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ARENS REGULARITY SOMETIMES IMPLIES THE RNP

A. ULGER

Let A be a Banach algebra with a bounded left approximate iden-
tity. We denote, respectively, by wap(Λl) and AA* the subspaces
of A* consisting of the weakly almost periodic functionals and the
functional of the form af9 where af(x) = f{ax). The main results
can be summarized as follows:

(a) wap(;4) C AA* and the equality wap(Λ) = AA* holds if A
is a right ideal in its second dual.

(b) If A is Arens regular and a right ideal in its second dual then
A* has the RNP (Radon-Nikodym Property).

(c) If A is a right ideal in its second dual then A is Arens regular
and has the Dunford-Pettis property iff A* has the RNP and the
Schur property.
As applications we give very short (and probably new) proofs of several
well-known results about topological groups, group algebras and their
weakly almost periodic functionals. Our applications also include
some new proofs and results about the projective tensor products of
Banach spaces and algebras.

1. Introduction. In [2] R. Arens has shown that, given any Banach
algebra A, there exist two algebra multiplications on the second dual
A** of A extending that of A. When these two multiplications coin-
cide on A**, the algebra A is said to be (Arens) regular. Details of
the construction of these multiplications can be found in many places,
including the book [4], the poineering papers [2], [10] and the survey
article [13].

In the papers [21], [42], [53], [54] the geometry of Banach spaces
has been exploited to obtain results about Arens regularity of certain
Banach algebras. In this note we present some results which in turn
show that, for a certain class of Banach algebras A, the Arens regular-
ity of A implies the presence of the Radon-Nikodym property (RNP),
which is a property that belongs to the geometry of Banach spaces, on
the dual space A* of A. The results presented in this note apply to a
Banach algebra A having a bounded left (or right) approximate iden-
tity (in short BLAI) and the main hypothesis is automatically satisfied
when the algebra in question is a right (or left) ideal in its second
dual A** equipped with either Arens multiplication. Before stating
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the main results of this note we introduce some notation. Let A be
a Banach algebra with a BLAI (ea)aei F° Γ a in A and / in A*,

af is the functional on A defined by af(x) = fiaχ) By ^ * w e

denote the subspace of A* consisting of the functional of the form

af. For each a in / , Ha denotes the subset Ha = {eaf- f € A*,
11/11 < 1} of A*, and wap(^4) denotes the subspace of A* consisting
of the weakly almost periodic functional on A (defined below). The
main results of this note can be summarized as follows:

(a) The set wap(^4) is contained in AA* and the equality (wap(^4) =
A A*) holds if A is a right ideal in its second dual.

(b) If, for each α in /, the set Ha has the RNP and A is regular
then A* has the RNP.

(c) If A is a right ideal in its second dual then A is regular and has
the Dunford-Pettis property iff A* has the RNP and the Schur prop-
erty. The main ingredients of the proofs are Cohen-Hewitt factoriza-
tion theorems [32; 32.22 and 32.24]. As applications of these results
we give very short (and probably new) proofs of several well-known
results about topological groups, group algebras and their weakly al-
most periodic functionals. Applications also include some new proofs
of known results and some new results about the injective and pro-
jective tensor products of Banach spaces and algebras. Some of the
applications are the following:

1. If G is a compact topological group and A = Lι(G) is its group
algebra then A is regular iff G is finite.

2. If G is a locally compact topological group and A = Lι(G) is
its group algebra then A is a right ideal in its second dual iff G is
compact.

3. If G is any compact topological group then the space C(G) does
not contain an isomorphic copy of /°° .

4. If G is a compact topological group then G is extremally dis-
connected (or cr-Stonean or an F-space) iff G is finite.

5. If X and Y are two reflexive Banach spaces with the a. p.
(approximation property) then their projective tensor product X®Y
has the RNP.

6. If A and B are two regular Banach algebras with BLAI and
if, for each a in A and each b in B, one of the left multiplication
operators aτ : A —> A(bτ : B —> B), defined by aτ(x) — ax, is compact
and the other is weakly compact then

(i) the projective tensor product algebra A®B is a right ideal in
its second dual,
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(ii) A®B is Arens regular iff every bounded linear operator u :
A —• B* is compact,

(iii) if A®B is Arens regular then the space L(A9 B*) = (A&B)*
has the RNP.

In §2 we have collected the notation and the basic facts about Arens
regularity and RNP. The main results are in §3 and the applications
are in §4 and §5.

Professor J. S. Pym has read the first draft of the paper and made
several valuable suggestions. In particular the proof of Lemma 3.4 is
suggested by him. The author gratefully acknowledges here his debt
to J. S. Pym.

2. Notations and preliminaries. Besides some general notation and
results we shall need some notation and results about Arens regularity
and the RNP.

For any Banach space X (real or complex), we denote by X* its
dual and by X\ its closed unit ball. The natural duality between X*
and X is denoted by (f,x). We shall regard X as naturally embed-
ded into X**. If X and Y are two Banach spaces, L(X, Y) (resp.
K(X, Y)) denotes the space of bounded (resp. compact) linear oper-
ators from X into Y. The spaces L(X, X) and K(X, X) will be
denoted by L(X) and K(X), respectively. These spaces are equipped
with their usual operator norms. By X®Y and X®Y we denote, re-
spectively, the injective and projective tensor products of X and Y
[12, Chapter VIII]. c 0 , lp (1 < p < oc) denote the usual sequence
spaces. For any topological (Hausdorff) space G, C(G) denotes the
Banach space of bounded continuous functions from G into R or C
endowed with the supremum norm. For a locally compact space G,
Co(G) is the subspace of C(G) consisting of the functions vanishing
at infinity. Equipped with the pointwise multiplication, the spaces Co,
lp , C(G) and C0(G) are Banach algebras. If G is a locally compact
topological group, by LUC(G), RUC(G) and UC(G) we denote, in
order, the subspaces of C(G) consisting of the left (right, and both left
and right) uniformly continuous functions on G [3, p. 104]. We re-
mark here that in the treatise of Hewitt and Ross [31, p. 275] the space
LUC(<?) is denoted by Cru(G) and the space RUC(G) by Clu(G). By
WAP((?) we denote the subspace of C(G) consisting of the weakly
almost periodic functions on G [3, p. 107].

