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ABOUT COMPRESSIBLE VISCOUS
FLUID FLOW IN A BOUNDED REGION

GERHARD STROHMER

This paper deals with the question of existence for all times of the
solutions of a certain class of differential equations for small initial
values, and with the asymptotic behavior of these solutions. This class
of equations contains different models describing the flow of viscous
compressible fluids, even under the influence of a magnetic field.

1. Introduction. We consider the initial-boundary value problem
on a bounded domain Ω c l " with Dirichlet boundary conditions
(<9Ω G C 3 ) . The solutions of our equations are functions X: Ω x
[0, oo) —• Rm + 1 (X = X(x, t), m > n) representing the relevant
physical variables in their dependence on space and time. For the
sake of simplicity we assume that Ωi c Rm + 1 is a convex domain
containing all physically reasonable values of X. The set might, e.g.,
include only positive values for density (which is usually the (ra +1) st
component of X), and temperature. Then our equations have the
form

(E) X/ + / ( X , VX) = Lι

xX + gι{x, t) (/ = 1, . . . , m) ,

1=1

with sufficiently regular functions / : Ωi x Rn(m+ι) —• Rm and
g: Ω x [0, oo) -> Rm , and an elliptic operator LyX given by

m n
LΎχ = Έ Σ 4J'(γ)χikXj (i = u . . . , m )

i=\ j9k=l

with a*jΊ G C 3 (Ωi). The solutions we obtain are small in the sense
of being close to a constant state HQO E Ω I . The most important
hypothesis we need for our result is expressed in Condition C, which
states roughly that the linearization of our equation at Hoo generates
an analytic semigroup with exponential decay for t -> oo on a product
of Lp-based Sobolev spaces for some p > n. This decay is the most
important factor in the proof of a priori estimates for solutions of
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(E) in Chapter 2, and their differences in Chapter 3, which enable us
to prove the existence of a solution of E if g is sufficiently small
and the initial values are sufficiently close to //QO , and to describe its
asymptotic behavior.

In contrast to the situation in one (see, e.g., [4]) and two space di-
mensions (in the latter case there are at least global weak solutions for
isothermal gas flow in E2 , as is shown in [8]), the only known results
about existence for all times of solutions for the equations of viscous
compressible fluid flow in higher dimensions impose smallness con-
ditions on initial and boundary data, and the exterior forces. They
were proved by Matsumura and Nishida ([5], [6], [7]) for domains
with and without boundary. These papers also contain results about
the asymptotic behavior of the solution; here a smallness condition
for exterior forces and boundary values seems to be necessary, as tur-
bulence is bound to occur at some point, preventing convergence as
t —• oo. For bounded domains our results go beyond those of Mat-
sumura and Nishida. We give a rather general sufficient condition for
the existence of a small solution for all times, we do not require the
exterior forces to be conservative, nor the boundary values to be con-
stant, and we do not need to confine ourselves to three dimensions.
(For the incompressible case see, e.g., [12].)

Let us now discuss some examples of systems of equations accessi-
ble to our method. In [10] Condition C is verified for compressible,
viscous, and heat conducting flow. The system of equations

pt + diγ(pu) = 0,

ut + (u V)u + -V(p(p, θ))

= -(uxB)xB + - [div(μVu) + V ((// + μ) divw)] ,

θt + (w V) θ + ΘPθ ( / ? ? ^ divu = — (div(kVΘ) + ψ)
pc pc }

with

ψ = f ( < + 4 . ) 2 + μ'(divu)2 + σ\ux B\2 ,
which describes the flow of an ionized gas with density p, tempera-
ture θ, and velocity u {μ,μι viscosity coefficients, c heat capacity,
σ electric conductivity, p = p(ρ, θ) pressure) under the influence of
a magnetostatic field B(x) e C 3 (Ω), which is assumed not to be per-
ceptibly influenced by the currents in the gas, is another example (see
[2], [9]). (Note that B is not required to be small.) The proof that
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this system fulfills C parallels [10] closely. For the analog of Lemma
3.5 use

((u x B) x B) ΰ = (u x B ) - ( B x ΰ ) = - ( u x B ) ' ( u x B ) = - \ u x B \ 2 .

