
PACIFIC JOURNAL OF MATHEMATICS

Vol. 142, No. 1, 1990

UNITARY BORDISM OF CLASSIFYING SPACES
OF QUATERNION GROUPS

A B D E S L A M M E S N A O U I

Let Γ\ be the generalized quaternion group of order 2k. In this ar-
ticle we determine a set of generators for the £/*(/?£)-module U*(BΓk)
and give all linear relations between them. Moreover their orders are
calculated.

0. Introduction. In this article we first study the case Γ\ = Γ the
quaternion group of order 8. We recall that

Γ = {±1,±i,±j,±k}9 i2 = j 2 = k2 = -l, ij = k, jk = i, ki = ij.

Γ acts on S4n~3 by using (n+l)η where η denotes the following unitary
irreducible representation of Γ: *"-• (ό -,•)>./ ~* (? "o1) a n ( * w e 8 e t

the element ^4^+3 = [S4n+3/Y,q] G U^^BY), q being the natural
embedding: S4n+3/Γ c BY. In [6] we have defined three elements of
U2(BY) denoted by A9 B, C as Euler classes for MU of irreducible
representations of Γ of dimension 1 over C. Let w^+i 6 £^4«+i(i?Γ),
ί ^ + i G £/4,j+i {BY) be respectively A Π ^4^+3 and B n ^4^+3. Our first
result is:

THEOREM 2.2. The set {w4«+i,^4/i+i? W4«+3}«>o is a system of gen-
erators for the U*(pt)-module U*(BΓ).

Their orders are given by:

THEOREM 2.6. We have: ord^ 4 w + 3 = 22n+3.

THEOREM 2.8. We have: o r d ί ^ + i = ordt;4W+i = 2Λ + 1 .

Now let Ω* be U*(pt)[[Z]] graded by taking dimZ = 4. If
P(Z) = E / > r α ί z / G Ω « a n d ar Φ ° t h e n w e denote v{P) = 4r.
Let W, V\9 Vι be the submodules of U*(BY) generated respectively
by {w4n+3}n>o, {U4n+ι}n>o, {^4«+i}«>o. The following result gives the
{/*(/?f)-module structure of U*(BY) and uses the elements T(Z) G Ω4,
J(Z) G Ωo as defined in [6], Section II.
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50 ABDESLAM MESNAOUI

THEOREM 2.4. (a) U*(BΓ) = W®VX®V2.
(b) In U2p+\(BΓ) we have 0 = aowi + a\ivΊ + —\-a nw 4 n+i =

-" + bmu4m+ι iff there are homogeneous polynomials M(Z),M2(Z)
and homogeneous formal power series N(Z),N\(Z) o/Ω* satisfying:
bmZ + bm-XZ

2 + + b0Z
m+ι = M(Z)(2 + J(Z)) + N{Z)y anZ +

an-XZ
2 + ... + a0Z

n+ι = MX(Z)T(Z) + Nx{Z)t u(N) > 4{n + 1),
u(N\) > 4(n + 1). Moreover b$U\ H h bmu4m+\ = 0 iffb§v\ Λ h
bmv4m+ι = 0.

In Section III we consider U*(BΓk), k>4. The generalized quater-
nion group Γfc is generated by u,v with u* = v2, t = 2k~2, uvu = v.
I \ acts on S4n+3 by means of the irreducible unitary representation

m oΐΓk
ω 0 \ /0 -

0 ^
ω being a primitive l ^ t h root of unity. We get:

< + 3 = [S4n+3/Γk, J\ e U4n+3(BΓk), q': S4»+*/Γk c BTk.

Now we use the elements B'k = Bk + Gk(Dk) e U2(BΓk), C'k = Ck +
Gk(Dk) e U2(BΓ) (see [6], Theorem 3.14) to define W'4Λ+1 = B'k n
w4n+3 e U4n+{(BΓk), v'4n+ι = q n < + 3 G Kin+iί^Γ^). Then we
have Theorems 3.1, 3.2 identical respectively to the above Theorems
2.2, 2.4 where w4n+3, u4n+u v4n+x are replaced by w'4n+3, uf4n+ι, v'4n+v

However:

THEOREM 3.4. We have: o r d ^ Λ + 3 = 22n+k, n>0.

THEOREM 3.5. We have: ordw'4AZ+1 = o r d i ^ + j = 2"+ 1, n > 0, which
are therefore independent ofk.

The layout is as follows:

I Preliminaries and notations.
II Calculations in U*(BΓ): generators, orders and relations.

Ill U*(BΓk), k > 4: generators, orders and relations.

We assume that the reader is acquainted with the notations and
results of [6].

I. Preliminaries and notations. The notation C4-AHSS will be used
for the Atiyah-Hirzebruch spectral sequence corresponding to the ho-
mology theory determined by MU\ μ and μ1 denote the edge homo-
morphisms U*(X) -> H*(X) and U*(X) -> H*(X) obtained from the



UNITARY BORDISM 51

CΛ-AHSS for a CW complex X. We have the following well-known
result:

THEOREM 1.1. Suppose X a CW-complex such that:

(a) The UMHSS for X collapses.
(b) For each n > 0 there is a system (αZΛ) generating the group

Hn{X).

Then for each n>0 there is a system (Ain) such that:

(a) Ain e Un(X), μ!{Λin) = ain for every (i, n).

