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POLARIZED SURFACES WITH
HYPERELLIPTIC SECTIONS

ALDO BIANCOFIORE, MARIA LUCIA FANIA, AND ANTONIO LANTERI

Using an argument by Castelnuovo we classify surfaces X with an
ample and spanned line bundle L whose hyperelliptic locus is large
enough.

Introduction. The classification of projective surfaces with hyperel-
liptic hyperplane sections has recently been accomplished by Sommese
and Van de Ven [SVdV] and by Serrano [Se]. Letting X be a complex
projective non-singular algebraic surface and H be the hyperplane
bundle, the pairs (X, H) as above with sectional genus g = g(H) > 2
are:

(i) scrolls over a hyperelliptic curve,
(ii) rational conic bundles,

(iii) a special geometric conic bundle over an elliptic curve,
(iv) a Del Pezzo surface of degree 2 with H = Kχ1,
(v) a Del Pezzo surface of degree 1 with H = Kχ3,

(vi) a single blow-up of a pair as in (iv).

In the first three cases all smooth elements of \H\ are hyperelliptic.
This is obvious for (i) and (ii), while it is a recent discovery of Serrano
for (iii). In the remaining cases the hyperelliptic locus of \H\ is a
linear space of small codimension.

In this paper we carry out the classification of polarized surfaces
whose hyperelliptic locus is large enough. More precisely, let L be
an ample and spanned line bundle on a surface X and let %? be the
closure of the set of smooth hyperelliptic elements of \L\. We classify
the pairs (X, L) as above under the assumption that d i m ^ > 2. We
need this technical assumption to rephrase in our context a classical
argument by Castelnuovo consisting in putting together the g\ 's of
all elements of %?§, an irreducible 2-dimensional component of %?,
to express X itself as a double cover.

This assumption is largely satisfied when L is very ample.
Our main result can be stated as follows.
Assume that d i m ^ > 2. Then either (I) (X, L) is a scroll over
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a hyperelliptic curve, or (II) Kx ® L is spanned, or possibly (III) X
is some special ruled surface with C\(L)2 < 4. In case (II) either
(a) (X, L) is a conic bundle, or (b) up to a reduction, there exists a
morphism π: X —• Y of degree 2 onto a normal surface 7 , which is
one of the following: (bi) P 2 or the Veronese surface, (b2) a rational
normal scroll, (bβ) the quadric cone, and L = π*#γ(l).

It should be noted that the 2-dimensional pairs considered by Fujita
in [F2] fall into our classification.

Note that (ii) and (iii) fit into (a), (iv) into (bi), (v) into (b2),
while (vi) shows the necessity of the reduction in (b).

The paper is organized as follows.
In §1 we prove the structure theorem when C\(L)2 > 5.
In §2 we complete our study when C\ (L)2 < 4 through a case by

case analysis using the morphism associated to \L\.
In §3 we make a more detailed analysis of conic bundles under

the assumption C\{L)2 > 5. If %? Φ 0 , then the adjunction mapping
maps X onto P 1 and factors through the ruling a: X —• B of X and
a finite morphism β: B —• P 1 . By adapting an argument by Sommese
[Sol], we show that either β is an embedding or C\{L)2 < 8, /? has
degree 2 and B is either elliptic or hyperelliptic.

In §4 we provide an application to vector bundles. Let E be an
ample and spanned rank-2 holomorphic vector bundle with cι(E) = 2,
on a smooth surface X. Then we show that either (X, E) is one
of the following pairs: ( P 2 , ̂ p 2(1) θ ^>2(2)), (Q, ^ Q ( 1 ) θ 2 ) , where
Q c P 3 is a quadric surface, or π: X —• P 2 is a double cover and E =
(π*^ P 2(l)) 0 2 , or, possibly, (X, detE) is a geometric conic bundle
over an elliptic or hyperelliptic curve as in §3. Unfortunately we do
not know whether the latter possibility does really occur.

The above result generalizes what the third author proved in [LI]
and [L2]. A similar result has been obtained by Ballico [Ba] in a
different way.

We are indebted to the referee for his useful observations.