The magneto-fluid-dynamic system obtained by adding B as an un-
known function, and completing the system by the equation

Bt = (7"VmΔΰ -CUΓ1(W X B)

(μm magnetic permeability) also fulfills condition C if the part of
Hoo corresponding to B is zero. Dirichlet boundary conditions for
B seem, however, not very suited to this problem, as they usually
interfere with the condition div B = 0.

Now we make our statements precise. (For the definitions of some
of the objects mentioned here see 1.3.) We denote the two groups
of variables of / by H and P (/ = f{H, P)), with H = (Hι, . . . ,
Hm+ι) e R m + 1 , P = (Pj)™Vy=i e R"( m + 1 ). Then we suppose / e C 3 ,
f(Hoo, 0) = 0, fHm+ι(Hoo, 0) = 0, and finally πn/ίoo = 0, which is
reasonable if the first n components of X represent the velocity of
the flow. We also assume the ellipticity condition

m

Y^a^l(H)ηιηιξkξJ>0 (H e Ω{, η G Rm , ξ e Rn , ηφ 0 φ ζ).

As a final step we make a number of definitions needed to state Con-
dition C. For technical reasons the Sobolev spaces in the following
section are complex, although our solutions are real. We first define
the linear operator

A* (H2\m v Hι —> (T \m v Hι

1 * V Ό ) Ό V P ) Ό

by

m n
( A v\l fl (j-Γ π^ vi ι

I

/ί=li/=l

and {A{X)m+ι = H™+1 ΣΊ=ι X^ . Now we need two spaces defined
in analogy to [10]:

r: Ω - Cm+ί\X e (Lp)
m xHl, f Xm+ι dx = θ l

^ Ω J
DP

A = Bp n {X € {Hj)m x Hi \πmX\ dΩ = θ} .
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These sets are Banach spaces with respect to any norm of (Lp)
m x Hp

and (H£)m x Hp , respectively. We choose one of these in each case

and denote them by || \\B and || H^ . Then let A = A\\D^ note

that A(D^) c Bp . This allows us to formulate

Condition C. The operator A: D^ —• Bp is closed, and there are
numbers η > 0, and Kι < oc such that the resolvent (A + zl)~ι of
A exists at least for all elements z of

31 = ίz G C| Re z > -2>/, or Re z > - |Im z\ and |z| > A/"1 } ,

and

for all X eBp, z €&. In addition,

| , Γ χ / / J < ϋΓ2 (1 + Izl)-1/2 \\(A +

and

\\x\\ 3 Γ x i / 2 < ^ (l + ki)1/2 | | μ + ( Γ
v P ' P v P ' P

for all z e ^ , X e Z^ , and X e (H*)m x 7/p

2 in addition for the last
two inequalities. Now we can state our two theorems.

1.1. THEOREM. Assume the system of equations (E) together with
Hoo € Ω! fulfill Condition C, and the other hypotheses stated as yet
Then there are numbers ε\ > 0, and K\ < +oo such that if XQ £
(β, g) G ^ (see 1.3) with β(0) = X0\dΩ, πnβ = 0, and

\\X0 - Hoo\\H2 + \\(β - πmHoo
P

then there is exactly one function X = X(x, t) belonging to

C°([0, oo), H2p) ΓΊ Cι{[0, oc), Lp) n Cι{{0, oo), flj)

vv/Y/z π m X G C°((0, oo), //£), /̂7<i solving (E) m ί/ẑ  classical sense

for t > 0, swc/z //zα/ πmX|(9Ω = β, α ^ X(x, 0) = Xo(x) for x G Ω.
For ί > 1 this function fulfills the inequality

x,t)\\H2 + \\πmX(x,t)\\H>
P P

< KX ( | |Xo - tfoo||,£ + \\{β - TtmHoo
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1.2. THEOREM. There is an ε2> 0 such that if

| | *o " Jϊoolltf + IIQ8 - πm/foo, g)\\a < ε2
P

in addition to the assumptions of \Λ, and β(t) -> β in Hj{dΩ),
βt -> 0 in Lp(dΩ), and g(t) -+ g in Lp (t —• oo), then the solution
X(x9 t) mentioned in 1.1 converges weakly in Hj to a function X,
and πmX(x, t) even converges weakly in Hj as t —> oo. Also X is
a time-independent solution of (E) with boundary values β and right
side g. It is the only such solution fulfilling the inequality

\\X - HooWjji + \\nm{X - /fooJII^ < Kxe2.