Our basic reference about Banach algebras is the book [4]; for any
undefined notion used in the present note we refer the reader to this
book. If A is a Banach algebra and a is an element of A, by aτ: A —• A
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we denote the left multiplication operator defined by aτ{x) = ax.
The adjoint aτ* : A* —• A* of aτ is given by aτ*(f) = af where
af is the functional on A defined by af(x) = f{ax). Thus the set
H(a) = {af : / e A\} is the image of A* under aτ*. Hence the
set H(a) is weakly compact iff the operator aτ is weakly compact.
Here we remark that the set H(a) is always weak*-closed, convex and
bounded. We recall that, for each a in A, the set H(a) is weakly
compact iff A is a right ideal in its second dual, i.e. AA** c A [13,
p. 318, Lemma 3]. We also note that for the multiplication (a, f) —•
af, A* is a right a yl-module in the sense of [32, p. 263]. A net (ea)aei
in A is said to be a BLAI (bounded left approximate identity)1 if, for
each α i n / , | |βα | | < 1 and, for all a in A, \\eaa - a\\ -+ 0. BRAI
(bounded right approximate identity) and BAI (bounded approximate
identity) are defined similarly. A functional / in A* is said to be wap
(weakly almost periodic) on A if the set {af : a e A{\ is relatively
weakly compact. This is equivalent to the following "Double Limit
Criterion" [26]: for any two sequences (an) and (bm) in A\,

, anbm) = limlim(/, anbm)
m n

(/, nm)
m m

whenever both iterated limits exist. The collection of the wap func-
tionals on A is denoted by wap(^4). The set wap(^4) is a closed
subspace of A* and the equality wap(^4) = A* is equivalent to the
Arens regularity of A [41].

Our basic references about the RNP are the books [6] and [12]. We
refer the reader to these books for relevant definitions. The following
well-known results will be sufficient for our purposes. The dual X* of
a Banach space X has the RNP iff any separable subspace Y of X
has separable dual, see [6, Cor. 4.1.7] and [12, Cor. VII.2.8]. Here note
that if A is a Banach algebra then A* has the RNP iff any separable
subalgebra B of A has separable dual. Indeed, the necessity of this
condition is obvious and the sufficiency follows from the facts that if
Y is a separable subspace of A then the subalgebra B of A generated
by Y is separable and the separability of B* implies that of Y*.
We shall use this characterization several times. A weak*-compact
convex subset M of the dual space X* of a Banach space X has the
RNP iff, for each separable subspace Y of X, the set of restrictions
M\γ = {f\γ: f e M} is a separable subset of Y* [6, Thm. 4.2.13].
In particular, any separable weak*-compact convex and any convex

Although our definition of BLAI includes condition | |eα | | < 1 all the results presented in
this note hold for an arbitrary BLAI.



ARENS REGULARITY SOMETIMES IMPLIES THE RNP 381

weakly compact subsets of X* have the RNP, see [6, Prop. 4.1.1] and
[6, Thm. 3.6.1], respectively.

Throughout the paper by a linear (bilinear) operator we mean a
bounded linear (bilinear) operator.

3. The main results. This section contains the main results of this
note. These results apply to Banach algebras having a bounded left
(or right) approximate identity. We shall work with a Banach algebra
having a BLAI. Let A be a Banach algebra with a BLAI (ea)aei We
introduce the following subspace of A.

l(A*) = { / : / € A* and eaf -> / weakly}.

The following theorem shows that the space I (A*) does not depend
on the BLAI chosen and that, in the case where A is a right ideal in
its second dual, I (A*) = waρ(A).

THEOREM 3.1. Let A be a Banach algebra with a BLAI (ea)aej.
Then,

(a) I {A*) = AA* and wap(Λ) is contained in l(A*).
(b) If A is a right ideal in its second dual waρ(^) = I (A*).

Proof (a) We first note that, by the Cohen-Hewitt factorization
theorem [32, 32.22], the set AA* is a closed subspace of A*. Since
each eJ is in A A*, the inclusion I (A*) c A A* is obvious. To prove
the reverse inclusion, let a be in A and / be in A*. Then

\\eaaf-af\\ = \\(eaa-a)f\\ < 11/11 I M - *|| - 0.
In particular, e af —• af weakly, and I (A*) = A A*.

a

To show that the space wap(^4*) is contained in I (A*), let / be a
wap functional on A. Then the set {eaf- OL G /} is relatively weakly
compact and, since (ea) is a BLAI, eaf -+ f for the weak* topology.
This implies that / is the unique weak cluster point of the net (e f),
which is contained in a relatively weak compact set. It follows that
e f-* f weakly, and wap(^4) c HA*).

(b) Assume A is a right ideal in its second dual. Then, for each
a in A, the left multiplication operator aτ is weakly compact [13;
p. 318, Lemma 3]. Let a be in A and / be in A*. For each y in
A, let fy be the functional on A defined by fy(x) = f(xy). The set
K = {afy: y e A\}, being the image under aτ* of the set {fy: y e
A\}, is relatively weakly compact. It follows that the functional af
is wap on A, and the equality wap(^4) = AA* holds.

