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HYPERHOLOMORPHIC FUNCTIONS AND
HIGHER ORDER PARTIAL DIFFERENTIAL

EQUATIONS IN THE PLANE

R. Z. YEH

We derive a Taylor formula for matrix-valued functions, in partic-
ular for hyperholomorphic functions. The latter functions are matrix-
valued functions that satisfy a certain type of first order systems, for
which we make no ellipticity assumption. For solutions of higher
order linear partial differential equations with constant coefficients
in the plane we show the existence of hyperconjugates, an obvious
generalization of harmonic conjugates in complex analysis. By way
of hyperconjugates we find series expansions for solutions of partial
differential equations in terms of polynomial solutions. These poly-
nomials form a basis for real analytic solutions at the origin. An
algorithm for obtaining all such polynomials is summarized at the
end. This paper continues in the tradition of hypercomplex analysis.

1. Matrix-valued functions. Matrix-valued functions are freely
added or multiplied whenever their sizes are compatible. In writing
the product FGwe automatically assume the number of columns of
G to be equal to the number of rows of G. We shall not single out
any particular class of matrix-valued functions to form an algebra.
The underlying scalars for the matrices can be real, complex, or per-
haps even elements of a Banach algebra. Most of the basic concepts
in the calculus of scalar-valued functions can be readily extended to
matrix-valued functions by means of "componentwise applications".
However, certain complications are expected because matrix multipli-
cations are not commutative. Although we need not restrict to two
independent variables, we will do so in order to simplify our presen-
tation.

Let F belong to class C1 in some unspecified domain, namely every
component function fij(x,y) has continuous first order partial deriva-
tives, then the differential of F or (dfij) is conveniently expressed as
dF = Fxdx + Fy dy where the subscripts represent componentwise
partial differentiation. More generally we consider a differential form
P(x,y) dx + Q(x,y) dy, which is said to be exact if there exists an F
such that dF = P dx + Q dy, or equivalently, P = Fx and Q = Fy.
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A differential form P dx + Q dy is said to be divisible if there exist
F and G such that

Pdx + Qdy = F(dG) := FGX dx + FGy dy,

or alternatively

Pdx + Qdy = (dF)G := FxGdx + FyGdy.

If the differential of H is divisible, say if

dH = F(dG)9

that is, Hx = FGX and Hy = FGy, then we say that H is left-differen-
liable with respect to G with a left-derivative F, and we may write
dH/dG = F. Likewise, if H, F, and G are such that

dH = (dF)G,

that is, Hx = FXG and Hy = FyG, then we say that H is right-
differentίable with respect to F with a right-derivative G, and we may
perhaps write dF \ dH = (?. However, in most cases it will suffice to
write Hf to denote either of these derivatives.

A differential form is not necessarily exact; neither is a divisible
differential form. Nevertheless, the well-known criterion for exactness
of differential forms in general may be applied in particular to divisible
differential forms to produce a useful criterion.

PROPOSITION 1. If F belongs to C1, and G belongs to C2 in some
simply-connected domain Ω, then F(dG) is exact if and only if

FxGy = FyGx in Ω.

Proof. As is well known, in a simply-connected domain, Pdx+Qdy
is exact if and only if Py = Qx. Applying this criterion to F(dG) =
FGX dx + FGy dy, we obtain

(FGx)y = (FGy)x

whence follows
FyGx = FxGy

since Gxy = Gyx because G belongs to C 2 .
We can likewise show that in a simply-connected domain (dF)G

is exact if and only if FxGy = FyGx assuming that F belongs to C 2

and G belongs to C 1 . Although our exactness criterion is valid only
in a simply-connected domain, it does not prevent a divisible differ-
ential form from being exact in Ω regardless of whether Ω is simply
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connected or not. If F{dG) is exact in Ω, then F{dG) = dH for
some H in Ω. In this case, we say that F is left-antidifferentiable
with respect to G, and H is a left-antiderivative of F with respect to
G. We may write H = jF(dG). Although fF(dG) is not unique,
no statement shall be made about f F(dG) unless it is valid indepen-
dently of choices of antiderivatives. Likewise, if (dG)F = dH, then
H is a right-antiderivative of F with respect to G, and we may write
H = J(dG)F. However, in most cases it will suffice simply to write
F* for the antiderivative of F'.