0. Preliminaries.
(0.0) Throughout this paper X will denote a smooth complex con-

nected projective surface and L e Pic(Λf) an ample and spanned line
bundle (i.e. spanned by its global sections). We let d = C\(L)2 = L L
and

g=\ + \{L {L®Kx))

where Kx stands for the canonical bundle.
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We shall always assume that g > 2.
A pair (X, L) as above is said to be a scroll if X is a P1-bundle over
a smooth curve and L\f = ^ p i ( l ) for every fibre / of X. A pair
(X, L), which is not a scroll, is a come bundle if X is a ruled surface
and L\F = (?F\{2) for the general fibre F of the ruling.

If X is a P ι-bundle we denote by ζ a fundamental section, and
by / a fibre; e = -ζ ζ will denote the invariant of X. We let

As known (e.g. see [Sol]) if L is very ample then KX®L is spanned
unless (X, L) is a scroll. For ample and spanned line bundles we have
the following

(0.1) PROPOSITION. Let d > 5; then Kx ® L is spanned unless
(X, L) is a scroll

Proof. By Reider's theorem [R] if Kx ® L is not spanned, then X
contains an effective divisor E satisfying either

= - l or L E = 1 with E2 = 0.

The former case cannot occur since L is ample. In the second case
E is irreducible.

Consider the map f:X—> f(X) c P associated to \L\. Since L is
ample and spanned, / is a morphism and άimf{X) = 2. Then the
equality

implies that f{E) is a line and f\β an isomorphism. Therefore E «
P 1 hence X is ruled as £ 2 = 0 and (X, L) is a scroll. D

(0.2) REMARK. The assumption d > 5 is crucial in (0.1) as the
following example shows. X = P 1 -bundle of invariant e = — 1 over
an elliptic curve, L = [2ζ]. L is ample and spanned, d = 4 however

0

Let d > 5 if (X, L) is not a scroll we can consider the adjunction
mapping Φ , i.e. the map associated to KX®L, which is a morphism
by (0.1).

(0.3) PROPOSITION ([LP1]). Assume that KX®L is spanned and that
g > 2. The following facts are equivalent:
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- (X, L) is a conic bundle.
- dimΦ(X) = 1.

We need to recall the concept of reduction.

(0.4) A curve E « P 1 contained in X is said to be a (-1) line
relative to L if E E = -1 and [E] L = 1. As it is known, X
contains a finite number of (—1) lines relative to L and if (X, L) is
not a conic bundle, all such curves are disjoint. Assume that (X, L)
is not a conic bundle and let η: X —> X1 be the birational morphism
contracting all the (-1) lines relative to L of X. Then X1 is a
smooth surface and L' = η*L is an ample line bundle. The pair
(Xf, Lf) is usually referred to as the reduction of (X, L). Note that

Kx®L = η*(Kx> ®L')

So, if KX®L is spanned and dimΦ(X) = 2, the adjunction map Φ
factors through the reduction morphism η .

1. Structure theorem. Let (X, L) be as in (0.1). We let

%> = {C G |L|, C smooth hyperelliptic}

and we will refer to ^ as the hyperelliptic locus of (X, L). We will
assume that

(1.0)

If (X, L) is a scroll, then KX®L is not spanned. If %f φ 0 , then
X admits a hyperelliptic curve as a section; this implies that the base
curve of X is hyperelliptic and then %? — \L\. So, an obvious class
of pairs satisfying (1.0) consists of

(1.1) scrolls over a hyperelliptic curve.

Let Ĵ5 be an irreducible component of β? of dim^o > 2. Let
p e X and let \L - p\ be the sublinear system of elements of \L\
passing through p . We let

Note that <%o(p) is connected since \L - p\ is a hyperplane of \L\.
Let Γ ( p ) c l x % ) be the closure of the set

where ic stands for the hyperelliptic involution of C. Γ(p) is con-
nected and its image γ(p) under the projection onto the first factor is
also so.
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(1.2) If dimγ(p) = 0, then γ(p) consists of a single point.