(b) The system (Ain) generates U+(X) as a Ό*{pt)-module.

Moreover, (b) is valid for every system (Ain) such that μ'(Ain) = #;„. D

Consider the map of ring spectra / : MU —• H (see [1]); by nat-
urality of spectral sequences it follows that if X is a CW-complex
then f*(X) = μ and MX) = μ' where f*{X): U*(X) -+ H*(X),
MX): U*(X) -+ H*(X) denote the maps induced by /.

PROPOSITION 1.2. IfX is a CW-complex then the following diagram
commutes:

Um{X)®Un{X) ^ ^ Un-m(X)

Hm{X)®Hn{X) —^-> Hn-m{X) commutes.

Proof. Take E = MU. The cap product is the composite:

\ being the slant product and A(x) = [x,x]. Since Δ* commutes with
M~) we have to prove that the diagram:

— ^ Hn-m{X+) commutes.

More generally the diagram

Λ Z) -A-> ΛΓΛ-W(Z) commutes if Y, Z
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are pointed CW-complexes: indeed let x and y be any elements of
Em(Y) and En(Y Λ Z) respectively represented by g: Y -> £ m £ ,
h: Sn -+ E ΛY ΛZ. Then / # (-)(x) is represented by the composite

Σ E and /#(-)(y)

by the composite:

Ai: -S"1 - ^ - > £ Λ 7 Λ Z - ^ ^ HΛYΛZ.

If we denote by Γ the transposition and k, k' the ring-spectra products
then the diagram pictured on the next page commutes. Since the top
line represents x\y and the bottom line

we have fΦ{-){x\y) = /*(-)(*)Yfc(-)(y). •

Let X be any CW-complex and ξ a complex vector bundle of C-
dimension n over X. If h denotes a map: X —> BU{ή) classifying f
and M(£) the Thorn space of £, then M(h): M{ζ) -> MU(n) deter-
mines an element to(ζ) e U2n(M(ξ)) which is a particular Thorn class
for £ called the canonical Thorn class for ξ. Moreover ifj:X-+ M{ξ)
is the zero section we have j*(to(ξ)) = cfn(ζ), the highest Conner-
Floyd characteristic class of ξ; j*(to(ξ)) is also called the Euler class
e(ζ)oΐξ.

Fundamental classes for a CZ-manifold Mn for E = M U or H
may be obtained in the following manner: Mn can be embedded in
$n+2k for s o m e i a r g e k a n c ι the normal bundle τ can be given a U(k)-
structure; let N be a tubular neighbourhood o f ¥ " , which we identify
with the total space of the normal disk bundle D(τ); we have the map
π: Sn+2k —• M(τ) defined as follows: if x e N then π( c) is the im-

o

age of x by the projection D(τ) -• Af (τ) and if JC G Sn+2k - N, then
TΓ(JC) = * the base point of M{τ)\ let t be a Thorn class of ζ for £ ;
we have the Thom-isomorphism φt: £2^+^(^/(1)) —• Er(Mn) such that
0 r(x) = /7*(ί Π x)y p being the projection D(τ) —> M w ; let w: 5° -• £
be the unit of is; the map u is a map of spectra and is therefore a
collection of maps wm: Sm —• £ m satisfying well-known axioms; then
by [8], page 333, if [WΠ+2A:] is the element of EnJrlk(Sn+2k) correspond-
ing to un+2k> then the element c(M) = Φt(π*([un+2k])) ^ En{Mn) is a
fundamental class for Mn. Evidently the same method produces fun-
damental classes for the homology theory defined by the spectrum H.
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From [8], page 335, §14-45, we have:

PROPOSITION 1.3. If Mn is a closed U-manifold then [Mn,l] e
Un{Mn) = En(Mn) is a fundamental class for Mn deduced from the
canonical Thorn class ίo(τ), τ being the normal bundle of an embedding

PROPOSITION 1.4. Let Mn be a closed U-manifold; then

M-)([M\l])eHn(Mn)

is a fundamental class for Mn.

Proof. From 1.3 we have

then

/#(-)[p ('o n π*{[un+2k}))}

= P*[f*Π(t0nπ*([un+2k]))]

= P*[fΠ(to)nM-)(π*([un+2k]))]

n

Since / is a map of spectra the unit of H is the composite v: S° -^

MU ^H and hence M~)([un+2k]) = [vn+2k\. Now f*(-)(t0) is a
Thorn class t\ for H and therefore

fΛ) E Hn(Mn)

is a fundamental class for Mn. n

The notation c(Mn) will be for the fundamental class [Mn, 1] £
Un(Mn) and Ci(Mw) e Hn(Mn) will be the fundamental class

If PD or PDi denotes the Poincare duality then we have:

PROPOSITION 1.5. The following diagram commutes

Um{Mn) -£5_> Un-m{Mn)

-^ί_> Hn.m{Mn)
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Proof. We have

μ\FΌ(x)) = μ'{x Π c{Mn)) = μ(x) Π μ'(c(Mn))

by 1.2. D

Let Nm be a closed {7-submanifold of a closed {7-manifold Mn, and
i the inclusion Nm c Mn\ then the normal bundle τ of iVm in Mn is
a complex-vector-bundle if (n — m) is even and we have:

PROPOSITION 1.6. If(n - m) is even then (PD)~ι([NmJ]) is repre-
sented by:

Mn -* Mn/(Mn -N)~ D(τ)/S(τ) = M(τ) ^Ά MU{\{n - m))9

where h is a map classifying τ and N a tubular neighborhood of Nm

homeomorphίc to D(τ) {see [3], [7]). D

The generalized quaternion group Γ^, k > 4, is generated by u,v
subject to the relations uι = v2, t = 2k~2, uvu — v. Consider the
irreducible unitary representation ηγ oϊTk\ u —• (^ JL{), υ -> (? "Q1 )?