The line integral of a differential form is defined componentwise:

/

/ r \

Pdx + Qdy = I / pu dx + qu dy I
\J γ )

where γ is a path of integration (having a continuous tangent vector).
We have the following fundamental theorem of line integral, which
seems quite obvious.

THEOREM I. If a divisible differential form F(dG) is exact in Ω,
then

Jγlγ

where γ is a path of integration connecting (xo,yo) to (x\9y\) in Ω, and
F # is an antiderivative of F with respect to G.

Proof. Since F(dG) is exact, there exists an F# such that F(dG) =
dF*. Consequently

ίF{dG) = ί dF* = F\xuyx) - F*(xo,yo).
Jγ Jγ

In practice it may not be easy to find F#.

Every matrix-valued function Z is differentiable with respect to Z
since dZ = IdZ, but powers of Z need not be differentiable with
respect to Z. For example, we can go no further than

dZ2 = d{ZZ) = (dZ)Z + Z(dZ)

unless (dZ)Z = Z(dZ)9 in which case we could go on to

dZ2 = (2Z)(dZ) = (dZ)(2Z).

Therefore, following Hile [8], we shall say that Z is self-commuting
inΩif

Z(xuyι)Z(x2,y2) =
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for any (x\9y\) and fa,yi) i n Ω. For example, Z = Ax + By is self-
commuting if the constant matrices A and 5 commute. Needless to
say, Z has to be a square matrix in order to be self-commuting.

PROPOSITION 2. If Z is self-commuting and Cι in Ω, we have

(1.1) Zx,Zy and Z commute pairwise, in particular

Z(dZ) = {dZ)Z.

(1.2) Zx,Zy, and Z" 1 commute ifZ is invertible, and thus

Z~\dZ) = (dZ)Z'K

(1.3) dZn = (nZn~ι)dZ = dZ{nZn~x) for all integers n.

(1.4) d{Z - Z0)
n = n(Z - Z0)

n~ι dZ = dZ[n(Z - Z0)
n~l]

where Z o = Z(x0, y0) and (xo,yo) e Ω.

Proof. We show (1.1) by writing out the difference quotients for Zx

and Zy and applying the self-commuting property of Z. (1.1) leads to
(1.2), and together they imply (1.3) and (1.4). We omit the details.

One interesting thing about self-commuting Z is that Z-differen-
tiability and Z-antidifferentiability are not unrelated, and this in turn
leads to some nice theorems. Three such theorems, 2 to 4, are stated
below though they are not used in the rest of the paper except Theo-
rem 4.

LEMMA 1. IfF is right-differentiable with respect to Z in a simply-
connected domain, and Z is self-commuting and C2, then F is right-
antidijferentiable with respect to Z.

Proof. Suppose dF = (dZ)G9 or

Fx = ZXG an

Multiplying with Zy and Zx respectively, we have

Fx = ZXG and Fy = ZyG.

ZyFx = ZyZxG and ZxFy = ZxZyG.

But since ZxZy = ZyZx by Proposition 2, we obtain

ZXFy — ZyFχ,

which is the exactness criterion in Proposition 1; hence dH = (dZ)F
for some //, and F is right-antidifferentiable.



HYPERHOLOMORPHIC FUNCTIONS 383

THEOREM 2 (Cauchy integral theorem). If F is right-differentiable
with respect to a C2 and self-commuting Z in a simply-connected do-
main Ω, then

(1.5) f(dZ)F = 0
Jγ

for any closed path of integration γ in Ω.

Proof. By Lemma 1, there exists H such that (dZ)F = dH. Conse-
quently

f(dZ)F = ί dH = 0
Jγ Jγ

for any closed γ in Ω.

THEOREM 3. IfF is right-antidijferentiable with respect to a C2 and
self-commuting Z in a simply-connected domain, it is infinitely many
times right-antidifferentiable with respect to Z.

Proof. If F is Z-antidifferentiable with an antiderivative F # , then
since F # is Z-difFerentiable, by Lemma 1 F# is Z-antidifferentiable
with antiderivative Fm. Repeating the same argument on F # # , we
show the existence of the next antiderivative, etc.

We now consider the following reversal of the preceding. Here we
no longer need the simply-connectedness of the domain, but instead
we need the invertibility of either Zx or Zy in the domain.