Now assume that Kχ ® L is spanned. Since

γ(p)cΦ-ι(Φ(p))9

if dimγ(p) > 0 we see that either

(1.2.1) (X 9 L) is a conic bundle and γ(p) is contained in a fibre
of it, or

(1.2.2) dimΦ(X) = 2 and γ(p) is a (-1) line relative to L.

(1.2.1) follows from (0.3) and (1.2.2) from (0.4).

(1.3) THEOREM. Assume that Kχ®L is spanned and that (1.0) holds.
Then either

(i) (X, L) is a conic bundle, or
(ii) up to a reduction there exists a morphism of degree two π: X —•

Y on a normal, possibly singular surface Y, L = π*M and the pair
(Γ, M) is one of the following-.

(1.3.1) (P2,^p 2(*>)),£>= 1,2,

(1.3.2) (Fe

(1.3.3) ( F 2 , i>*M = [C+2/]) (Λm> F<> stands for Έe with the funda-
mental section ζ collapsed and v: F^ —> F^ ybr ί/ẑ  desingularization).
Moreover the adjunction mapping factors through π.

Proof, If dimy(^) = 0 for every p e l , then due to (1.2) there
is an involution i on X. Let π: X —> Y = X/(i) be the obvious
morphism and note that Y is a normal surface and L = π*M for
some M = &γ(D), Z> being a Weil divisor. Moreover π(C) = C/(ic)
is a smooth P 1 contained in Y as an ample divisor. Hence the pair
(Y,M) is either as in (1.3.1), (1.3.2) or (Fe,v*M = [ζ+ef])9 e>l9

(e.g. see [Sa], [So2]). Note that e > 2, otherwise we would be in case
(1.3.1). Now consider the commutative diagram

X

\

F e -

η

υ

• X

l
• F e

where X = X x~ Fe and π is the double cover induced by π.
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Since X is smooth, η collapses ft"ι(ζ) to a finite set.

Claim. The branch locus of π contains x, the vertex of the cone

If this were not true, i.e. π~ι(x) = x' U x", x1 Φ x", then (π)*ζ =
E' + E", where η(E') = xf, η(E") = x" and E'-E" = 0. Thus

- 2 = (Ef + E")2 = 2ζ2 = -2e

which gives e = 1, contradiction. D

From the claim it follows that π is ramified along the (-1) curve
E = η-ι(π~ι(x)) hence (π)*ζ = IE which gives e = 2, i.e. ( 7 , M)
is as in (1.3.3).

Now assume that dimy(p) = 0 for the general p e X. Then in
view of (1.2.2) there is a reduction (ΛΓ\ Z/) of (X, L) such that
dimy(/?) = 0 for every p e X' and then the above argument gives
(ii).

Finally if dim γ(p) > 0 for the general p e X, then case (i) occurs
in view of (1.2.1).

The last assertion follows from the fact that p and γ(p) are in the
same fibre of Φ. •

(1.4) REMARK. Assume that L is very ample and %? φ <Z. Then
according to [SVdV] (see also [Se]), apart from scrolls and conic bun-
dles, (X, L) has to be one of the following pairs:

(a) X is a Del Pezzo surface of degree 2 and L = Kχ2 ,

(b) X is a Del Pezzo surface of degree 1 and L = Kχ3,
(c) (X, L) has a simple reduction as in (a).
In case (a), Kχ ®L = Kχ1 is spanned and the adjunction mapping

exhibits X as a double cover π: X —• P 2 ; then L = π*^p2(2) and
%* = π*|^p 2(2)| this fits into case (1.3.1). Note also that (X, KK®L)
fits into case (1.3.1).

In case (b) X is the blow-up of P 2 at 8 points p\, . . . , p% in
general position and \L\ corresponds to the linear system 1^(9) -
3/? i 3/7g| of conies having triple points at p\, . . . , p%. Let pg
be the further base point of the pencil of cubics through p\, . . . , /?8.
Then %? is the hyperplane of \L\ corresponding to the linear system
&> = |^p2(9) - 3p\ — - - — 3/7g — P9I Actually the pencil cuts out a
g\ on every smooth curve C £ S? out of pg. Then it is easy to see
that %f defines a map X —• P 5 of degree 2 onto the quartic rational
scroll of P 5 , isomorphic to F 2 . So (X, L) is as in (1.3.2). Note that
Kχ ® L = Λ^2 is ample and spanned and the adjunction mapping
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expresses X as a double cover of the quadric cone F 2 , branched at
the vertex and along the transverse intersection with a cubic surface.
In other words (X, Kx ® L) is as in (1.3.3).