ω being a primitive 2/c~1th-root of unity. The group Γ^ acts on S4n+3

by means of (n + l)η\ as a group of t/-difTeomorphisms and we get a
canonical [/-structure on S4n+3/Γk and a natural injection S4n+3/Γk c
£ I \ = U , > o ^ + 3 / Γ ^ (see [3], [10], page 508).

Let a be the complex vector bundle: S4n+3 xΓkC
2 -> 5 4 w + 3 / Γ ^ w h e r ^

Γ^ acts on ,S 4"+ 3 and C2 respectively by means of (n + l)η\ and η\\ if
a e Γk and (x9v) G 5 4 " + 3 x C 2 wehave^^,?^) = (as,av) = (^α"1,^^)
a n d 5 4 w + 3 x Γ , C 2 = (S4"+3xC2)/ΓV Then by a result of R. H. Szczarba
([9]) we have T(S4n+3/Γk) + 1 = (n + \)a where T(Sn+3/Γk) denotes
the tangent bundle of S4n=3/Γk. As an easy consequence we have:

PROPOSITION 1.7. Ifi denotes the embedding S4n+3/Tk c S4n+1/Γk

such that

Z2,...9 Z2n+2]) = lZl,Z2,..., Zln+2, 0, 0 ] ,

then the normal bundle ofS4n+3/Γk in S4n+Ί/Γk is isomorphic to the
complex vector bundle a. π
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We shall give a proof of the next result which can be found in [7]:

PROPOSITION 1.8. Ifi denotes the embedding S4n+3/Γk c S4n+7/Γk

then i* o (PΌ)-ι([S4n+3/Γk, /]) = e{a).

Proof. Denote by τ the normal bundle of S4n+3/Γk in S4n+7/Γk

and by h a classifying map: S4n+3/Γk -> BU(2) for τ. Then by 1.6,
(PD)~ι([S4n+3/Γk, /]) is represented by the composite:

S4n+7/Γk - (S4n+7/Γk) I (S4"+7/Γk - N)

N being a tubular neighbourhood of S4n+3/Γk homeomorphic to D(τ).
Since the composite:

Tk Λ S4n+Ί/Γk -> S4n+7/Γk I {S4n+1/Tk - N)

~ S(τ)

is the zero section: S4n+3/Γk -* Af (τ), it follows that

Since τ and α are isomorphic as complex vector bundles by 1.7 the
proposition is proved. D

In Section III we shall use the following Euler classes for MU (see

[6]):

Ak = e(ζ{) e U2(BΓk), Bk = e(ξ2) e U2(BΓk),

Ck = e(ζ3)eU2(BΓk), Dk = e(ηι)eU4(BΓk)

where ^1,^25^3^1 a r e the complex vector bundles corresponding to
the irreducible unitary representations ζ\: u -+ l,v —>-l, ξi' u -+
-l,v —• 1, ̂ 3: k —• -l,v —• - 1 and r\\ as defined above.

In order to calculate U*(BTk) we first consider the case k = 3: Γ3 =
Γ, the quaternion group of order 8. We recall that Γ = {± 1, ±i, ±j, ±k}
subject to the relations i2 = j 2 = k2 = - 1 , ij = k, jk = i, ki = j .
The irreducible unitary representations of Γ are 1: / —• 1,7 —• 1?

ί, : 1 ^ 1,7 -^ - 1 , ̂ : 1 -> -1,7 -> 15 4 : / -^ -1,7 ^ - 1 and
V- i —• (ό -/)>./ "^ (1 "o1 )• ^ e character table of Γ is drawn on the
next page.

The group Γ acts on 5 4 " + 3 by means of (n + \)η as a group of U-
diffeomorphisms; as with Γ^ we get a CZ-manifold S4n+3/Γ c BΓ =
U«>o S4n+3/Γ. There will be no ambiguity if we use the same notation
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1
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tj

ξk

n

1

1

1

1

1

2

- 1

1

1

1

1

2

±i

1

1

- 1

- 1

0

±j

1

1

1

- 1

0

±k

1

- 1

- 1

- 1

0

α as for Yk for the complex vector bundle S4n+3 x Γ C2 -»• S4n+3/Y.
Evidently the Propositions 1.6 and 1.7 are valid if I \ is replaced
byΓ.

In Section II the following Euler class for MU will be of fundamen-
tal importance (see [6]):

A = e{ξi) € U2(BΓ), B = e(ξj) e U2(BY),

C = e(ξk) € U2(BT) and D = e(η) eU4(BY).

II. Calculation of U*(BY): generators, orders and relations. The re-
duced homology groups H*(BΓ) are such that:

H2n(BΓ) = 0, H4n+ι(BΓ) = l2φl2, H4n+i(BΓ) = ls, n > 0.