The following corollary is immediate from this theorem. For an-
other proof of it, see [24; Lemma 4 and Cor.].
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COROLLARY 3.2. Let A be a Banach algebra with a BAI. Assume
A is a bisided ideal in its second dual Then AA* = A*A and, if A is
regular, A* = AA* = A*A.

As an illustration of Theorem 3.1 we give the following proposition
which we shall need in the next section.

PROPOSITION 3.3. Let G be a locally compact topological group
equipped with a left Haar measure and A = Lι(G) be the group algebra
of G. Then l(A*) = AA* = LUC(G) and A*A = RUC(G).

Proof. We shall prove the equality AA* = IΛJC(G), the proof of
the equality A*A = RJJC(G) is very similar. For u in Lι(G), let
ύ(t) = A(t~ι)u(t~ι), where Δ is the modular function of the group
G. An easy calculation will show that (see [59]), for / in A*, uf =
ύ * / where * denotes the convolution. Since the operator u —> ύ is
an involutive isometry from Lι(G) onto itself, we have the equality
AA* = L\G) * L°°{G). Since by [32; 32.45(b)], Lι(G) * L°°(G) =
LUC(G), we conclude that AA* = LUC(G).

The next lemma will permit us to assume that our algebra is sep-
arable and its BLAI is a sequence. In this lemma the subalgebras
considered need not be closed.

LEMMA 3.4. Let A be a Banach algebra with a BLAI (ea)aej. Then,
given any separable subalgebra BQ of A, there exists a separable sub-
algebra B containing BQ and having a sequential BLAI (wn)neχ.
Moreover, if each set Ha = {eaf' f £ A\) has the RNP then each set
Hn = {wng: g € B*} is separable.

Proof. Let i?o be a separable subalgebra of A and (bn) a dense
sequence in BQ. For each # = 0 , 1 , 2 , . . . , choose an an in / such
that we have:

\\e«bi-bi\\<-^[ forO<i<n.

Let B\ be the subalgebra generated by the union of Bo and the set
{eQn: n e N} . Then Bx is a separable subalgebra of A and, repeating
for B\ what we have done for 2?0, we obtain a separable subalgebra
B2 containing B\. Continuing this process we get an increasing se-
quence (Bn) of separable subalgebras. Let B be the union of them.
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Then B is a separable subalgebra of A and it contains Bo. Let U de-
note the set of all the ea 's involved in the construction of B. The set
U is countable and for any e > 0 and any b in B there is an ea in U
such that \\eab - b\\ < ε. Now let W — {eaeβ: e\, eβ are in U}. The

set W is countable and the proof of Proposition 2 of [4; p. 58] shows
that from W we can extract a sequence, say (wn), which is a BLAI
for B. To prove the last assertion of the lemma, assume that each set
Ha has the RNP. Let e τ* be the adjoint of the left multiplication op-
erator 6βτ: A^ A. Since eβτ*(Ha) = {eβ(eaf) f e A\) , by Corollary
4.2.14 of [6], the set {{eaeβ)f f € A\) has the RNP. It follows that
for any w in W the set {wf: f e A\} has the RNP. Hence, for each
n, the set {wng' g Ξ B\}, which is just the set {wnf- f £ A\}\B, is
separable.

Now, we can prove the main result of this note.

THEOREM 3.5. Let A be a Banach algebra with a BLAI (ea)aei-
Assume that, for each ae I, the set Ha = {<?β/: / ^A\} has the RNP.
Then, for each separable subalgebra BQ of A, the space waρ(^4)|£o is
separable. In particular, if A is regular, A* has the RNP.

Proof. Let BQ be a separable subalgebra of A. By the preceding
lemma there exists a separable algebra B containing Bo and having
a sequential BLAI (wn) such that each set Hn = {wng g € l?^}
is separable. It is clear that the separability of the space wap(^4)|#
implies that of the space waρ(^)|#o and that we have the inclusion
waρ(v4)|j5 c wap(2?). Therefore it is enough to prove that the space
wap(2?) is a separable subspace of B*. To this end for each n e N,
let En = {wng g Ξ B* and g is wap on B}. Since En c Hn and
Hn is separable, the set En is separable. Let E be the convex hull
of the union of En 's. We are going to show that E is weakly (so
norm) dense in the closed unit ball of the space wap(6). To this end
let g be wap on B with ||g|| < 1 and b** be an arbitrary element
of 2?**. By the Goldstine Theorem, there exists a bounded net (bβ)
in B which converges weak* to 6**. Now, since g is wap on B an
(wn) is a BLAI for B, we have

(g9 b**)=\im(g9 bβ) =l imlim(g, wnbβ)
β β n

= limlim(g, wnbβ) = l imlim^g, bβ)
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This shows that the sequence (wHg), which is contained in E, con-
verges weakly to g. Hence the set E, which is separable, is dense in
the closed ball of the space wap(2?). To prove the last assertion of the
theorem, assume that A is regular. Then wap(^4) = A* and for any
separable subalgebra B of A, B* = wap(A)\β is separable. It follows
that A* has the RNP.

This theorem has several corollaries. The first corollary is a nonem-
bedding result. In the next section we shall see a concrete application
of it.

COROLLARY 3.6 ι . Let A be a Banach algebra with a BLAI {ea)aei
Assume that, for each a in I, the set Ha has the RNP. Then, if X
is a separable subspace of A with X* unseparable, the space
does not contain a (isomorphic) copy of X*.