1.3. Notation. In the symbols used for function spaces the set on
which the functions are defined is often omitted, this means usually
that the set is Ω, except in statements like / e C 3 , where / , and its
domain, have been given before. In general we take over the notation
of [11], with the exception that X represents here what would have
been X + H^ there. Let

^ = {(β, g)\β: ΘΩ^Rm, g:Ω^Rm, β eCι([0, oo) , H

nC2([0,oo) ,H*(dθή , and

geC° ([0, oo), Hή n C1 ([0, oo), Hi)) ,

for (β, g) G & we define

, g)\\a = \\β\\cx{w,<χ>),Hl(dςi))

+ ll<?llc°([o,cx)),i/2) +

For μ > v let πr: Rμ —> Er be defined by π(x\, . . . , xμ) = (x\, . . . ,
xy). For h: Ω -* R m + 1 , h e L{ let

Af(A)= Γo 0, lΩp1 / ^ and

All constants in this paper are independent of T unless otherwise
stated.

2. Existence of a global solution. We begin this chapter by stat-
ing an easy consequence of the local existence theorem proved in
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[11]. Then we show that every solution of (E)—expressed in Lagrange
coordinates—solves the equation Xt + A\X = G(X) with the G(X)
defined in 2.2. We use this information to prove an a priori estimate
which—together with the local existence result 2.1—then gives the
existence of a global solution.

2.1. LEMMA. TO every T > 0 there is a δ\ > 0 such that if
, πnβ = 0,and

\\(β - πmHoo, g)\\a + ||*b - tfoolltf < δi,
P

then there is exactly one function X e C°{[0, T], H£) with πmX e
C°((0, T], Hj) which is a classical solution of (E) for t > 0 with
X(x,Ό) = X0(x) for xeΏ, X(x, t) = β(x, t) for x e dΩ, and X
fulfills the inequality

\\πm (X - H^Wtf Vt + \\X - HooWrf
P P

< Ki (T) (\\(β - KmHoc ,g)\\χ+ \\X0 - tfooll^)

Proof. This can be obtained by repeated application of Theorem
1.1 and Theorem 5.2 of [11].

By Lemma 2.6 and Theorem 2.7 of [11], it is clear that X(x, t) can
be transformed into Lagrange coordinates in all of [0, T] if

|| {β-πmHoo, g)\\^ + \\XQ-HOΰ\\H>
P

is small enough, and that the transformed solution X(y, t) has the
property

, ί) - tfoolU(r) < K3 (T) (\\(β - πmHoc , g)\\

with a suitable constant K^(T). (For the definition of S'iT) see [11],
Def. 3.1.)

The following definitions will be applied to such solutions.

2.2. Definition and Lemma. To every T > 0 there is a δι > 0 such
that if X-Hoo e <9>(T), \\X-H^W^T) < S2, and πnX\dΩ = 0, then

e Ω )TX{y)=y+fnnX{y9x)dx (y
Jo
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is an admissible family of transformations on Ω (see Chap. 2 of [11]).
With x = T?(y) we then define G(X) as follows: For / = 1, ... , m
let

k l Γ%Xj(y, 0 + /£ (#oo, 0)Xι

+ lafJI(Y)({7*)-%% ^

+ g(Lf(y),ή, (f'(H,P) = fι(H,P)-WPJ),

and, completing the definition,

Gm+\X) = (H™+ι-Xm+i(y, t))XJ,ι+

Now we estimate G(X) in terms of X.

2.3. L E M M A . For T > 0 there is a ST, > 0 and a constant ${)
oo such that if X € S"{T), πnX\dΩ = 0 , and \\X - H^Ws^r) <
then G(X) e C ° ( ( 0 , T], (Hx

p)
m x Hj), and

< Γι'2K4 (T) (\\X - //oo| |^ ( r ) + | |(0,

Proof. This is an easy consequence of Lemma 3.5 of [11].