The C/*-AHSS of BY collapses and we have a filtration of Un{BΓ):

/_!,„+! = 0 C J0,n C C Jpja-p C C Jnfi = Un{BT)

with JPA = lm(Up+g(Xp) -»• Up+q(BΓ)), Xp being the /7-skeleton of
BY. Moreover / M / / P _ l j ί + 1 = HP(BY, Uq{pή).

PROPOSITION 2.1. (a) U2n(BΓ) = 0, U2n+i(BY) = U2n+ι(BY),
U2n(BY) = U2n{pt).

(b) Oxά{UAn+^BY)) = T,

i=0

+ 2 Oτά{UΛn+i{BY)) = 2s,
α=0
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s = 3 (^RankC/4/+2(Pθ) + 2 (j^RankU4i(pή) .
\i=0 / \/=0 /

Proof, (a) From the filtration /_ 1,2/1+1 = 0 c Joy2n c c JP,2n-P C
••• C /2«,o^and Jp92n-plJp-\92n-p+\ = Hp(BΓ,U2n-p(pfy = 0 it fol-
lows that I/2ΛCBΓ) = 0. Hence l/2l,CBΓ) = t/2Λ(pί) and C72π+1(2?Γ) =
(72w+i(5Γ) because U2n^{pt) = 0.

(b) The orders are easy consequences of:

, U2q(pt))

= Zs ® t72ff(pί) = U2q(pt)β.U2g(pt),

J4p+292q+l/ J4p+l,2q+2 = 0,

= U2q+2(pt)/2U2q+2(pt) Φ U2q+2(pt)/2U2q+2(pt),

0- D

Let ίϋ4n+3 € C/4n+3(5Γ) be [<Sr4Λ+3/Γ,ήr], ^ being the inclusion
BY, u4n+ι =AΠ w4n+3 e U4n+ι(BΓ), v4n+i =BΠ w4n+3 €

THEOREM 2.2. The set {«4n+i,V4W+i,«;4n+3}n>o is a system of gen-
erators for the U*(pt)-module U*(BΓ).

Proof. Since the C/*-AHSS for BΓ collapses we can use 1.1. If μ'
denotes the edge homomorphism it is enough to prove that μ'(w4Π+3),
{μ'{u4n+\),μ'{v4n+\)} are systems of generators respectively for

£4n+3(i?Γ)andi/4,,+1(l?Γ).
(a) Consider the following commutative diagram:

U4n+3(S4n+3/Γ) - ^ U4n+3(BΓ)

H4n+i(BΓ).

We have μ'([S4n+3/Γ, 1]) = cj(S4n+3/Γ), where d(S4n+3/Γ) denotes
the fundamental class of S4n+*/Γ (for H). Since c^S^+VΓ) is a
generator of H4n+j,{BT) it follows that q*(cι(S4n+i/Γ)) is a generator
of H4n+ι{BT) because S4n+3/Γ is the (4n + 3)-skeleton of BT. Now
q*([S4n+3/Γ, 1]) = [S4n+3/Γ, q] and then μ'([S4 n + 3/Γ, q]) is a generator
of H4n+i{BT).
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(b) By [6], Section II, μ(A) and μ{B) generate the group H2(BΓ) and
then if Ax = q*(A) e U2{S4n+3/Γ), Bx = q*{B) e U2(S4n+3/Γ), then
the elements μ{A\),μ(B\) generate H2(S4n+3/Γ) because the following
diagram commutes:

and the bottom line is an isomorphism. Consider t4n+3 = [S4n+3/Γ, 1]
G U4n+3(S4n+3/Γ); then μ'(t4n+3) = c^S^^/Γ). Since the diagram:

U2(S4n+3/Γ) ~ΠUn+3> U4n+X (S4n+3/Γ)

H2{S4n+3/Γ) -^(S»+/Ό) H4n+ι{S4n+3/Γ)

commutes by 1.5 and since the bottom line is an isomorphism it
follows that μ'{Aγ Π £4,7+3) and μ'{B\ Π t4n+3) generate the group

{{S4n+3/Γ). Now by using the commutative diagram:

U4n+l\δ I1) * fJ4n+l\'Di )

we see that q*(Aι n t4n^) and q*(B\ Π ^ + 3 ) generate the group
H4n+{(BΓ). Since ^ ( ^ ! n ̂ + 3 ) = q*(4*(A) Π ί4/ι+3) = ̂  n9*(ί4Λ+3) =
A Π ̂ 4,2+3 and ^*(^i Π ί4n+3) = B Π w4n+i the assertion (b) has been
proved. D

(1) Relations between the generators. We first recall the definition
of the pull back transfer. Let Mn be a closed {/-manifold, Nm a
closed C/-submanifold of Mn with (n - m) even and / the inclusion
Nm c Mn. If [VrJ] G Ur{Mn), then there is a weakly complex
representative map g: Vr —• ΛP transversal to 7Vm. Hence g~ι(Nm)
is a smooth closed submanifold of F r and dim<^~1(iVm) = r + m -
n. Since Nm is a J7-submanifold of Mn the normal vector bundle τ
of TV"7 is in fact a complex vector bundle and by transversality we
have T{Wr+m-n) + g\(τ) = j*(T(Vr)) (1) where Wr+m~n = g-{(Nm),
g\ = g\g~ι(Nm)> J- Wr+m~n c Vr and Γ(-) being the tangent vector
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bundle. Since Vr is a [/-manifold the stable tangent bundle of Vr has
a complex structure and the above relation (1) determines a unique
complex structure on the stable tangent bundle of Wr+m~n (see [5],
page 16). Then we define /!: Ur(Mn) -+ Ur+rn-n{Nm) by il([Vr,f]) =
[Wr+m"n

y g{\. Moreover, the following diagram is commutative:

Uk(Mn) -^-> Uk{Nm)

PD PD

PD being the Poincare duality (see [2], [7]).
Now, there is a map Δ: U*(BΓ) -> t/*(2?Γ) defined by Δ(x) = Dnx,

with D = e(f/), the Euler class of >/. The map Δ is a homomorphism
of graded C/*(p^)-modules of degree -4 .

PROPOSITION 2.3. WFi?

Λ > 0.

Proof. Let ^jΓ,^ be respectively the inclusions S4 ("~1 ) + 3/Γ c
S4n+3/Γ, S4n+3/Γ c 54 r t + 7/Γ, ί ^ + V Γ C BΓ. Then

We

and

have the pull back transfer

the commutative diagram:

C/4(54"+7/Γ) — ^

P D |

c/ 4 ( ,_ 1 ) + 3 (^ + 3 /

C/4(^+ 3/Γ)

The element r!([S4»+3/Γ,/]) is [ £ - 1 ( < S ' 4 Λ + 3 / Γ ) > £ | £ ~ 1 ( ' S 4 ' I + 3 / Γ ) ] where
g is the map: S4n+3/Γ -> 5 4 " + 7 /Γ defined by g([zι,z2,...,zin+i]) =
[zι,Z2,...,Z2n,0,0, zm+iϊ because g is homotopic to r and transversal
to S4n+i/Γ. But g-ι{S4n+*/Γ) = 54<"-1)+3/Γ and g\g-ι(S4tt+*/Γ) =
p. It is easily seen that
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the {/-structure on S4ί-n~^+3/Γ being the canonical one (this result
can be found in [7], Lemma 2.5, page 145). Now by 1.8 we have r* o
(PD)-ι([S4n+3/T,r]) = e(a), a being C-vector bundle S4n+3 x Γ C

2 ->
5'4"+3/Γ, Γ acting on S4n+3 and C2 respectively by using (n+l)η and η
(see Section I). Since a = (sor)*(η)(η: ExΓC

2 -> BΓ), we have e(a) =
{s o r)*(D) and then r* o (PΌ)-ι([S4n+3/Γ, r]) = (so r)*(D). From the
above diagram it follows that (s o r)*(D) = (PD)- 1 ([5 4 ( "~ 1 ) + 3 / Γ ^])
The fundamental class of 5'4n+3/Γ for MU involved in the Poincare
duality being [S4n+2/Γ, 1] € U4n+3(S4n+3/Γ) (see 1.3) we have:

(s o r)*{D) Π [S4n+3/Γ, 1] =

and consequently

= (sorU(sor)*(D)n[S4n+3/r,l]]

= Dn(sor)t([S4n+3/Γ,l])

= DΠ [S4n+3/Γ, sor] = DΠ w4n+3 =

We have

Δ ( U 4 Λ + I ) = Δ(A Π w4n+3) = (D-A)n (w4n+3)

= An[Dn w4n+3] = An w{n_ί)+3 =

Similarly Δ ( « 4 B _ I ) = υ4 ( Λ_i ) +i. •

REMARK. The homomorphism Δ is sometimes called the Smith-
homomorphism.

We recall from [6], Lemma 2.11 and Theorem 2.12, that if Λ* de-
notes the U*(pt)-graded algebra U*{pt)[[X, Y,Z]], dimX = dimy =
2, dimZ = 4 and Ω* the sub-t/*(/7ί)-algebra U*(pt)[[Z]] then there
is T(Z) = 8Z + 2A2Z

2 + Σι > 3 ^ ' " e Ω4> λ2 $ 2U*(pt), such that:
M(D) = 0 {M(Z) e Ω*) iSM(Z) e T(Z)Ω*. Moreover by [6], Lem-
mas 2.13, 2.15, there is

J(Z) = μxZ + ΣμiZ
i € Ωo, μx φ 2U*{pt),

such that: E(D) + AM{D) + BN{D) = 0 iff M{Z),N{Z) belong to
(2 + J(Z))Ω and E(Z) to Γ(Z)Ω* (M(Z), N(Z), E(Z) are ele-
ments of Ω*). We also recall the following notation: if M{Z) =
Σ,i>raizi e Ω2 n with ar Φ 0 then u(M) = 4r. Let W, Vu V2 be the
ί/*(/7/)-submodules of U*(BΓ) generated respectively by {W4n+τ}n>o,

{"4/1+1 }«>0> {V4n+ί}n>0
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THEOREM 2.4. (a) U*(BΓ) = W®Vι®V2.
(b) In U2p+\(BΓ) wehaveO = aoWi + aιWΊ-{

• + 6mW4W+i iff there are homogeneous polynomials M(Z),M\(Z)
and homogeneous formal power series N(Z),N\(Z) o/Ω* satisfying:
bmZ + bm.xZ

2 + + b0Z
m+ι = M(Z)(2 + J(Z)) + N{Z), anZ +

an-XZ
2 + + a0Z

n+ι = MX(Z)T(Z) + Nλ{Z), v{N) > 4(m + 1),
v(N\) > 4(n + 1). Moreover. bouχ H + bmu4m+\ = 0 iffbovι H +

bmV4m+\ = 0.