Proof. Let X be a separable subspace of A and B the subalgebra
generated by X. The subalgebra B is separable and the natural re-
striction operator from wap(^4)|# to wap(Λ)|jr is onto, so that the
space WSLP(A)\B has a quotient isomorphic to wap(^4)|χ . Should the
space wap(^4) contain a copy of X*, the space wap(^4)|χ would con-
tain a copy of X* and be unseparable. But then waρ(^4)|# cannot
be separable. From this we conclude that the space wap(^4) does not
contain a copy of X*.

The only hypothesis in the statement of Theorem 3.5 which may be
difficult to verify in practice is the condition that, for each a in / , the
set Ha should have the RNP. However there exists an important class
of Banach algebras for which this condition is automatically satisfied.
Indeed, if A is a right ideal in its second dual then for each a in
A, the set H(a) = {af: f e A\} is weakly compact [13; p. 315,
Lemma 3], so has the RNP [6; Thm. 3.6.1]. The next corollary is now
immediate.

COROLLARY 3.7. Let A be a Banach algebra with a BLAI. If A is
regular and a right ideal in its second dual then A* has the RNP.

As an application of this corollary we give the following result. In
the next section we shall see some other applications of it.

See note added in proof.
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COROLLARY 3.8. Let A be a B* -algebra which is also a dual algebra.
Then A* has the RNP.

Proof. Any iΓ-algebra has a BLAI [4; p. 218, Lemma 14] and is
regular [10; Thm. 7.1]. A, being a dual algebra, is a bisided ideal
in its second dual [50; p. 533, Thm. 5.1]. Hence, by the preceding
corollary, A" has the RNP.

The next corollary applies to WSC (weakly sequential complete)
Banach algebras. We note that several Banach algebras of Harmonic
Analysis are WSC.

COROLLARY 3.9. Let A be a WSC Banach algebra with a BLAI
{^a)aei - Assume that, for each a in I, the set Ha has the RNP. Then
A is regular iff A is reflexive.

Proof. Assume A is regular. Then, by Theorem 3.5, A* has the
RNP. Therefore A does not contain a copy of I1 since /°° is not
separable. But, by [45; p. 807, Cor. 1], a WSC Banach space not con-
taining a copy of I1 is reflexive. Hence A is reflexive. The converse
is trivial.

Before stating the next theorem we recall that a Banach space X is
said to have the DPP (Dunford-Pettis Property) if any weakly compact
operator from X into a Banach space Y sends weakly convergent
sequences into norm convergent ones. It is well known that any Lι (μ)
space, any C(K) space and the disk algebra A(D) have the DPP, see
[11] and [27]. We also recall that a Banach space X is said to have
the Schur property if in X any weakly convergent sequence is norm
convergent. The next theorem characterizes the Arens regularity of a
rather restrictive class of Banach algebras.

THEOREM 3.10. Let A be a Banach algebra with a BLAI {ea)aej.
Assume that, for each a e I, the set Ha has the RNP. Then A is
regular and has the DPP iff A* has the RNP and the Schur property.

Proof. Assume A is regular and has the DPP. Then, by Theorem
3.5 A* has the RNP. It follows that A does not contain a copy of
I1. Hence, since A has the DPP, by [11; p. 23, Thm. 3] A* has the
Schur property.

Conversely, assume that A* has the RNP and the Schur property.
Then A* also has the DPP and therefore, so has A [11; p. 29, Cor. 2].
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To prove that A is regular it is enough to apply the following lemma,
which is of independent interest.

LEMMA 3.11. Let X and Y be two Banach spaces such that X* has
the RNP and Y* is WSC. Then, for any Banach space Z , any bilinear
operator m: X xY —• Z is Arens regular.

Proof. By [2; Thm. 3.2] it is enough to prove that any bilinear form
m: X x Y —• C is Arens regular. But by [53] this is equivalent to
proving that every linear operator u: X —• Y* is weakly compact.
Now, let u: X —• Y* be a linear operator and (xn) a bounded se-
quence in X. Since X* has the RNP, X does not contain a copy
of I1 and by RosenthaPs /^theorem [45; Thm. 3] (xn) has a weakly
Cauchy subsequence. The space 7* being WSC, we conclude that
the sequence (u(xn)) has a weakly convergent subsequence, and u is
weakly compact.

Now, let G be a locally compact group equipped with a left Haar
measure and A = Lι(G) be the group algebra of G. The algebra A
has a BAI and has the DPP. So has the algebra A = C 0 (Γ), where
T is any locally compact space. Akermann has shown that [1; Thm.
4] if G is compact then, for any a in Lι(G)9 the left multiplication
operator aτ is compact. In [18] F. Ghahramani has extended this
result to weighted group algebras constructed over compact topological
groups. The next result, which we shall need in the next section, shows
that the above-mentioned results are particular cases of the following
proposition.

PROPOSITION 3.12. Let A be a Banach Algebra with a BLAI and
the DPP. Then the following two assertions are equivalent.

(i) A is a right ideal in its second dual.
(ii) For any a in A, the operator aτ is compact.

Proof. In view of [13; p. 318, Lemma 3] it is enough to show that
(i) —• (ϋ)- Let a e A. By Cohen's factorization theorem [32; 32.26]
there exist b and c in A such that a = be. Hence α τ = ̂ τo cτ. Since
by hypothesis, the operators ^τ and cτ are weakly compact and A
has the DPP, aτ is compact.

The next result completes in a way the preceding proposition and
shows that if the carrier space [4; p. 81] of a commutative Banach
algebra A is connected then A has little chance to be an ideal in its
second dual.
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PROPOSITION 3.13. Let A be a commutative semisimple complex
Banach algebra whose carrier space Φ is connected. Then the only
element a in A for which the operator aτ is compact is a = 0. If
moreover, A has the DPP then a = 0 is the only element in A for
which the operator aτ is weakly compact.

