2Z" ey 3Z" 3+, g ¢ 2UL(po).

A straightforward calculation shows that 2"~/|h; and 2"~/+! t h;, 1 <
Jj < n. We have: —b = 2h, + uhy + ohy—y + -+ + unhy; as 2|,
1<j<n-1,2¢%h, 21 u wehave 2 t+ b. As a consequence we get
2"Ugn1 # 0 and ord ugp, = 2"+1. Similarly ord v4,, = 2"+ ]

L. U *(BT'y), k > 4: generators, orders and relations. We have
seen in [6], Section III, that there are elements D; € U*4(BT},), B, €
U?(BT}), C, € U*(BT) defined as Euler classes of irreducible uni-
tary representations 7,,&,,&3 of I',. Moreover in the same article
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(Sec. III) we have determined three homogeneous formal power se-
ries Ty (Z) € Q4, Ji(Z) € Qp, Gi(Z) € Q, such that B;(2 + J(Dy)) +
Gi(Dy) = Ci (24 J(Dy)) + Gi(Dy) = 0 and there is G;((Z) € Q, sat-
isfying Gy (Z) = (2+ J(Z))G,(Z). Then with B; = By + G}.(Dy),
C! = Cy + G, (Dy) and u being the edge homomorphism: U2(BT}) —
H?(BT;) we see that u(B}) = u(By) and u(C}) = u(Cy) are genera-
tors of the group H2(BT}); u(Dy) is obviously a generator of H*(BTy).
Moreover B} (2 + J(Dy)) = C,(2+ J(Dy)) = 0.

Now let w},,; € Usny3(BT;) be [S4+3/T,¢'], ¢’ being the in-
clusion S*+3/Ty C BTy, uy,,, = B, Nwh,,3 € Utnr1, Vhpyy =
C, N w),,, € Usns1(BTy). Then we have the following theorems
whose proofs are identical respectively to Theorem 2.2 and Theorem
2.4 and therefore will be omitted.

THEOREM 3.1. The set {uy, 1, Viy 1> Winy3}nz0 IS @ system of gen-
erators for the U(pt)-module U.(BT}). o

Now let W', V/, V] be the U,(pt)-submodules of U.(BT) generated
respectively by {wj},3}n>0, {41 }n>0, {V4n11}3n20-

THEOREM 3.2. (a) U,(BT}) =W'a eV,

(b) In I72P+1(Bl“k) we have 0 = aywy+a,wh+- - -+anwy, 3 = bou| +
oo+ bptty,, . iff there are homogeneous polynomials M(Z), M\(Z)
and homogeneous formal power series N(Z), N\(Z) of Q. satisfyirg:
bnZ + by Z2 + - + bgZ™t! = M(Z)2 + J(Z)) + N(Z), anZ +
1 Zr+ -+ agZ™! = M(Z)Ti(Z) + Ni\(Z), v(N) > 4(m + 1),
v(Ny) > 4(n + 1). Moreover bou' + - - - + bty | = 0 iff bov +--- +
by, =0. o

There is a Smith homomorphism A: ﬁ*(BI"k) — U,(BT}) of degree
—4 such that

A(Wyy13) = D N Way i3 = Wiin_1)43;
A(uan+l) =D N uﬁtn+1 =D N (Bl’c n w:m+3) = Bllc N(Dx N U’fm+3)
=B N wft(n—l)+3 = uit(n—l)+1,A(”fm+1) = 'Uft(n—l)+1-
If

F, = U4n(pt)w§ + U4n+2(17t)u'1 + U4n+2(17t)'vi,
F;; = U4n—2(pt)w,!§ + U4n(pt)ull + U4,,(pl)'Ui
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then we have:

LEMMA 3.3. The following sequences are exact:
0 — Fy — Usny3(BTx) = Usno1y43(BTx) = 0,
0 — F} — Usns1(BTk) 2 Uggn—1)11(BT%) — 0.

Proof. The proof is similar to that of Lemma 2.7. m]

It remains to calculate the orders of the generators.
THEOREM 3.4. We have: ordw,,, = 22"+%, n > 0.

Proof. We have 0 = T, (Dy) = 2KDy + H(Dy)D? and then 0 =
(25Dy + H(Dy)D?) Nwy = 2%w; because: D2 Nw; € U_;(BTy) = 0.
Now if y' is the edge homomorphism: U;(BI;) — H;3(BI}) = Zk
then we have u'(wj3) = 1 € Z,k and consequently 2k—lyws #£ 0. Then
ord w; = 2*.

Suppose that ord w};, ; = 2%+, 0 < i <n— 1. Then

0= Tk(Dk) n wéltn+7 = 2kw4,1n+3 + 2k_z/‘l"2w<lt(n 1)+3
i

o+ 2 AWy o+ 24 Wh— k)43

+ AWkt 1y+3 T F A Wano a3+ s
the number of non-zero elements in this sum being finite. If 3 <
i< k.— 1 we have 22"‘1‘“""uz"t(n_iH)Jr3 = 0 because ord wy, ;. ),3 =
22n=i+)+k and 2(n—i+1)+k < 2n—1+k—isincei > 3. If m > k (> 3)
we have 22"~ 1wy, .\ 5= 0because ordwy, ., =22k
and 2(n—m+ 1)+ k <2n—1since k < m < 2m — 3. It follows that
22n=ltkqyy o+ 220734k b, | = 0. Now 22— 3+ky)} 0 because
ordwy, , = 22"~2+k; since A, ¢ 2U~*(pt) we have 22" 3k} w) | #
0 (see 2.5). Hence

22n—1+kw‘lm+3 #0 and 22”+kw£m+3 — _22(n—1)+k/112,w‘lm_l =0.

We have proved that ord wg,, 3 = 22"k, i

THEOREM 3.5. We have: ordu), ., = ordv}, , = 2"*!, n > 0, which
are therefore independent of k.

Proof. The proof of 3.5 is based on Theorem 3.2 and Lemma 3.3
and is exactly the same as the one of Theorem 2.8. O
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