Finally case (c) shows the necessity of the reduction in (1.3).

2. Small degrees. In this section, regardless of whether Kx ® L is
spanned or not we look at the cases d < 4, under the assumption
(1.0).

Let / be the morphism associated to \L\ and let Z = f(X). Then
we have

(2.0.1) 4 > d = deg/ degZ > deg/ (h°(L) - 2).

Note also that h°(L) > 3, since L is ample and spanned. More-
over if deg/ = 1, Z cannot have isolated singular points due to the
ampleness of L.

By (2.0.1) and the well known classification of polarized surfaces
of Δ-genus < 1 (e.g. see [Fl]), recalling that g > 2 we get only the
following possibilities for (X, L):

(1) d = 2, / : X —• P 2 a double covering branched along a smooth
curve of degree 2n with n > 3,

(2) d = 3, / : X -* P 2 a triple cover,
(3) d = 4, / : X —• P 3 generically of degree 1,
(4) d = 4 9 / : X —• Q c P 3 a double cover of a quadric,
(5) d = 4, / : X -> P 2 a 4-tuple cover.

Case (1) is included in (1.3.1) while case (4) is included in (1.3.2)
or (1.3.3) according to whether Q is a smooth quadric or a cone.

To deal with cases (2) and (3) we need to recall the following result:

(2.1) THEOREM ([LP2, Th. 3.1]). Let X be a surface polarized by
an ample and spanned line bundle L, with g(L) = 2. Then (X, L)
is one of the following pairs:

(2.1.1) a scroll over a smooth curve of genus two;

(2.1.2) X is a Pι-bundle over an elliptic curve, with invariant e = - 1
and L ~n [2ζ]

(2.1.3) X is an ¥e (e < 2) blown-up at a finite set P consisting of
s < 9 points on discrete fibres and L = σ*L0<g)[E]~ι, where σ: X —• F^
is the blow-up, E = σ~\P) and Lo = [2ζ + (e + 3)/]

(2.1.4) π: X —> P 2 is the K3 double cover branched along a smooth
sextic and L = π*&vi(\)
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(2.1.5) π I - ^ Q c P 3 is a double cover of a quadric cone branched
at a vertex and along the transverse intersection of Q with a cubic
surface and L = π*

Since [LP2] is not yet published, we give a sketchy proof for the con-
venience of the reader. Let C e \L\ be a general element. Since C
has genus 2, the 2-canonical bundle of C is not very ample. Hence,
by adjunction, (Kx <g> L)2 cannot be birationally very ample. As
(Kx <g> L)2 = Kχ (g> M, where M = Kx <g> L2 , we see that either

(a) Kx ® L2 is not very ample, or
(b) M is very ample, but Kx ® M is not birationally very ample.

By using Reider's theorem [R], case (a) immediately leads to (2.1.1)
and (2.1.4). In case (b) we have to use [SVdV]. Then cases (2.1.2),
(2.1.3), (2.1.5) come by checking the list of the exceptions in Theorems
(0.1) and (2.1) of [SVdV] for (X, M). Some care is needed when
(X, L) is a conic bundle. D

Now come back to our cases.
In case (3), Z is a quartic surface and / induces a birational map

between the general C e \L\ and the hyperplane section of Z . Since
the only hyperelliptic plane curves of degree 4 and g > 2 are quartics
with a single double point we conclude that Z can only be a quartic
surface with a double line. Then (X, L) is as in (2.1.3) with s = 8.