Proof. Let a be an element in A for which aτ is compact. Denote
by a the functional on A* defined by ά(f) = f(a). Since the space
Φ is connected and a is weak*-continuous, ά(Φ) = {f(a): f e Φ} is
a connected subset of C. Now, as it is immediate to see, for any / in
Φ, flT*(/) = f(a)f so that f(a) is an eigenvalue of the operator α τ * ,
which is compact. Since the spectrum of a compact linear operator is
at most countable [14; VII.4.5] and α(Φ) is contained in the spectrum
of the operator aτ* we conclude that ά(Φ) = {λ} for some λ in C.
We claim that λ = 0. Indeed λ φ 0 implies, by [4; p. 84, Prop. 9],
that A is unital and a is invertible. But this is not possible since α τ
is compact. Hence λ = 0 and the semisimplicity of A implies that
a = 0. Now assume A has the DPP and for some a in A, α τ is
weakly compact. Then aiτ = aτ °a τ is compact and so a2 = 0 by
what precedes. Again by semisimplicity of A we conclude that a = 0.

We note that the preceding proposition applies, e.g., to the algebras
C([0, 1]), Cb(R), Lι(R), lι(Z) and that these algebras have the DPP.

We close this section with some remarks and examples.

REMARKS AND EXAMPLES 3.14. (a) Let / be the James space [37;
p. 25] and A = K{J) the algebra of compact operators on / . Since
/ has a Schauder basis and /** is isometrically isomorphic to / , the
spaces / , /* and /** have the a.p. and they are separable. Hence
A* = /*(§)/** and Λ** = L(J**) [12; p. 248, Thm. 6]. Since A* is
separable it has the RNP. Moreover A has a BLAI since A** has a
unit element [10; Lemma 3.8]. But A is not regular since / is not
reflexive ([38], [54] or [62]). This example shows that the converse of
Theorem 3.5 is not true.

(b) Let T be a locally compact space and A = Q ( Γ ) . S. L. Gulick
has shown that [29; Thm. 4.9] A is an ideal in its second dual iff T
is discrete. (A short proof of this result goes as follows: Assume A is
an ideal in yί**. Then so is any quotient algebra of A. Now, let F
be any compact subset of T. Since the algebra C(F) is isomorphic
to a quotient of A and it has the DPP and is unital, by Proposition
3.12 the identity operator on C(F) is compact. But this is possible
only if F is finite. It follows that T is discrete. The converse is
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immediate.) Now, assume that T is noncompact dispersed (i.e. has
no nonempty perfect subset) and nondiscrete. Such spaces exist, for
example an infinite appropriate ordinal space, see [48; pp. 149-151].
Then the algebra C0(T) is regular, has a BAI and the DPP, its dual
space has the RNP [39] had the Schur property [11, Thm. 3]. But
Co(T) is not an ideal in its second dual. On the other hand, as we
shall see below, the group algebra Lι (G) of an infinite compact group
is an ideal in its second dual but it is neither regular nor has its dual
the RNP. These examples show that the property that an algebra A is
an ideal in its second dual is independent of the geometric properties
of Banach spaces involved so far in this note.

4. Applications I. In this section we present some applications of
the results given in §3 to topological groups, group algebras and their
wap functionals.

Let G be a locally compact topological group and A = Lι(G) be its
group algebra with respect to a left Haar measure of G. The algebra A
has a BAI [31; p. 303] and it is unital if G is discrete. We give without
proof the following well-known result which is an easy application of
the Dunford-Pettis criterion [14; p. 294, Cor. 11] characterizing the
weakly compact subsets of Lι(G).

LEMMA 4.1. Assume G is compact. Then the algebra A = Lι(G) is
a bisided ideal in its second dual

The following result, in the case where G is locally compact and
commutative, is due to Civin and Yood [10]. N. Young has extended
it to noncommutative groups [61]. Below we shall present four short
proofs of this proposition. Some other proofs, partial or complete, of
this result can be found in the papers [51], [55] and [60].

PROPOSITION 4.2. Assume G is compact. Then the algebra A =
Lι(G) is regular iff G is finite.

Proofs. 1. This proof is based on Theorem 3.1.(b) above. By this
theorem and Proposition 3.3, waρ(^) = AA* = C(G). Therefore A
is regular iff L°°(G) = C(G) iff G is finite.

2. This proof is based on Corollary 3.9. By this corollary A is
regular iff it is reflexive. This is possible iff G is finite.

3. This proof is based on Theorem 3.10. By this theorem A is
regular iff A* = L°°(G) has the RNP and the Schur property. This is
possible iff G is finite.
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4. This proof is a little bit longer than the preceding ones but it does
not use Lemma 4.1 above. We shall apply Theorem 3.5 directly. First
note that G has a metrizable quotient group G/H [31; 8.7], where
H is a closed normal subgroup of G. On the other hand, the group
algebra of G/H is isometrically isomorphic to a quotient algebra of
the algebra Lι(G) [44; p. 74, 5.3] and quotient algebras of regular
algebras are regular. Therefore we can assume that G is metrizable
so that the spaces Lι(G) and C{G) are both separable. Now, let
(£«)Λ€N be a BAI of A. For each n e N, the set Hn = {e f- f €
A\} is contained in C{G) (see the proof of Proposition 3.3 above).
Hence each Hn is separable, so has the RNP. Should A be regular, by
Theorem 3.5, A* = L°°(G) would have the RNP. But this is possible
only if G is finite. The converse is trivial.