. ( a ) S u p p o s e t h a t ( a o w ^ + ••• + α w ^ 4 « + 3 ) + ( ^ 0 ^ 1 + ••• +
bmU4m+\) + (CQV\ + h c r ^ 4 r + i ) = 0. Then a proof similar to that
of Lemma 2.14 of [6] shows that bm = 2dm, dm e U*(pt). Con-
sider H(Z) = 6 W Z + Z?m_iZ2 + ••• + b0Z

m+ι; we have: //(Z) -
dmZ(l + J(Z)) = b'm_xZ

2 + + b'0Z™+1 + F(Z), v(F) > 4(w + 1).
Then AH{D) = A[bf

m_{D
2 + + ^ i ) m + 1 ] + AF{D) and by tak-

ing the cup product by ^ 4 m + γ we obtain boU\ + ••• + bmU4m+\ =
^Mi + + ^ _ 1 w 4 ( m _ i ) + 1 . As seen before, we have: b'm_x = 2rf^_l5

d'm_ι € U*(pt). We repeat the same process and after a finite num-
ber of operations we get bmZ + + 6 0 Z m + 1 = AΓ(Z)(2 + / ( Z ) ) +
N(Z)9M(Z) being a homogeneous polynomial and iV(Z) a homo-
geneous formal power series such that v(N) > 4(m + 1 ) . Hence
bouι + -" + bmu4m+ι = M(D)A(2 + J(D)) n w4m+7 = 0. Similarly
CQV\ H h crV4r+\ = 0 which ends the proof of part (a).

(b) Suppose that a^w^ H V anw4n^ = 0. As in Proposition 2.6
of [6] we have an = Sen, en e U*(pή. We form anZ + + a0Z

n+ι -
enT(Z) = α ; . ^ 2 + + a'0Z

n+ι + FX(Z\ v{Fx) > 4(π + 1) and by
taking the cup-product by W4n+j we obtain: aow$ -\ h anw4n+i =
af

ow3+af

n_lW4{n^l)+3. As before, we have a'n_{ = Se^e^ e U+(pt).
We repeat the same process with af

n_ιZ
2 + a'n_2Z

3 -\ ha' 0Z n+ ι and
after a finite number of operations we get: anZ + + α 0 Z w + 1 =
M{(Z)T(Z) + Nχ(Z), i/(Nχ) > 4(Λ + 1), M\{Z) being a homogeneous
polynomial and iVΊ (Z) a homogeneous formal power series. The proof
of part (a) shows that bmZ + + b0Z

n+ι = M(Z){2 + J{Z)) + N(Z),
v(N) > 4(m + 1). The remaining part of (b) is evident. D

(2) Orders of the Generators.

LEMMA 2.5. Suppose t e U2n+\(BΓ), t Φ 0. If a e U^fjpt) is such
that a $ 2U4{pt) then at^O.

Proof. Since t Φ 0 there is an integer q > 0 such that / e Jq^n+i-q
and t £ / ^ - I , 2 Λ + I - ( ^ - I ) We have either q = 4s + 3 or q = 4s + 1.
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Suppose q = 4s + 3. We have the following commutative diagram:

y

where h is the canonical map: /** -> E™ = H*(BΓ, U*(pή) = U*(pt)<8>
H*(BΓ). It is enough to prove that in U*(pt) = 2[x\,X2,...,X4,...]
if a e U4(pt), a <£ 2U4(pt), b € U2k(pή, b $ SU2k(pt) then ab £
8#2(fc+2)(P*); w e m a y suppose that α and έ are monomials and then
the assertion is clear. The case q = As + 1 is similar. D

THEOREM 2.6. W<? have ordiu4n+3 = 2 2"+ 3.

Proof, (a) ordιυ3 = 23.
We have 0 = T(D) = 23D + H(D)D2 and 0 = T(D) Π wΊ = 22w3 +
H(D) n (D2 ΓΊ wη) = 2 % 3 because D2nw7 € C L ^ Γ ) = 0. Then
by using the edge homomorphism μ': U^BΓ) —»• H^(BΓ) = Zg we see
that 22iϋ3 ^ 0. Hence ordw3 = 23.

(b) Suppose ordιυ4z+3 = 2 2 / + 3, 0 < / < n - 1.
We have 0 = T(D) = 23Z)+2λ2D

2+λ3Z)3+ •+λn+ιD
n+ι+H(D)Dn+2,

λ2 € U~4(pt) = t/4(pί)> A2 $. 2U4(pt). Take the cup-product by
w4n+Ί: 23w4n+3+2λ2w4{n_ι)+3+λ3w4{n-2)+3 + • -+λn+ιw3 = 0 and af-
ter multiplication by 2 2 "- 1 we get: 22n+2w4n+3 + λ22

2nw4{n_l)+i = 0;
since ordίϋ4(M_i)+3 = 2 2 n + 1 we have 22nw4^n-η+3 φ 0 and by 2.5
λ22