2.4. LEMMA. The operator -A generates an analytic semigroup on
Bp, and there is a number K*, < +oo such that for X e Bp we have

(1) \\e-tΛX\\Br < Kse-i'WXh,,

(2) \\e-tAX\\1yA<K5{l+Γι)e-'"\\X\\Bf,

and if X also belongs to (Hp

ι)m x Hj the additional inequalities

(3) \\e-tΛX\\(HlrχK <K5{\ + r

(4) \\e-tAX\\(W3ΓxJfi < K5(l + r

(5) \\e-tAX\\^ < Kse-i'iWXU (1 + r 1 ) + | |X| | ( /,,Γ x^(l + r 1 / 2 ) ) ,
P P V P ' P

(6) I k - ' ^ l l ^ < κ5e-*\\ + rx)\\X\\Hi (X eH2

p)
P P

are valid.
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Proof. The inequalities (l)-(4) are easily obtained from Condition
C using the integral representation from p. 103 in [3] for A - ηl.
These then imply (5) as

\\πme~tAX\\H2 < C{(Γι + l)e-ηt\\X\\B and
P P

\\(e-tAX)m+1\\H2 < C2{Γ{I2+ \)e-^\\X\\{HrxH^
P v P' P

(6) is just a weakening of (5).

2.5. LEMMA. // X(y, t) e S?{T) is a solution of(E) in Lagrange
coordinates on [0, Γ], if φ e Cι([0, oo), H%) ΓΊ C2([0, oo), J7j),
φv = 0 for v G {1, . . . , n, m+ 1}, and πmφ\dΩ = πmX\dΩ, then
for te[09T] we have Xt + AXX = G(X) and

e-tA(X(y,0)-φ(y,0)-M(X(y,0)))

/ e-^-s)Λ{G{X)-M(G{X))-φt-Άxφ)ds.
o

Proof. Using Theorem 2.7 of [11], we see that X (y, ί) fulfills the
equation Xt + A\X = G (X) but X does not usually even belong to
Bp . However, X - φ - M{X - φ) e D^ for t > 0 and

(X-φ-M(X- φ))t + A(X-φ-M(X-φ))

= G(X)-M(Xt-φt)-AιM(X-φ)-Aιφ-φt.

Now Mφ = 0 as φm+ι = 0, AλMX = 0 because fH^(H, 0) = 0,
and

ί divπnXdy = Hoo ί (πnX,n)do = 0,
JΩ JdΩ

so MXt = -MAXX + MG = MG, and

(X - φ - MX)t + A(X-φ- MX) = G (X) - MG (X) - A{φ - φt.

As the right side of the above equation belongs to C1/4([<5, T], Bp)
for all δ > 0 we get the desired representation from Theorem 3.2 (p.
109) of [3] for the interval [δ, T], and can then let δ go to zero.

2.6. LEMMA. There is a constant K6 < +oo such that ifh(t): (0, T]
—• Bp fulfills the inequality

OL

Wh\\c"4([t,T],Bp) + Wh\\ ^
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then for t > 2 we have

h(t)= ί e-{t~s)Ah (s) ds e Hi
Jo

and\\h(t)\\H2<K6a.
P

Proof. We can write h(t) as the sum of the two functions

λ i ( 0 = f e-^-s)Adsh{t)
Jo

and

*2(0= f e-^Λ{h{s)-h{t))ds.
Jo

As
u ί Λ_\ _rAi , ,Λ _ _e-τAjι /^\

we have h\{t) = A~lh(t) - A~xe~tAh{t) therefore

P i (OH** < C,
p

Using 2.4 we also obtain

< C3 f e-'ί'-') [||A (s) - h {t)\\Bp (\s - ή'1 + l)

+ \\h (s) - h {t)\\(KrxHl (\s - t\~1/2 + l)] ds

rt/2 . .