REMARK 4.3. Assume G is locally compact and nondiscrete, and
A = L\G). Theorem 3.1 (a) shows that wap(^) c AA* = IΛJC(G).
Therefore, should Lι (G) be regular we would have L°°(G) = IΛJC(G),
which is not possible. This remark shows that, concerning the regu-
larity of Lι(G), the only case which is not covered by Theorem 3.1
is the one where G is discrete.

The next result is about the location of the space wap(Lι(G)) in-
side L°°(G). In [15] and [55] it is shown that, for any locally com-
pact group, wap(Lι(G)) = WAP(G). On the other hand, Burckel has
shown that the equality WAP(G) = C(G) holds iff G is compact [7;
p. 68, Thm. 4.10]. Later, this result has been improved by several
authors, see e.g. [8], [16] and [22]. The best result in this direction
seems to be the following [16; Cor. 2.2]: if G is not compact then the
quotient space JJC(G)/ WAP(G) contains an isometric copy of l°°.
Below, as an application of Theorem 3.1, we give a short proof of
some of these results.

PROPOSITION 4.4. Let G be locally compact. Then waρ(L1(G!)) c
UC(G). Moreover, if G is not discrete, the equality wapίL^G)) =
C(G) holds iff G is compact.

Proof. Since the algebra A = Lι (G) has a bisided approximate iden-
tity, Theorem 3.1 (a) and Proposition 3.3 show that the space wap(^4)
is contained in both spaces LUC(G) and RUC(G). Hence wap(^4) c
UC(G). If G is compact, then, by Theorem 3.1(b), wap(^) = C{G).
Conversely, assume that we have wap(v4) = UC((7). Then C(G) =

= UC(G). But for a locally compact nondiscrete topological
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group, the equality C(G) = UC(G) is possible only if G is compact
[36; Cor. 2].

The next result is an application of Corollary 3.6. We do not know
whether this result is known or not.

PROPOSITION 4.5. Let G be a compact topological group. Then the
space C(G) does not contain a (isomorphic) copy of l°°.

Proof. Assume G is infinite and let A = Lι (G) be its group algebra.
Then the algebra A is irregular. Let B be any nonreflexive separable
closed subalgebra of A. (Such a B exists since A is not regular; recall
that a Banach algebra is regular iff every separable subalgebra of it is
regular.) The space B, being WSC, contains a copy of I1 [45; Cor.
1]. Since l°° = (Z1)* is unseparable, by Proposition 4.4 and Corollary
3.6 we conclude that C(G) = wap(^4) does not contain a copy of /°° .

As a corollary of this proposition we give a short proof of the fol-
lowing result due to Rajagopalan [43]. For other proofs of it, see [23;
p. 322, Prop.] and [29; Lemma 3.9].

COROLLARY 4.6. Let G be a compact topological group. Then G is
extremally disconnected iff G is finite.

Proof. Assume G is infinite and extremally disconnected. Then,
by a result of James [34], C(G) contains an isomorphic copy of l°° .
This being impossible by the preceding proposition we conclude that
every extremally compact topological group is finite. The converse is
trivial.

REMARK 4.7. Let K be an infinite compact space. It is known that
if K is σ-Stonean (i.e. disjoint open subsets of K, at least one of
which is an Fσ, have disjoint closures) or if K is an F-space (i.e.
disjoint open Fσ subsets of K have disjoint closures) see [47], then
the space C(K) contains an isomorphic copy of /°° (in the case where
K is an i^-space the Continuum Hypothesis is assumed), see the in-
troduction of the papers [30] and [49]. From this and the proof of the
preceding corollary we conclude that a compact topological group is
σ-Stonean or an F-space iff it is finite.

The next result is due to Watanabe ([57], [58]). Some other proofs,
partial or complete, of this result can be found in [9], [19], [25], [33]
and [35].
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PROPOSITION 4.8. Let G be a locally compact topological group and
A = Lι(G) be its group algebra. Then a is a right ideal in its second
dual iff G is compact

Proof. Assume A is a right ideal in its second dual. Then the main
hypothesis of Corollary 3.6 is satisfied so that the space wap(v4) does
not contain a copy of l°°. On the other hand, by Theorem 3.1 (a),
wap(^4) = LUC(G) and it is well known that, if G is not compact,
the space IΛJC(G) contains an isometric copy of l°°, see, e.g., the
proof of Theorem 2.1 of [16]. From this contradiction we deduce that
G is compact. The converse is the object of Lemma 4.1 above.

The next remark contains two other proofs of this proposition. Yet
another proof can be obtained from Proposition 3.13 above if the
group G has an abelian quotient group whose dual group is connected.

REMARKS 4.9. (a) S. Sakai [46; Thm. 1] has shown that if G is
not compact then the only element a in Lι(G) for which the left
multiplication operator aτ is compact is a = 0. This result combined
with Proposition 3.12 above furnishes another proof of the preceding
result.

(b) Assume G has an infinite discrete quotient group G/H. This
is the case for example if G is noncompact, compactly generated and
Abelian [31; 9.8]. Then the group algebra of G/H is a unital infinite
dimensional Banach algebra with the DPP. Therefore, by Proposition
3.12, Lι(G/H) cannot be a right ideal in its second dual nor can
Lι(G) be since Lι(G/H) is isometrically isomorphic to a quotient
algebra of it. This argument furnishes, in this particular case, another
proof of Proposition 4.8.

5. Applications II. In this section we give some applications of the
results given in §3 to the injective and projective tensor products of
two Banach spaces and algebras.