LEMMA 2. IfF is C 1 and right-antidifferentiable with respect to Z,
and Z is self-commuting, C2 and has invertible Zx or Zy, then F is
right-differentiable with respect to Z.

Proof. Suppose (dZ)F = dH, or

ZXF = Hx and ZyF — Hy.

Differentiating, we have

ZxyF + ZxFy = Hxy and ZyxF + ZyFx — Hyx,

whence follows ZxFy — ZyFx. Multiplying (Zx)~ι, we obtain

Fy = (ZX)~lZyFX.
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Hence

dF = Fxdx + (Zx)-ιZyFxdy = (Idx + Z~ιZydy)Fx

= (Zx)-\dZ)Fx = ι

THEOREM 4.I/F is Ck, k > 1, flftd right-differentίable with respect
to Z, am/ Z w self-commuting, Ck and has invertible Zx or Zyy then
F is k times right-differentiable with respect to Z.

Proof. The case k = 1 is trivial. So suppose k > 2. Let
{dZ)F'\ then i ^ = Z^i7 ' and F' is C^" 1 with & - 1 > 1. Hence by
Lemma 2 F1 is Z-differentiable. dF' = (dZ)Fn and Fx = Z^i7", so
i 7 " is C^~2. Continuing thus, we reach F^k\ which is C^"^ = C°.

We rely on integration-by-parts to derive our Taylor formula. There
are actually two parts to this technique, which we formulate separately
as Propositions 3 and 4.

PROPOSITION 3. For F and G of class Cι in Ω, and any path of
integration γ from (xo,yo) t0 ( *i>yi) in Ω, we have

(1.6) f(dF)G = FG Xl^ + [(-F)dG.
Jy (wo) Jy

Thus, either both integrals are independent of paths connecting (XQ9 yo)
to (x\,y\), or neither is.

Proof. Since d(FG) = (dF)G + F(dG)9

ί d(FG)= f(dF)G+ f F(dG).
Jy Jy Jy

Hence,

ί(dF)G= fXuyi d{FG)- f F{dG).
Jy J(χo,vn) Jyfγ

Needless to say, we have likewise

(1.7) [F(dG) =
dF(-G).
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PROPOSITION 4.I/F is left-differentiable, and G is right-antidiffer-
entiable, both with respect to some Z, then

(1.8) f(dF)G= ί F'{dG%
Jγ Jγ

where Fr is the left-derivative, and G* is a rίght-antiderivative with
respect to Z.

Proof, The formula follows from

(dF)G = (F'dZ)G = F\dZG) = F'dG*.

Again needless to say, we have likewise, under suitable assumptions
on F and G,

(1.9) / F(dG)= ί(dF*)G'.
Jγ Jγ

We now attempt to approximate a given F by powers of some self-
commuting Z. For simplicity of notation we shall use z to represent
the point (x9y) without thinking of z as a complex number. The line
integral fγ(dF)G may be more fully expressed as / dF(z)G{z) or
/ dF(z)G(z) with z emphasizing its being a variable of integration.
The use of dummy variable z is especially appropriate when we have
to consider, for example, /z

z dF(z)G(z, z), in which G depends on z
as well as a fixed z. The upper and lower limits of integration appear
only when the line integral is independent of the paths connecting ZQ
to z.

THEOREM 5 (Taylor formula). Let F be (k+ \)-times right-differen-
tiable with respect to a self-commuting Z in Ω. Let z 0 be a fixed point
in Ω; then for any z in Ω, we have

k

(1.10) F(z)= Σ U )

7=0

Γ d[-(Z - Z)k+ι/(k
J ZQ

where Z = Z(z)y ZQ = Z(ZQ), and the line integral is taken along any
path of integration connecting ZQ to z in Ω.

Proof. We give a straightforward derivation, using the integration-
by-parts formulas. All the line integrals are independent of the paths
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of integration since the first one clearly is

F ( z ) - F ( z o ) = ΓldF(z) = [Z dI*F'(z) by (1.9)
J Zo J Zo

= Γ d[-{Z - Z)]F'(z) where we picked Z - Z for /*
J ZQ

= [-(Z - Z)F'(z)YZo + J\z - Z) dF'(z) by (1.6)

= (Z - ZQ)F'(ZQ) + ί d(Z - Z)*F"{z) again by (1.9).