2nw4(n_ι)+3 Φ 0 because λ2 <fc 2U4{pt). Hence 22n+2w4,,+3 φ 0.
Now we have: 2 2 n + 3 tϋ 4 n + 3 = -/l 2 2 2 n + 1 tϋ 4 ( n _ 1 ) + 3 = 0. It follows that
ordίϋ4/J+3 = 2 2 n + 3 which ends the proof of 2.6. •

LEMMA 2.7. If Gn = U4n-2(pt)w3 + U4n{pt)ux + U4n(pt)vu G'n =
U4n(pt)Wi + U4n+2{pt)u\ + U4n+2{pt)v\ then we have the exact se-
quences:

0-+Gn^ U4n+ι(BΓ) Λ t/4(n_1)+1(2?Γ) - 0

0 _ G'n-+ U4n+3(BΓ) Λ U4{n.ι)+3(BT) - , 0

Proof. We wish to show that the sequence:

0 - <?„ - U4n+ι(BΓ) Λ t/4 ( n_1 ) + 1(5Γ) - 0
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is exact. It follows by 2.3 that Δ is surjective and Gn c kerΔ. Suppose
0 = aw3 + bu\ + cv\, a e U4n-2(pή, b e U4n(pή, c e U4n{pt). Then
aw3e J^n-2 and since bu\ + cv\ e J\y4n we have a ^ G JIM-^ D

J\i4n. If h denotes the quotient map: Jχ4n-i —> hM-il^IM-\ =
H3(BΓ, U4n-2(pή) = U4n-2(pt)/W4n-2(pt), it follows that h(aw3) =
0 and consequently a = 23α'. Hence aw3 = ar23w3 = 0 and then
bu\ + cv\ = 0. Similarly we have b = 2b\ c = Id which means
that 0 = aw3 + bux + cvx {a e U4n-2{pt), b e U4n(pt), c e U4n(pή)
if and only if a = 2 V , b = 2b1, c = 2c1. Hence orάGn = 2k,
k — 3RankU4n-2(pt) + 2RankU4n(pt). Now, we have ordkerΔ =
ordt/4«+i(^Γ)/ordC/4(«-i)+i(^Γ) = 2k by 2.1. From Gn c kerΔ and

ordG>j = ordkerΔ we see that the sequence 0 —• Gn —• U4n+ι(BΓ) —*
l/4(Λ_i)+i(5Γ) —• 0 is exact. A similar proof shows that the sequence

0^G'n-+ U4n+3(BΓ) Λ U4{n_ι)+3(BΓ) -> 0 is exact. D

THEOREM 2.8. We have ordw4rt+i = ordu^+i = 2n+ι.

Proof. If n = 0 the assertion is clear. Suppose ordw4ί+i = 2 / + 1,
0 < i < n - 1. Then A(2nu4n+ι) = 2nu4(n-ι)+ι = 0 and since the

sequence 0 —• Gn —• t/4Λ+i(5Γ) —• C/4(W_i)+i(5Γ) —• 0 is exact, (see
2.7), there are a e U4n-2(pή, b e U4n(pή, c e U4n(pt) such that
2nu4n+\ = aw3 + bu\ + cυ\. It follows that -bu\ + 2n u4n+\ = 0 and

u4n+\ = 0; hence ordw4w+i < 2Π + 1. By Theorem 2.4 there are
#(Z) inΩ* such that: 2nZ-bZn+ι = M(Z)(2+J(Z))+N(Z),

v(N) > 4(/i + 1). If Λf(Z) = ΛiZ + h2Z
2 + , then we have:

- bZn+x ={2 + μ{Z + μ2Z
2 + ){hxZ + h2Z

2 + )

, μ ι ί W.ipt).

A straightforward calculation shows that 2n~j\hj and 2n~J'+ι \ hj, 1 <
7 < «. We have: - ^ = 2hn+x + μ{hn + μ2hn-X + + /έΛΛi; as 2|Λ7 ,
1 < ./ < Λ - 1, 2 { λΛ, 2 f μi we have 2 -f ft. As a consequence we get
2WW4AZ+1 ^ 0 and ordw4w+i = 2 Λ + 1 . Similarly ord^ 4 w + 1 = 2 Λ + 1 . D

III. U*(BΓk)9 k > 4: generators, orders and relations. We have
seen in [6], Section III, that there are elements Dk e U4(BΓk), Bk e
U2(BΓk), Ck G U2(BΓk) defined as Euler classes of irreducible uni-
tary representations η\,ξ2,ξ3 of I \ . Moreover in the same article
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(Sec. Ill) we have determined three homogeneous formal power se-
ries Tk(Z) e Ω4, Jk(Z) e Ωo, Gk(Z) e Ω2 such that Bk(2 + J{Dk)) +
Gk(Dk) = Ck(2 + J(Dk)) + Gk(Dk) = 0 and there is G'k{Z) € Ω2 sat-
isfying Gk(Z) = (2 + J{Z))G'k{Z). Then with B'k = Bk + G'k{Dk),
C'k = Ck + G'k(Dk) and μ being the edge homomorphism: U2{BΓk) —»•
H2{BTk) we see that μ(B'k) = μ(Bk) and μ(C£) = μ(Ck) are genera-
tors of the group H2(BΓk); μ{Dk) is obviously a generator of H4(BTk).
Moreover B'k(2 + J(Dk)) = C£(2 + /(Z>*)) = 0.