If X and Y are two Banach spaces having the RNP their projective
tensor product X®Y need not have the RNP. Indeed, in [5] J. Bour-
gain and G. Pisier have given an example of Banach space X which
has the RNP and is WSC but the space X®X contains a copy of CQ .
On the positive side, if both X* and Y* have the RNP and one of
them has the a.p. then the space X*®7* has the RNP [12; p. 249,
Thm. 7]. The next proposition is a particular case of this result and
is obtained as an application of Corollary 3.7 above.

PROPOSITION 5.1. Let X and Y be two reflexive Banach spaces with
the a.p. Then the space X <g> Y has the RNP.



392 A. ULGER

Proof. Put Z = X x Y*. Equipped with the norm | |(x, y*)\\ =
\\x\\ + \\y*\\, Z is a reflexive Banach space and has the a.p. Consider
the operator algebra K(Z) = Z*<g>Z of the compact linear operators
on Z . Since Z is reflexive and has the a.p., K(Z)* = Z<S>Z* and
K(Z)** = L(Z)9 see [12; p. 248, Thm. 6 and Thm. 7]. The algebra
K(Z) is regular ([38], [54] and [62]) and is a bisided ideal in its second
dual. Since the algebra L(Z) is unital, K{Z) has a BAI [10; Lemma
3.8] (see also [38; Thm. 2]). Therefore by Theorem 3.5 (or Corollary
3.7) K{ZY = Z®Z* has the RNP. Now, it is clear that X (resp. Γ ) i s
complemented in Z (resp. Z*) by a norm-one projection. Therefore
we can regard X®Y as a subspace of Z<g>Z*, see [28; p. 39, Prop.
4(2)]. It follows that the space X®Y also has the RNP.

The next result is about the Arens regularity of the projective tensor
product algebra A®B of two Banach algebras A and B with BLAI.
We recall that on A®B the multiplication is the linear extension of
the following natural multiplication on decomposable tensors

(a ® b)(ά <g> b) = aά ® bb.

For more information about the tensor product of Banach algebras the
reader may consult Chapter VI of the book [4] and the papers [17], [20]
and [52], and about the regularity of the algebra A®B, the paper [56].
Now let A and B be two Banach algebras with BLAI (ea)aei
(dβ)βeJ 9 respectively. It is easy to see that the net (ea ® ̂ /?)(
is a BLAI for the algebra A®B. On the other hand, even if both A
and B are reflexive and commutative the algebra A®B need not be
an ideal in its second dual, here is a simple example.

EXAMPLE 5.2. Let A = I2 Θ C be the unitization [4; p. 15] of the
usual Hubert space I2 endowed with the coordinatewise multiplica-
tion. Then the algebra A®A is unital and nonreflexive; therefore it
cannot be an ideal in its second dual.

We recall that the dual of A®B can be identified with the space
L(A, B*) [12; Chapter VIII] so that, for S in L(A, B*), a, x in A
and b, y in B, we have:

> x ® y) = (S, a ® b.x ® y) = (S, ax ® by)

{b^ °Soaτ, x®y).

Thus a<S)bS = bτ* o So aτ. Now let u = Σ Λ I I
 an ®bn be a general
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element of A®B . For such a u, we have

oo

n=\

Finally, recall that 4̂(g)i? £^4, 5*) denotes the space of uS's for w
in A®B and 5 in L(A, B*).

Except the first inclusion of the first assertion, the following theorem
seems to be new.

THEOREM 5.3. Let A and B be two regular Banach algebras with
BLAI. Then we have:

(i) K(A, B*) c wap(A®B) c A®B L(A, B*). In particular any
compact linear operator T: A —• B* has a decomposition of the form

n=\

for some u = Y^Lγ an ® bn in A®B and some S in L(A, B*).
(ii) Assume that, for each a in A, b in B and S in L(A, B*),

the operator bτ*oSoaτ is compact. Then the algebra A®B is regular

(iii) Assume that, for each a in A and b in B, one of the opera-
tors aτ or frT is compact and the other is weakly compact. Then the
algebra A®B is a right ideal in its second dual, and A®B is regular
iff L(A, B*) = K(A, B*). Moreover, in this case the space K{A, £*)
has the RNP.

Proof, (i) The first inclusion of the assertion is proved in [56; Thm.
4.5]. The second inclusion follows from Theorem 3.1 (a) above.

(ii) Assume that, for each a in A, b in B and S in L(A, B*)
the operator ^τ* o S o aτ is compact. Let u — J2^L\ an ® bn be a
general element of A®B . Put Sn — Σ?=i ^ * ° 5 Ό f l τ . The operator
Sn is compact and as one can see easily, in the operator norm of
the space L(A9 5*), Sn -> US so that US is compact [14; VI. 5.5].
Whence, A®B L(A,B*) = K(A,B*) = wap(A®B). From these
equalities we conclude that the algebra A®B is regular if we have
L(A,B*) = K(A,B*).

(iii) Assume, for example, that for each a in A β τ is compact and
for each b in B, bτ is weakly compact. In order to show that the
algebra A®B is a right ideal in its second dual we shall first show that
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the left multiplication operator a®bτ on A®B is weakly compact.
To this end, let A\ ® B\ denote the collection of the elements of
the form a ® b with a in A\ and b in Bγ . By definition of the
projective tensor topology (see [28; p. 25]), the unit ball of A®B is
contained in aco(^i ® B\), the closed absolutely convex hull of A\ ®
2?i. Therefore the operator a®bτ is weakly compact iff the set [aA\ ®
61?i) is relatively weakly compact (Krein-Smulian's Theorem [14; V.
6.4]). To prove that this latter set is relatively weakly compact is
equivalent to proving that, for any norm convergent sequence [xn) in
aA\ with xn —> x, any weakly convergent sequence (yn) in bB\ with
ϊn -> y weakly and for any S in L(A, 5*), we have (S^x,,), yn) —•
{S(x), y) . This being immediate to see, we conclude that the operator

a<S)bτ is weakly compact. Now, let u = Σ^i an ®bn be a general
element of A®B. Put un = Σ^i ai®bi Then u τ is weakly compact
and as one can see very easily, u τ —• w τ uniformly on the unit ball
of >4®2?. Hence uτ is weakly compact [14; VI. 4.4], and 4̂(8)5 is a
right ideal in its second dual. The last two assertions of (iii) follow,
respectively, from part (ii) of this theorem and Corollary 3.7.