< C4 / e-*-') \\\h (s)\\{HrxH> + \\h (t)\\{HrxHA ds
J Q L v p' p v p' p J

+ C5α Γ *-*('-
Jί/2

<C6a ί e-η{t-s){
Jo

+ CΊa f e-^-sϊ (l + \s- tΓ3/4) ds
Jt/2 V }

< Cga for t > 2.
This immediately implies our assertion.

2.7. LEMMA. For every T > 0 there are constants KΊ, Kη{T)9

and a δ5 e (0, δ\) such that if XQ, β, g fulfill the conditions of2Λ
and

max (| |X0 - « o o | | ^ , \\{β - πmH^, ^ ) | | ) = a < δ5,
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then for the solution X of(E) corresponding to XQ, β, g proven to

exist in 2 A we have the inequality

\Hp

<*7(i+*7(7>)

x \e-'"\\x(x,0)-Hoo(XQ)
H1

k7 (T) [\\(β - πmHoo, g)\\^ + \\X0-

(te[2,T]).

Proof. First we choose ^ > 0 so small that the solution obtained
in 2.1 can be transformed into Lagrange coordinates over the whole
interval [0, T] by means of an admissible family of transformations
Σt(y) • Let X(y, t) be this solution written in Lagrange coordinates.
Note that there is a constant C\ depending solely on the geometry of
Ω such that a φ e Cι([0, oo), Hj) Π C2([0, oo), /ζ}) can be chosen
with πmφ\dΩ = β, φm+ι = 0, and

\\πm {Φ - H^y + \\φt\\Hi + \\φtt\\Hl < d \\(β -
P P P

Using 2.3, 2.4, 2.5, and 2.6, we get

, 0)\\a .

\x(y,t)-Hoo(X(y,t))\\

< C2e-i' (\\X(x, 0) - Hoo (Xo) \\H2 + \\πm (φ(x,0)-

+ \\πm(φ(y,t)-H0O)\\H2
P

+ ί e-{t~s)A (G(X) - MG(X) -φt- Axφ) ds
Jo

< Cie-v'WX (x, 0) - i/oo (Xo) \\H2 + C 3 (Γ) \\(β - πmH^, g)\\
P

+ C4(T)\\X-HOO\&(T).

As X(x, t) = X(T~l(x), t) we also get

H2

X(x,ή-Hoo(X(y,ή)\
\H2

< (I + C5(T)a)\\X(y, t) - , t))\
H2
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and, using the time-independence of HOQ(X(X9 t)),

369

[ Xm+ι (y, t) - H£+ι dy - I Xm+X (JC, t) - H™+x dx
JΩ JΩ

< C6 (T) \\xm+ι (y, ί) - II VπmX\\Loo dτ

By 2.1 we have

< C,(T) (\\X(x, 0) - flooll^ +

which implies our claim.
Now we can prove Theorem 1.1.

First we choose T > 2 large enough so that KΊe~ηT < \ . Once this
is done, we need no longer indicate the dependence of our constants
on T. With αi = min(<J5, (4KΊ)-1, (KΊKΊ8)-1) we obtain from
Lemma 2.7 that if

max (||*o - Hoo\\H2 , HO? - πm//oo, g)^ < ax,

then there is a solution X of (E) on [0, T] fulfilling the inequality

Hp

<\\\X(X,0)-H00(X0)\

{\\{β - πmHoo, g)\\

<hχ(x,0)-Hoo(X0)\\H2
A P

+ d (||(^ - πmHoo, g)\\

This immediately gives us

\\X(x, T) - #oo H^ < 1 \\X{x, 0) - tfo
p L

+ C2 (\\(β - πm g)\\! - #0
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If we choose εi small enough to assure

C2 (\\(β - πmHoo, £) | | , + |/foo - Hoo (Xo) |) < α,/2,

then | |X(x, 0) - i/odl^ < «i implies \\X(x, T) - floods < <*i. So
P ^ P

we can continue our solution to [0, 2Γ]. As Hoo{X{x, t)) is con-
stant and \\(β - nmHoo, g) | |^ cannot be larger for these new initial
value problems than it was for the original one, this can be repeated
indefinitely.