In case (2) let C e ^ be a general element and consider the mor-
phism

φ: C - + P 1 x P 1

given by the g\ of C and g\ induced by f\c The image C = φ(C)
has bidegree (2, 3). Note that φ is generically one to one since 2
and 3 are relatively prime. The arithmetic genus of C is pa(C) = 2
hence <gr = 2 a s 2 < g < pa(Cf). Then (X, L) can only be as in
(2.1.1) or (2.1.3) with s = 9.

In case (2.1.1) a few computations using the ampleness and the
spannedness assumption provide only the following possibility: X
has invariant e = -I, L ~n [ζ + 2f] and the restriction of L to
every fundamental section is the hyperelliptic bundle.

In case (5) we have ^ = \L\ due to our assumption (1.0). Let C e
%f be a general element and consider the morphism φ: C -» P 1 x P 1

given by the g\ of C and f\c and let C = φ(C).
There are two possibilities, either

(i) φ is generically one to one and C has bidegree (2, 4) or
(ii) φ is generically 2 to 1.
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In case (ii) f\c factors through the g\ of C. If this happens for
the general C e X , then a global involution on X is defined. Since
%f — \L\ by (1.0) it follows that / itself factors through a morphism
π: X —• Y of degree 2 onto a normal surface Y and L = π*M, where
M = <9γ{P). Moreover ( 7 , M) is as in (1.3.3) or (1.3.2) with e = 0.
Now assume that there is a smooth C e ̂  as in case (i). Since C
has bidegree (2, 4) we have pa(C) = 3 and so g < 3.

If g = 2, then (X, L) is as in (2.1.1) or (2.1.2).
In case (2.1.1) an immediate computation using the ampleness and

the spannedness assumptions shows that X can only have invariant
e = - 2 or 0, L ~ Λ [ζ + (2 + e/2)f] and if e = 0 the restriction of L
to every fundamental section is the hyperelliptic bundle.

If g = 3 then Â χ L = 0 by the genus formula. So either X
is ruled or it is a minimal surface of Kodaira dimension 0. In the
latter case, since h°(L) = 3, from the Riemann-Roch theorem we
get χ{ffχ) = 1 hence X is an Enriques surface. This case however
cannot occur (see [V, Prop. 1.1]).

Assume that X is ruled. As a first thing (X, L) can be a scroll
over a hyperelliptic curve of genus three. Then an easy computation
shows that X has invariant e = -2 or 0 and L ~n [ζ + {2 + e/2)f]
and if e = 0 the restriction of L to every fundamental section is the
hyperelliptic bundle. If (X, L) is not a scroll, then

with equality iff (X 9 L) is a conic bundle [LP1]. In this case one
can see that X is obtained by blowing-up F^ (e < 3) at 12 points
Pi, . . . , p\2 on distinct fibres and

L = rf\2ζ + (e + 4)/] ® [^ + + Eι2Γ
ι

where T/: X —• F^ is the blowing-up and Ej = η~ι(Pi). If (X, L)
is neither a scroll nor a conic bundle, then Kχ Λjr > — 3. On the
other hand, since X is ruled, by the Hodge index theorem we get
KX'Kχ<-l,so

-3<Kχ.Kx<-l.

Let (Xf, V) be the reduction of (X, L) then AΓχ/ <g> Z/ is ample
[LP1]. Note that g(Kx ® L) = g(Kx> <g> L') = 3 + Kx Kx + Kx

L = 3 + Kx Kx so if Kx - Kx = - 3 or - 2 , then (X, L) can
be recovered from the classification of polarized surfaces of sectional
genus < 1, while, if Kx Kx = - 1 , then g(Kx®L) = 2, but (ΛΓ|®L)
(Kχ®L) = 0, so that (X, KX®L) is a conic bundle. In all the cases,
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the irregularity of X is q — 0 or 1 and the structure of (X, L) can
be determined explicitly. For more details see [LL, sec. 2]. In this
latter case it does not seem easy to decide whether (X, L) does really
satisfy the basic assumption (1.0).

3. More on conic bundles. In this section we study case (i) of (1.3).
In view of §2 we can assume d > 5 .

(3.1) LEMMA. Let (X, L) be a conic bundle. IfβTφ0, then
Φ(X) « P 1 .