As a concrete application of this theorem we give the following
corollary, compare with [56; Cor. 4.18].

COROLLARY 5.4. Let B be a regular Banach algebra with a BLAL
Then the algebra CQ®B is regular iff B* does not contain a copy of Co.
Moreover, if B is a right ideal in its second dual then CQ®B is regular,
a right ideal in its second dual and the space (co&B)* = K(CQ , 5*) =
lι®B* has the RNP.

Proof. We first note that, by Proposition 3.12 and Example 3.14(b),
for each a in c 0 , the left multiplication operator α τ is compact.
Therefore, by the preceding theorem, c$®B is regular iff K(c0, B*) =
L(c 0, 2?*). Now remark that any weakly compact operator T: CQ —>
B* is compact since CQ = I1 has the Schur property. On the other
hand, by a result due to A. Pelczynski [40; Thm. 5 and Cor. 1], a linear
operator T: CQ —• B* is weakly compact iff B* does not contain a copy
of Co . From this we conclude that the algebra CQ<S>B is regular iff B*
does not contain a copy of CQ . Now, assume that B is a right ideal
in its second dual. Then, by Corollary 3.7, B* has the RNP so that
it does not contain a copy of CQ . Hence cφB is regular. The rest is
immediate from the preceding theorem and Corollary 3.7.
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We end this note with some remarks and questions.

REMARKS AND QUESTIONS 5.5. 1. Let A be a Banach algebra
with a BLAI. Theorem 3.1(b) says that Ίΐ A is a right ideal in its
second dual then wap(^4) = A A*. The converse of this result is not
true. Indeed, let T be a locally compact nondiscrete topological space
and A = CQ{T) . Then wap(Λ) = A* = AA*, but A is not a right
ideal in its second dual. On the other hand, if G is a locally com-
pact topological group and A = Lι(G) its group algebra, the equality
waρ(^4) = AA* implies that A is a right ideal in its second dual (see
Propositions 3.3 and 4.4). This situation raises the following ques-
tion: Characterize those Banach algebras A for which the equality
wap(^4) = AA* implies that A is a right ideal in its second dual.

2. Let G be a locally compact topological group and A = Lι(G)
be its group algebra. Sakai's theorem [46; Thm. 1] says that if there
exists a nonzero element a in A for which aτ is compact (or weakly
compact, see [19; Cor. 3.2]) then G is compact so that A is a right
ideal in its second dual. This result suggests the following question:
Let A be a Banach algebra with a BLAI and DPP. Does the existence
of a nonzero element a in A for which aτ is compact imply that A
is a right ideal in its second dual?

3. In view of Corollary 3.9, the following question suggests itself: Is
there a nonreflexive and non-unital WSC regular Banach algebra with
aBAI?

4. Let G be a compact group and A = Lι(G) its group algebra. As
we have seen in §4, wap(Λ) = C(G) = WAP(G) and the space C(G)
does not contain a copy of /°° . This result suggests the question: Let
G be a locally compact group and wG be its weakly almost periodic
compactification. Does the space C(wG) contains a copy of /°°?
Here we remark that wG need not be a topological group.

5. For a Banach algebra A, let s(A) denote the collection of the
separable subalgebras of A and by ds(A) the subset of s{A) con-
sisting of the subalgebras whose duals are separable. It is immediate
from the double limit criterion that A is regular iff any B in s(A)
is regular. On the other hand, if A* does not have the RNP, the
equivalence "A is regular iff any B in ds(A) is regular" need not be
true. For example, let A = lι(Z) be the group algebra of the additive
group of integers Z. Then any B in ds(A) is finite dimensional [37;
Prop. 2.a.2], so regular but A is not regular. This fact suggests the
following question: Characterize those Banach algebras A for which
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the equivalence "A is regular iff every B in ds(A) is regular" holds.
6. In Theorem 3.5 instead of assuming that each set Ha has the

RNP if we assume that each set Ha has the weak RNP (or, say, is
conditionally weakly compact) how does this change the conclusion
of the theorem?

7. Proposition 3.13 suggests the question: Let A be a semisim-
ple commutative Banach algebra with carrier space Φ. How are the
topological properties of Φ and the operator properties of aτ 's (resp.
geometric properties of A) connected? For instance, is Φ dispersed
if A does not contain a copy of Z1 ?

Note added in proof. Professor M. Grosser (Wien) has kindly in-
formed us that the proof of Corollary 3.6 is not complete. It is indeed
so and we do not know whether this corollary is valid or not. How-
ever even if it turns out to be invalid this will not affect the rest of
the paper for we have used this corollary through Proposition 4.5 and
this proposition is valid independently from Corollary 3.6 for the fol-
lowing reasons: Any compact topological group is a dyadic space [48;
p. 144] and, for a dyadic space S, the space (cs) does not contain an
isomorphic copy of /°° [R. Engelkind and A. Pelczynski, Coll. Math.
XI (1963), 55-63].
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