3. Asymptotic behavior. In order to prove Theorem 1.2 we consider
solutions X\ and X2 of (E) with right sides g\, g2 \ and assume
these, and the initial and boundary values fulfill the conditions of
Theorem 1.1. We define Xj{x9 t) = Xt(x 9 ί + 1), fit? = Xi\dΩ9 and
gi(x, t) = gi(x ,t+l) (x e Ω, t > 0, i = 1, 2). We shall derive some
estimates for Z(x9 t) = X\(x, t)-X2(x, t) assuming M(X\(x9 t)) =
M(X2(x, 0) i e., M(Z(x9t)) = 0. With

2

= Σ (l
/ 1

then we have

; ( Γ ί (JC , 0 1 1 ^ + l|wmΛΓ/ (Λ: , OIUO <
/

\ P

Z = l

by Theorem 1.1. For given T < +00 the transformation of any func-
tion into Lagrange coordinates with respect to X\ on the interval
[0, T] is therefore possible by means of an admissible family of trans-
formations x = T4{y)9 if ω is small enough. In what follows we
always assume this to be the case. Then we have

3.1. LEMMA. The transformation Z(y9t) of Z(x,t) into La-
grange coordinates with respect to X\ fulfills the equation

(ϊ = (g\ ~ g\ 9 > g™ ~ gψ 9 0)) on [0, T] with linear operators

Ax (0 : (H2

p)
m x Hi -> (Lp)

m x Hι

p and

B(t): {H2

p)
m x Hi -, (Lp)

m x H}
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having the property that

(1) B(t)heC°([O,T],(Lp)
mxHl)

(2) \\{Aι(t)-Aι(s))h\\B < K8(T)ω\ί-s\^2\\h\\{HrχHl,
P V p I p

(3) \\{Aλ{t) - A{)h\\Bp <K8(T)ω\\h\\{H2ΓχH,,

(4) \\B(t)h\\{L)mχHi<K,(T)ω\\h\\Hl
v p' P P

for t, s e [0, 1], he (Hj)m x Hx

p with πnh\ΘΩ = 0.

Proof. In the Euler coordinates we have for / = 1, . . . , m,

Zj + fι (ΛΊ , VΛΓj) - / (X2, VX2) = L ^ Z , - Lι

xX2 + / .

With Xτ = (2 - τ)Xx + (τ - 1)ΛΓ2 we then obtain

n m r2

ήj, (Xτ, VXτ) dτZi + ΣΣ, & (x*' V X '

Transforming this into Lagrange coordinates we see that

n m

A[A[ (t)Z = fι

Hι (Hoo,0)Zi +

and the Bι(t) determined thereby for / = 1, . . . , m fulfill our condi-
tions. For the (m + 1) st component we have in Euler coordinates

^ { ? { ) X j = 0 ( i = l , 2 )

which implies

zt

m+ι + x{z™+ι + zm+xx{x + X!?X

+1ZJ + x™+xzJ

Xj = 0 ,

so in Lagrange coordinates with respect to X\ we get

With

Am+ι(t)z = x™+ιzi(z;1yXj - M ( ( o , . . . , o,
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and the Bm+l(t) thus determined our claims are easily verified as
JΩ zy dy = ° b y Gauss's theorem, and therefore

, ... , 0, Xψ+ιz}p{JJιγx)\L < C2{T)ω\\Z\\Hl.

3.2. LEMMA. There is a constant K9 < +oo such that to every
T > 0 there exists a δ6 > 0 having the following property: If ω <δ6,
then the fundamental solution Γ(t9s) on Bp (see [3], part 2, chap.
4-6) of the equation

ht + A(t)h = 0 (A(t) = Aι{t)\Dp

A)

exists for t, s € [0, T], t>s, and we have the inequality

| |Γ(ί, s) h\y < K9e-rt-'V2 \\h\\Bp (l + \t- s\~1'2)

(heBp;t9se[09T]9t>s).