Proof. Let C e \L\ be a hyperelliptic curve. Then Φ maps C onto
a P 1 since Φ(C) = C/{ic), where ic is the hyperelliptic involution
of C. It thus follows from (0.3) that Φ(X) « P 1 . D

Let (X, L) be a conic bundle. We recall that the Stein factorization
of the adjunction mapping is

X -> Φ(X c P
Φ

\ /
a β

B
where a: X —• B is the ruling projection. So (3.1) implies that if β
is an embedding and β? Φ 0, then X is rational.

The main point of this section is the following proposition, extend-
ing a result proved by Sommese for very ample line bundles [Sol,
(2.1.1)].

(3.2) PROPOSITION. Let (X, L) be a nonrational conic bundle with
d > 5 and %? Φ 0. If β is not an embedding then d < 8, g = 2<?+1,
B is elliptic or hyperelliptic and β: B —• P 1 has degree 2.

Proof. Since Kx ® L = Φ*£fφ W (l), there is a line bundle JV* e
Pic(B) such that Kx ® L = a*yF. Moreover, deg^Γ < 2q as β is
not an embedding. On the other hand, for a smooth C e\L\ we have

2g -2 = deg(Kx ® L)|c = degα | c deg^/Γ.

This combined with the previous inequality gives

(3.2.1) g<2q+l.

Furthermore, since (X, L) is a nonrational conic bundle, from (0.3)
it follows that

(3.2.2) 0 =
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this implies

(3.2.3) g>2q-l+d/4.

So (3.2.1), (3.2.3) imply that d<%.

Since d > 5, (3.2.1), (3.2.3) also give g = 2q + 1. This last fact

implies that

and

So, looking at the morphism β , we get

2q = d e g ^ = degβ degΦ(X) > q degβ.

Hence deg/? < 2. Since β is not an embedding and Φ(X) « P 1 by
(3.1), it follows that deg/? = 2 and 5 is elliptic or hyperelliptic. D

(3.3) REMARKS. (1) It follows from (3.2) that all pairs (X, L) oc-
curring in (i) or (1.3) for d > 9 are rational conic bundles.

(2) Putting g = 2q + l in (3.2.2) we get Kx KX = 8(l-q)-(8-d).
Hence X is a P 1 -bundle X' blown-up at s = S-d points on distinct
fibres. Then (Xf, U = η*L) is a geometric conic bundle and d1 =
Ci(L')2 = d + s = S. Since Z/ ~ n [2£ + bf] for some integer b, the
condition J ' = 8 implies b = e + 2 and the ampleness of Z/ implies
έ ? < 1 .

(3) Let X = X'9 i.e. </ = 8. Then L ~ π [2ζ + (έ? + 2)/] . Since ζ
is a hyperelliptic curve, the spannedness of L implies that L [ζ] =
2 - e > 2, i.e. e < 0, with equality iff L|ζ is the hyperelliptic line
bundle of ζ. In particular, let B be a hyperelliptic curve of any genus
q > 2 (an elliptic curve respectively) and let S? be its hyperelliptic
line bundle (any line bundle of degree 2 respectively). Let p and q
be the projections of X = B x P 1 onto the factors and consider the
line bundle L = p*S? ® q*(?F\ (2). Then L is ample and spanned and
q exhibits any smooth element of \L\ as a double cover of P 1 . Hence
3? = \L\. This example shows that all values of q are allowable in
(3.2). This is the main difference with the corresponding situation in
case of very ample line bundles (e.g. see [Sol, (2.1.1)] and [Se, (3.3)]).

4. An application to vector bundles. The aim of this section is to
classify pairs (X, E) where

(4.0) X is a smooth surface and E is an ample and spanned rank-2
holomorphic vector bundle such that

c2(E) = 2.
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Note that the line bundle L = detE is ample and spanned. So this
generalizes the situation considered in [L2, §2], where L is assumed
to be very ample.

(4.1) LEMMA. Let (X, E) be as in (4.0). Then X cannot contain
lines relative to L.