But now (Z - Z ) # may be chosen to be [-(Z - Z)2/2!] in view of
(1.4) of Proposition 2, and this is where we need the self-commuting
property of Z. Thus we have shown the Taylor formula for k = 1. By
repeated applications of formulas (1.6) and (1.9) we eventually arrive
at the formula (1.10). One can also write out a formal inductive proof.

We state the following Leibniz formula, which will be needed later
(in Theorems 7 and 9 below).

PROPOSITION 5 (Leibniz formula). IfG(z,z) and H(z) are C 1 in
Ω x Ω and Ω respectively, then for any z0 and z in Ω, we have

(1.11) A Γ G(z,z)dH(z)=
O X

 JZQ

and ditto for d/dy, provided that the line integral on the left is inde-
pendent of the paths of integration from ZQ to z.

Proof. We need only add the following equalities:

^ jZ G(z, z)Hx(z) dx = jZ Gx(z9 z)Hx(z) dx + G(z, z)Hx(z),

^- [ZG(z,z)Hy(z)dy= [ZGx(z9z)Hy(z)dy + 0.
OX JZo JZo

Both of these follow from the Leibniz formula for scalar-valued func-
tions.

2. Hyperholomorphic functions. Let M be a constant square matrix.
A matrix-valued function F is said to be M-holomorphic in a domain
if it belongs to C 1 and satisfies the first order system

(2.1) Fy = MFx



HYPERHOLOMORPHIC FUNCTIONS 387

in the domain. Among all the Λf-holomorphic functions for a given
M, the key role is played by

(2.2) Z=xI + yM,

which is clearly self-commuting and satisfies (2.1). It turns out that
Λf-holomorphicity is equivalent to Z-differentiability (see Theorem
6 below). This allows us to apply results of the last section to M-
holomorphic functions.

Following complex analysis, we say that a matrix-valued function F
is M-analytic (or Z-analytic) at the origin if it has a series expansion
in powers of Z:

oo

(2.3) F = Σ{ZJ/j\)Aj
7=0

in an open disk around the origin, where Aj are constant matrices
having the same number of columns as F.

Clearly, if F is M-analytic, it is M-holomorphic as termwise dif-
ferentiation of (2.3) will verify (2.1). However, the converse is not
true (see Theorem 7 below), and here we part company with complex
analysis.

THEOREM 6. F is M-holomorphic if and only if F is differentiable
with respect to Z = xl + yM. The derivative F1 is equal to Fx.

Proof. If F is M-holomorphic,

dF = Fxdx + Fy dy = Fxdx + MFX dy

= (Idx + Mdy)Fx = (dZ)Fx.

Thus, F is Z-diίferentiable with the derivative equal to FX9 also to be
denoted by D^F.

Conversely, if F is Z-differentiable,

dF = dZF'

so that Fx = ZxF
f = IF' and Fy = ZyF

f = MFf. Consequently
Fy = MFX, and F is M-holomorphic.

If Z is self-commuting, then Zn are Z-differentiable by Proposition
2, and hence we have

COROLLARY 6a. Zn are M-holomorphic for all integers n..

COROLLARY 6b. F is M-holomorphic and Ck if and only ifF has a
continuous kth order Z-derivative F^k\
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Proof. First assume F to be Ck and M-holomorphic, hence Z-differ-
entiable by Theorem 6. Then in view of Theorem 4, since Z is trivially
Ck and Zx trivially invertible, we have F^ = D^k^F, which is con-
tinuous because F is Ck.

Conversely, if a continuous F^ exists, i 7 ' easily exists, and so F is
M-holomorphic by Theorem 6. To show F is C*, using the continuity
of F<*> = D^k^F9 we see

]){k-jj)p =

are all continuous for 0 < j < k. In other words, F is Ck.

COROLLARY 6C (Taylor formula). IfF is M-holomorphic and Ck in
a neighborhood around the origin, then

k-\

Σ'
j=o

The proof follows from Theorem 5 and Corollary 6b.