Now let w'4n+3 e U4n+3(BΓk) be [S4"+3/Γk,q'], q' being the in-
clusion S*n+3/Γk c .Srfc, u\n+ϊ = B'kn w'4n+3 € Km+i, v'4n+ι =
C'k ΓΊ w^4n+1 € U4n+\{BTk). Then we have the following theorems
whose proofs are identical respectively to Theorem 2.2 and Theorem
2.4 and therefore will be omitted.

THEOREM 3.1. The set {u'^^v'^^w'^^},,^ is a system of gen-
erators for the U(pt)-module U*(BΓk). D

Now let W, V{, V[ be the L/*(pί)-submodules of U*(BΓk) generated
respectively by {w'4n+3}n>0, {w'4n+1}«>o, {«4«+i)«>o

THEOREM 3.2. (a) U*(BΓk) = W® V[ θ V{.

(b) In U2p+ι(BΓk) we have 0 = aow'3+aιw'Ί + • +anw'4n+3 = bQu\ +
••• + bmu'4m+ι iff there are homogeneous polynomials M{Z),Mχ{Z)
and homogeneous formal power series N{Z),Nχ(Z) o/Ω* satisfying:
bmZ + bm^Z2 + ••• + b0Z

m+ι = M(Z)(2 + J{Z)) + N{Z), anZ +
an-XZ

2 + ••• + a0Z
n+ι = Mx{Z)Tk{Z) + N{(Z), v{N) > A{m + 1),

u(N\) > 4(/i + 1). Moreover bou\ + ••• + bmu'4m+x = 0 iffboυ[ + ••• +
bmV4m+ι = 0. D

There is a Smith homomorphism Δ: U*(BΓk) —• U*(BTk) of degree
- 4 such that

Δ « M + 3 ) =DkΠ w'4n+3 = w 4 ( Λ_1 ) + 3,

A(u'4n+ι) = Dkn u'4n+ι =Dkr\ (B'k n w'4n+3) = B'kn (Dk n w'4n+3)

= B'k n <(«-l)+3 = «4(«-l)+l.ΔK«+l) = V\{n-\)+\

If

Fn = U4n(pt)w'3 + U4n+1{j>t)u\ + U4n+2(pt)v[,

K = U4n-2(pt)w'3 + U4n{pt)u\ + U4n(pt)υ[
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then we have:

LEMMA 3.3. The following sequences are exact:

0^Fn-> U4n+3{BΓk) Λ U4(n.lH3(BΓk) -> 0,

0 - F,J -> U4n+ι(BΓk) Λ U4(n-l)+ι{BΓk) - 0.

Proof. The proof is similar to that of Lemma 2.7. α

It remains to calculate the orders of the generators.

THEOREM 3.4. We have: o r d ^ w + 3 = 22n+k, n > 0.

Proof. We have 0 = Tk{Dk) = 2kDk + H{Dk)D2 and then 0 =
{2kDk + H{pk)D\) Π wΊ = 2kw3 because: DlnwΊ e U-X{BTk) = 0.
Now if μ! is the edge homomorphism: U3{BYk) —> H3{BTk) = l2k
then we have μ'(wf

3) = 1 £ Z2fc and consequently 2k~ιw3 Φ 0. Then
ord^3 = 2k.

Suppose t h a t oτάw'4i+3 = 22i+k, 0<i<n-l. T h e n

0 = Tk(Dk) n w'4n+1 = 2kw'4n+i + 2k-2λf

2w'4{n_ι)+3

H 1-2 ^ / ^ 4 ( w _ i ) + 3 H I- 2A A : _ 1 '^ 4 ( r t

^kw4(n-k+l)+3 " •" ^/w^ίΛ-m+lJ+S "̂

the number of non-zero elements in this sum being finite. If 3 <

/ < k - 1 we have 2 2 "- 1 + / c - / w^_ / + 1 ) + 3 = 0 because ord^4 ( w _ / + 1 ) + 3 =

22(n-i+i)+* and2(«-/+l)+A: < 2«-l+A:-/ since i > 3. If m >k{>3)
W P h a v e ?2n~^ΊUf — Π hpraiiQp nrH ?/J; — ?2(«-ra+l)+/:

we nave z ^4(/i-/w+i)+3 ~ u D e c a u s e ora^4(«-m+i)+3 " z

and 2(n - m + 1) + A: < 2n - 1 since k < m < 2m - 3. It follows that

22n-ι+kw^ + 22n-*+kλ'2w'Λn_x = 0. Now 22n~^kw\n_x φ 0 because
oτdw'4n_x = 22n~2+k\ since λ;

2 £ 2U~4(pt) we have 2 2 w- 3 +^Λ' 2^_ 1 φ
0 (see 2.5). Hence

22n-ukw'4n+3 φ 0 and 2 2 w + / : ^ + 3 = -22^-χ^kλ'2w'4n_x = 0.

We have proved that o r d ^ 4 r t + 3 = 22n+k. π

THEOREM 3.5. We have: ordw'4A2+1 = o r d ^ w + 1 = 2W+1, n > 0,
therefore independent ofk.

Proof. The proof of 3.5 is based on Theorem 3.2 and Lemma 3.3
and is exactly the same as the one of Theorem 2.8. D
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