Proof. Let / c X be such a line. Then

where a and b are positive integers, by ampleness. Then

a contradiction. D

In order to classify our pairs (X, E) we will proceed according to
the values of g = g(L). First of all we deal with the case g < 1.

(4.2) PROPOSITION. Let (X, E) be as in (4.0) and g < 1. Then

(X E) = ί

Proof. In view of (4.1) and of the known classification of polarized
surfaces with sectional genus < 1 (e.g. [LP1]), (X, L) can only be
one of the following pairs: ( F 0 , ^ F 0 ( 2 ) ) , ( P 2 , ^ p 2 ( 2 ) ) , ( P 2 , ^ p 2 ( 3 ) ) .
Then the proof is the same as that of (2.3) in [L2]. D

Now we consider the case g > 2. Note that the assumption C2(E) =
2 is equivalent to saying that the general section s e Γ(E) vanishes
exactly at two points of X. Let S\, S2 be two general elements of
Γ{E) and let / c \E\ = P(Γ(£)) be the line spanned by their classes
[s\], [s2]. Let C be the zero set of S\ /\s2e Γ(L).

(4.3) LEMMA. C is an irreducible smooth hyperelliptic curve, for
S\ 9 $2 general.

Proof. As a first thing we prove that the subspace A2Γ(E) of Γ(L)
spans L at every point of X. By contradiction, assume that there is
a point x G X such that (s\ A S2)(x) = 0 for every S\, s2 £ Γ(E).
Then it would be S\(x) = ts2{x) for some complex number t. This
would mean that T(E) does not span the whole fibre Ex , but just a
1-dimensional subspace of it, contradicting the spannedness of E. It
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follows that the sublinear system of \L\ corresponding to Λ2Γ(is) is
base point free and then, in view of Bertini's theorem, C is a smooth
divisor, for s\, £2 general. It follows that C is also irreducible. Ac-
tually, let C = D\ + Z>2 > with D\, Dι effective divisors. Since L
is ample, C is 1-connected, hence D\ D2 > 0, contradicting the
smoothness. Finally note that C consists of those points of X at
which the sections as\ Λ bs2 vanish, ((a : b) e P 1 ) . Inside X x \E\
consider the incidence correspondence

Z = {(x, [s]) eXx /\s(x) = 0} c X x \E\
P/ \4

X \E\

where [s] is the class of s and p, q are the projection morphisms.
Note that p maps Z birationally onto C, while q: Z -> / is 2 to 1.
This shows that C is hyperelliptic. D

( 4 . 4 ) P R O P O S I T I O N . L e t (X, E) be as in ( 4 . 0 ) and g>2. Then

(4.4.1) dim r >

(4.4.2) Λ°(L) >

(4.4.3) (X,L) satisfies (1.0).

Proof. Let 5o, . . . , 5/, be general sections of E constituting a basis
of Γ(E). In view of (4.3) the hyperelliptic locus & of \L\ con-
tains the linear system corresponding to the subspace of Γ(L) gener-
ated by SQ A s\, so Λ S2, . . . , soΛsn. We prove that these' sections of
L are linearly independent. Assume, by contradiction, that SQ Λ S\,
so Λ $2, . . . , so Λ S/i, are linearly dependent. Then there is a section
τ = #iSi H h α w ^ such that

s0 Λ τ = 0.

This means that So = fτ, for some meromorphic function / on X.
But since So vanishes at two points only we conclude that / is a
constant function and so SQ is a linear combination of s\, . . . , sn , a
contradiction. Therefore

dim r > n - 1.

This proves (4.4.1). In particular h°(L) > h°(E) - 1 and if equality
holds it follows that So I\S\, So ΛS2, . . . , so l\sn is a basis of Γ(L). In
this case every element of Γ(L) has the form soΛτ and then vanishes
at the zero set of SQ . But this would mean that L is not spanned,
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contradiction. This proves (4.4.2). The last assertion follows from
(4.4.1) and the fact that h°(L) > 4. Actually since E is ample and
spanned the map associated with the tautological bundle ξE on P(E)
is a finite morphism; hence h°(E) = h°(ξE) > dim(P(E)) + 1 = 4 . α

In view of (4.4), to get our classification we need to check all pairs
(X, L) listed in the previous sections. By using (4.1) we see that
(X, L) cannot be a scroll. As to conic bundles, we have

(4.5) LEMMA. Let (X, E) be as in (4.0) and assume that (X, L) is
a conic bundle. Then X is a P 1 -bundle and L ~n [2ζ + (e + 2)/] .