THEOREM 7 (Taylor expansion). F is M-holomorphic and real ana-
lytic at the origin if and only ifF is M-analytic at the origin with

k-\ r z

(2.4) F{z) = Σ(ZJ/fi)FU)(0) + / d[-(z - Z)k/k\]FW(z).
~k Jo

(2.5) F(z) =
7=0

Proof. First suppose F is Λ/-holomorphic and real analytic at the
origin; then in an open disk around the origin we have

oo

(2.6) F(z)

where Fj is a matrix consisting of y'th degree homogeneous polynomi-
als in x and y and possibly also of zero polynomials. On the other
hand we also have the Taylor formula (see Corollary 6c above):

k

(2.7) F(z) = YμJlJ\)F^{0)
j=o

= Γ d[-(Z-Z)k+ι/(k+l)\]Fik+1\z) foτk>0,
Jo
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where we used the fact that F is infinitely many times Z-differentiate
in view of Corollary 6b. By combining (2.6) and (2.7) we now show
inductively

(2.8) Fj(z) = (ZJ/j\)FU\0) for j > 0.

Letting z = 0 in (2.6) and (2.7), we see Fo = F(0) since all homoge-
neous polynomials of degree one or higher vanish at x = y — 0. Next,
assume as induction hypothesis

(2.9) Fj = (Zj/j\)F^(0) foτO<j<k-l.

Now (2.6), (2.7) and (2.9) imply

(2.10) Fk +
j=k+\

• Γ[(Z-Z)k/k\]dF^(z),
Jo

where we wrote the integral term in an alternative form via integration-
by-parts formula (1.8) in order to apply the Leibniz formula (1.11).
Differentiating both sides of (2.10)by applying dk/dxidyk~i=D^k-i\
for 0 < i < k, we obtain

(2.11) D^k-^Fk+ JΓ DM
j=k+\

s:
Note that in applying the Leibniz formula (1.11) the term G(z,z)
(Z - Z)k/k\ vanishes. Setting z = 0 in (2.11), we obtain

(2.12) DV>k-»Fk = / ^ - ^ ( Z V f c O ^ ί O ) for 0 < i < k

since all homogeneous polynomials of degree one or higher vanish at
z = 0, and so does the line integral. Having all the kth order partial
derivatives equal by (2.12), Fk and (Zk/k\)F^k\0) can differ only by a
polynomial of degree at most k - 1. But since Fk and (Zk/k\)F^k\0)
are both homogeneous of degree k, they must be equal.

(2.13) Fk = (Zk/

This proves the first half of the theorem.
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To prove the converse, assume F is M-analytic at the origin. We
have then

(2.14) F =
7=0

where it is easily checked that Aj = F (^(0), and (2.14) easily implies
that F is real analytic since each component of F has a power series ex-
pansion. To see F is M-holomorphic, we differentiate (2.14) termwise
to show Fy = MFX. This completes the proof of the theorem.

We shall call an Λf-holomorphic column-vector-valued function an
M-conjugation. Note that if F is Λf-holomorphic, then each column
of F is an M-conjugation since equation (2.1) can be split into as
many equations as there are columns in F. We shall refer to every M-
conjugation as an M-conjugation of its first component, and all lower
components as M-conjugates of the first component. The existence
of such "hyperconjugates" is important if we are to apply any theory
of hyperholomorphic functions to solutions of higher order partial
differential equations.

3. Partial differential equations. We consider equations in the (ΛΓ, y)-
plane of the form

, „ , , dmu dmu dmu dmu Λ

where m>2 and the coefficients αo, # i , . . . , αm_i are real or complex
constants, with the last coefficient am normalized as 1. Letting

L = OQD^^ + aιD(m-ι>V + ... + D^m\

we condense (3.1) to Lu = 0, and refer to u loosely as a "solution" of
L. Letting A = (α0, β\9 , <Zm-i> 1)? we can also write (3.1) as

(3.1a) AV{m)u = 0,

where the column vector V^u is the mth order hypergradient of u.
The above equation in V(m)w can be further rewritten as a first order
equation in V^" 1 ^, namely

(3.1b) (flo,...,am. {)[V^- ιh]x + (0,...,0, l H V ^ H = 0.

This last equation will be put into a first order system satisfied by
V^-^w (see Theorem 8 below).
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In elementary calculus one learns to recover a function from its
gradient via a line integral, namely

X{x,y)dx + Uy(x,y)dy,

which can be written more concisely as

u(z) = u{z0) + / dzVu(z),
J ZQ

or somewhat artificially as

u(z) = u(zo)+ Γ d[-{z-z)]Vu{z).
J ZQ

It turns out that this last formula can be generalized so that one can
also recover u from its hypergradient V(m^w. We state the formula for
m = 2, and explain the notations.

u(z) = u{z0) + (z -

</[-(z-Γ
Jz0

Here z is not meant to be a complex number, but rather a uhypernum-
ber" obeying the following conventions: z = (x,y) z 2 = (x 2,2xy yy

2),
z3 = (χ3

? 3x2y, 3xy2, j 3 ) , and so on; also

(z-zo)
2 = (χ-xo,y-yo)2

= ((x - x0)
2,2(x - xo)(y - y0), (y - y0)

2),

d{z - z)2 = (d(x - x)2,2d(x - x)(y - y), d(y - y)2).

The general recovery formula, proved in [9], is as follows:

m-\

d[-(z -

(3.1c) u(z) =
j=o

Γ
J ZQ

For a later application we will write this formula in yet another form.
Let X be an infinite square matrix whose entries are all zero except
the diagonal entries consisting of x's and the supradiagonal entries
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consisting of y% so that the first few rows of X look like

= (x9y9O9O9...)9

= ( 0 , x , y , 0 9 . . . ) ,

where Ei shall always denote the zth unit row vector of appropriate
dimension determined by the context in which it appears. We note
that the power Λ7 has rows each of which is essentially a copy of zJ\
For example, for j = 2 we have

EγX
2 = (x2

92xy9y
2

9090909...)9

Using E\X2 in the place of z2, we would like to rewrite

0) as

except that on the right V(2)w(z0) as a column vector is too short to
match the row vector E\X2. Therefore, henceforth whenever V^u
takes part in a matrix multiplication, we shall automatically assume
V(m)w to have been extended to an appropriate length by addition of
as many O's as necessary. With these notational agreements we can
now rewrite our recovery formula (3.1c), where for simplicity we take
ZQ = 0, as follows:

m-\

u(z) = EιΣ[XJ/
7=0

Γ
Joo

We now go on to Theorem 8 mentioned after the equation (3.1b).

THEOREM 8. Ifu is Cm and Lu = 0, then V^m~^u is Cι and M-
holomorphic, [ V ^ " 1 ^ ] ^ = M[V^m~ι>ju]x, whereM is themxm associ-
ated matrix ofL, consisting of 0 's everywhere except the supradiagonal
consisting of \'s and the bottom row consisting of -ao,-a\,...,
-am-\ {see M below in the proof).

Conversely, if an m x 1 column vector f is C 1 and M-holomorphic in
a simply-connected domain, i.e.,

(3.2) iy = MίX9

then there exists a Cm solution Lu = 0 such that V ( m - 1 )w = f. If
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furthermore f is Ck, k > m, then every component off is a Ck solution
ofL.

Proof. To see V(m-1)w is Λ/-holomorphic we need to check

(3.3)

Uχx...x

Uχχ...y

V Uyy...y J y

( o
0

0

1

0

0

1

-fli -a2

0 A

0

1

-am-\ J

uxx. ..y

\ uyy...y J x

But the bottom row of (3.3) is just a restatement of Lu = 0, and the
upper rows merely state the well-known equalities of mixed partial
derivatives under the sufficient smoothness condition Cm.

Conversely, if f satisfies (3.2), the upper rows of (3.2) imply com-
patibility among the components of f so that under the assumptions
of C1 and simply-connectedness of domain f is guaranteed to be "hy-
perexact", namely f = V^m~ι^u for some u (see [9]). The substitution
of f = V(m-1)w in (3.2) shows Lu = 0 from the bottom row of (3.2).
If furthermore f happens to be at least Cm, then

Lΐ = L(V(m"1}w) = V(m'x\Lu) = 0,

where L and V ( m - 1 ) commute because u is C2m~ι. This completes
the proof.

According to the last statement of the theorem just proved, if f is
Ck

9 k > m, and Λf-holomorphic where M is the associated matrix of
L, then every component of f is a Ck solution of L. Can we have all
the Ck solutions of L by merely looking into the components of all
the Ck Λf-holomorphic f? The following theorem guarantees this. In
fact, it turns out that we need only look at just the first component
of f. We see, therefore, that every Ck solution of Lu = 0 has a Ck

M-conjugation, k > m. The proof is a bit cumbersome.