Proof. X has to be a P^bundle in view of (4.1); hence L ~n

[2ζ + bf]. We want to determine b. Since E<g>[ζ]~ι restricts trivially
to the fibres of X, we have E® [ζ]~ι = p*G, where p: X —> B is the
ruling projection and G = p*(E ® [ζ]~ι) is a rank-2 vector bundle on
B. From E = [ζ]®p*G we get L = [2ζ + Cχ(G)f], so that b = cx{G).
Finally

2 = c 2 ( E ) = e2([ζ] β p * G ) = c x ( G ) + ζ.ζ = b - e . Ώ

It follows from (4.5) that conic bundles as in §2 cannot occur here.
Moreover, due to (4.4.2), the remaining pairs coming from §2 (not
fitting into (1.3)) cannot occur here as well, since h°(L) = 3 for all of
them.

(4.6) PROPOSITION. Let (X, E) be as in (4.0) with g > 2 and
assume that {X, L) is not a conic bundle. Then there is a morphism
π:X^P2 of degree 2 and E = ( π * ^ p 2 ( l ) ) θ 2 .

Proof. As we said (X, L) is not as in §2. Moreover (X, L) can-
not admit nontrivial reductions by (4.1). Then there is a morphism
π: X -* Y of degree 2 and L = π*M, where (Y, M) is as in (1.3).
Consider the morphism μ: X —• G from X to the grassmannian of
the codimension 2 linear subspaces of T{E) sending x to the subspace
{s G Γ(E)\s(x) = 0} . By [GH, p. 731], μ factors through the adjunc-
tion mapping of L\ hence, by (1.3), the vanishing of the sections of
E is invariant under the involution defined by π, we conclude that
μ factors through π. Since E is the pull back via μ of the universal
rank-2 quotient bundle on G, it follows that there exists a rank-2 vec-
tor bundle F on Y such that E = π*F. Moreover F is ample and
spanned since E is so and π is finite. Also C2(F) = 1 by the functo-
riality of the Chern classes. Thus (Y, F) = ( P 2 , ^ ( 1 ) © ^ ( 1 ) ) , by
[LS, Cor. (1.2)] and this concludes the proof. D
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To complete the analysis we only need to look at conic bundles
(X, L) where X is a P1-bundle over a smooth curve of genus q.
Assume for a moment that X is rational; then (4.5) and the ampleness
condition for L, e + 2 > 2e, imply e < 1, so that (X, L) can only
be one of the following pairs: (F o , [2ζ + 2/]), (Fi, [2ζ + 3/]). In
the former case g = 1, while in the latter one ζ would be a line
relative to L, contradicting (4.1). This shows that q > 1 and then
by (3.2) and (3.3) we know that g = 2q + 1, d = 8, e < 0 and
L ~n [2ζ + {e + 2)f]. In fact one can prove that deg£jζ > 3, since E
is spanned. Therefore 3 < c\(E\ζ) = C\(L\ζ) = (2ζ+(2+e)f)-ζ = 2-e,
hence e < -1. So we have proved

(4.7) THEOREM. The pairs (X, E) as in (4.0) are the following'.
(a) ( P 2 , ^ p 2 ( l
(b) ( F O , ^ O ( 1 O

(c) π : X —• P 2 w α double cover and E = (7r*^ p 2 ( l ) ) e 2 , or possibly
(d) p: X -^ B is a P 1 -bundle of invariant e < - 1 over α« elliptic

or a hyperelliptic curve and detis ~ Λ [2ζ + (e + 2)/] .

It seems difficult to decide whether case d) does really occur. In
any case, if such an E exists, it has the form E = p*G ® [ζ] and is
indecomposable in view of [LI].
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