THEOREM 9.1fu is Ck, k > m, and Lu = 0 in an open disk around
the origin, then there exists an f also Ck with iy = Mix such that u = f\
where f is the first component off and M is the associated matrix of
L. For a real analytic u, f will be real analytic.
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Proof. With Z = xl + yM we claim that f defined below satisfies
the requirement of the theorem.

m-2

(3.4) f(z)= Σ(ZJ/
j=0

Jo
d[-(Z - Z)m-ι/(m -

o
Note that we are regarding V^w(O) as an m x 1 column through the
a forementioned convention of appending m—j zeros if j < rn—2. We
point our however that if constants other than O's are used, we would
end up with other M-conjugations of u. The fact that M-conjugations
of u are not unique is not altogether unexpected. We justify our claim
by checking the following four points.

First. The line integral in (3.4) is independent of the path going
from 0 to z. Referring to Proposition 1 we need only show the equality

= [-(Z - Zr-ι/(m - l)\]y[V

which in view of (3.3) is equivalent to the identity

[ ( Z - Z ) m - 2 I ] M [ ^ m - ι ^ ύ h = [ ( Z - Z ) m 2

Second. f\ = u. To see this, we note from (3.4)

m-2

j=o

+ Ex Γ d[-{Z - Z)m-χl{m
Jo

We also note from (3.Id)

m-2

j=o

Ex Γ d[-(X - X)m~l/(m -

If we write out the matrices Z, Z2,...,Zm~ι (see also Example 1
below), and compare their first rows with those of X, X 2 , . . . ,X m - 1 ,
then it becomes clear that the two expressions for f\{z) and u{z) above
are equal.

Third. If u is Ck or real analytic, so is f. To see this we need to
differentiate the integral term, call it R(z), in (3.4). But in order to
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apply the differentiation formula (1.11) we first rewrite R(z) using the
integration-by-parts formula (1.6):

(3.5) R(z) = [Zm-ι/(m - l

Z ) m - ι[Z[(Z - Z)m-ι/(m -
Jo

Differentiating according to (1.11), we have for 0 < j < m - 1

[
o

Γ Mj d[V{m-ι)u(z)]
Jo

Now if u is Ck, V(m-Vu is Ck^m~x\ which makes
Ck. Clearly, if u is real analytic, so is f.

Fourth. fy = Mix. Since Z, Z 2 , . . . ^ " 2 " 1 are all ΛΓ-holomorphic
by Corollary 6a, we need only concentrate on the integral term, call it
R{z), in (3.5). Using the formula (1.11), we see

[R(z)]y = Γ[(Z - Z)m-2/(m - 2)\]Md[V^m-^u{z)]
Jo

= M ί\(Z - Z)m-2/(m - 2)\]Id[V{m-ι)u(z)]
Jo

= M[R(z)]x.

This completes the proof of Theorem 9.

THEOREM 10. If u is real analytic at the origin, and Lu = 0, then u
has the following series expansion in an open disk around the origin.

m-\

u(z) = E{J2
7=0

x

where E\ = (l,0,0,...,0), Z = xl + yM, and M is the associated
matrix ofL.

Proof. Since u is a real analytic solution of L, by Theorem 9 it has a
real analytic M-conjugation f, which by Theorem 7 has an expansion

oo

E
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in powers of Z,

(3.6) t(z) =
7=0

where f^ is the jth derivative of f with respect to Z and has the
expression Z)(7θ)f (see Theorem 6). Taking only the top row of (3.6),
we have

(3.7) u(z)=Eι

j=o

Note that all the entries of every ZJ are solutions of L (see the last
statement of Theorem 8), and hence (3.7) may be considered as the
rearrangement of the ordinary Taylor series of u, which is in terms of
powers of x and y, into one which is in terms of polynomial solutions
of u. However these two series are distinct only from mth degree
terms onward. For j < m - 1 the top of ZJ consists merely of those
powers in x and y that appear in the binomial expansion of (Λ; +yy.
In other words we must have

for 0 < j < m — 1. For higher degree terms we will show, for 0 < k <
oo,

E{[(Zm+k/{m 4- k)\)ύ

= Ex[(Zm+k/{rn

Now since f is Λf-holomorphic, we have by Theorem 6

f(m+k) _ jr)(m+/c,0)f#

Also since f is Λ/-holomorphic, there exists φ by Theorem 8 such that

Consequently,

which completes the proof.
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THEOREM 11. The totality of real analytic solutions ofLu = 0 at the
origin is given by

oo

(3.8) u = E

where ck's are any m x 1 constant column vectors for which the series
converges within a certain radius of convergence. Z = xl + yM, and
M is the associated matrix ofL.

Proof. First it is clear from Theorem 10 that every real analytic
solution of Lu = 0 at the origin is of the form (3.8). Next clearly
(3.8) is a solution of Lu = 0 within the radius of convergence, for
termwise differentiations give

Lu = ElJTL(Zkck) = 0.
k=0

To check L(Zkck) = 0, note that Zk is Λf-holomorphic by Corol-
lary 6a, hence every column of Zk is also Λf-holomorphic, and so is
their linear combination Zkck. Thus Zkck is an M-conjugation, and
consequently L(Zkck) = 0 by the last statement of Theorem 8. This
completes the proof.

THEOREM 12. For k > m the m polynomials appearing in the top
row ofZk constitute a basis for the kth degree homogeneous polynomial
solutions ofLu = 0.

Proof. In view of Theorem 11 we need only show the linear inde-
pendence of polynomials in E\Zk. We proceed by induction. First
note that polynomials in E\Zm~x are just the terms in the binomial
expansion (x +y)m~ι, and they are easily shown to be linearly inde-
pendent. Next, assuming polynomials in E\Zk are independent, we
show the polynomials in E\Zk+x are independent. So suppose

ExZ
k+lck+l=0

for some constant column vector ck+ϊ. Differentiating with respect to
x, we have

which implies by the induction hypothesis that c^+1 = 0.
Note that for k < m all kth degree homogeneous polynomials are

trivially solutions of Lu = 0, and the terms in the binomial expansion
(x + y)k constitute a basis.
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We exhibit polynomial bases for real analytic solutions of some
familiar partial differential equations.

EXAMPLE 1. Consider the biharmonic equation

Here we have

L =

and accordingly,

M =

0 1 0 0\
0 0 1 0
0 0 0 1

V - l 0 - 2 0
and since Z — xl

x y 0 0
0 x y 0
0 0 x y

\-y 0 -2y xj

The top rows of Z°, Z1, Z2, Z3 produce lower degree polynomials,
which trivially satisfy the 4th order biharmonic equation. From Z4 on
we begin to obtain all the nontrivial biharmonic polynomials. These
polynomials form a basis for the real analytic solutions. We list these
polynomials up to degree 5.

k = 0
k = 1
k = 2
k = 3
k = 4

1
X
X2

X3

4 4

0
y
2xy
3x2y
4x3y

0
0
y2

3xy2

6xV - 2y4

0
0
0
y
4

k = 5 x5 - 5xy4 5x4y - y5 10x3y2 - 10xy4 10x2y3 - 2y5

EXAMPLE 2. For the wave equation uxx — uyy — 0, the top rows of
Zk for 0 < k < 5 are

k = 0
k = \
k = 2
k = 3
k = 4

1
X
2xy
x3 +
4x3y

3xy2

+ 4xy3

0
y
x2+y2

3x2y +
x4 + 6̂

X5 5x4y+ + y=
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EXAMPLE 3. For the Laplace equation uxx + uyy = 0, the top rows
of Zk for 0 < k < 5 are

k = 0
k= 1
k = 2
k = 3
k = 4

1
X

X2

X 3

JC4

-y2

-3xy2

-6x2y2+y4

0
y
2xy
3x2y - y3

4x3y - 4xy3

k = 5 x5- lθx3y2 + 5xy4 5x4y - lθx2y3 + y5

The examples above, especially Example 1, demonstrate our simple
but quite universal algorithm for obtaining all the polynomial solu-
tions of all the equations of the type (3.1): From the coefficients in
(3.1) we construct the square matrix M as shown in (3.3), thence the
"generating" matrix Z = xl + yM\ we then find all the basic /cth de-
gree homogeneous polynomial solutions of (3.1) in the top row of the
matrix Zk.

The author is grateful to G. N. Hile for his encouragement in writing
this paper.
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