Proof. From Theorem 3.1 (p. 109), Lemma 7.1 (p. 127), and Theo-
rem 10.1 (p. 27) of [3] it is clear that the fundamental solution exists,
and the estimate is valid for t - s < 2. Also we can obviously assume

\\e-τ^h\\Bp < C.e-1^ \\h\\Bp (τ e [0, oo))

with a suitable constant Q < +oo. As Γ(ί, s) = Γ(ί, t - l)Γ(ί - 1, s)
for t - s > 1 we only need to prove

*,'
which can be done using equation 4.8 (p. 111) of [3] and the method
employed to obtain 13.15 on p. 154 of [3].

3.3. LEMMA. There are numbers KχOf δΊ, T € (0, oo) such that
ω < δΊ implies the inequality

P

<±\\Z(x,0)\\Hί
A P

+ K10 max \\\gι (τ) - g2 (τ) | | L + \\βι (τ) - β2 (τ)\\H2{dΩ)

+ \\βu(τ)-β2t(τ)\\Lpm)}.

Proof. We start out by deriving an estimate for fixed arbitrary T.
There is a constant C\ only depending on the geometry of Ω such
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that we can always find a φ e Cι([0, oo), H*)nC2([09 oo), H$) with
the properties

WΦWnl + \\Φt\\Lp < Q (||A - β2\\H* + \\βu - ML) '

and πmφ\dΩ = βι - β2, Φm+1 = 0. In Lagrange coordinates with
respect to X\ now Z is easily seen to fulfill the equation

{Z-φ- MZ)t + A(t) (Z-φ- MZ)

= γ + B(t)Z-Aι(t)φ-φt

+ {Aι-Ai(t))MZ{y,t)-MB(t)Z,

as AMZ = MA\Z = My = 0. This gives us the representation

Γ(t, s)\γ + B(s)Z - MB{s)Z - Aι(s)φ - φt
o L

+ (Ai - Aι (s)) MZ (y, s)] ds,

from which, using 3.2, we can derive the inequality

P

< site*'2 \\MZ [y, t)\y + 2K9 \\Z (x, 0)\\H>
P P

+ C2(T) sup (\\γ(τ)\\L +\\φt(τ)\\L+\\φ(τ)\\H2)

+ C3(T)ω sup (Vίe^2\\Z(y,t)\\Hλ.
τe[0,r]v "'

As in the proof of Theorem 2.7 we see that

\M(Z(y,t))\<C4(T)ω\\Z\\Hl,
P

so taking the supremum on both sides of the inequality for t G [0, T]
we get

sup (yΓte*l2\\Z{y,t)\\Hλ

+ C6(T) sup (||y(ί)||L + | | ^ ( 0 I I L +\\Φ(t)\\H>)

with a Cs independent of T, provided ω is small enough. To obtain
our statement we now choose T so large that e~ηTl2C^Aψ < \ , and
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then δη small enough to make the above estimate true for ω < δη
and in addition

\\Z{x, T)\\Hl <2\\Z{y, T)\\κ , \\y{y, t)\\Lf<2\\γ(x, t)\\Lf

ΐoτt€[0,T].

Now we can prove 1.2. First consider the solution X(x, t) of the
problem with β(t) = β, g(t) = g, and a suitable initial value, and
let Xx = X, X2(t) = X(t + At) with a At > 0. We choose ε2 > 0
small enough to be able to apply 3.3 starting at any point t € [0, oo)
instead of 0. This gives us

( ί e [ 0 , o o ) ) ,

as our equation is autonomous in this case. Dividing by At and letting
At —• 0 we get

\\Xt(T + t)\\H> < U\Xt(t)\\H> >
p Δ pH
p

so Xt{t) -> 0 in Hi and J,00 ||JtΓfCOIIjy- < + ° °

So X converges in H^ , and its limit X must belong to Hj and
πmX e H*. As X is a stationary solution of (E), it is also unique by
3.3.

For arbitrary β(t), g(t) we apply 3.3 to Xx = X, X2 = X, and
obtain

\\X{x,T+t)-X{x)\\Hi
P

<U\X(x,t)-X(x)\\H>
Δ P

Kl0 sup ( | | ^ ( τ ) - ^ | | L +\\β(τ)-β\\H2
e[tJ+t]X p P

Taking the limsup on both sides this implies X(x, t) —> X{x) in
Hi, from which the remainder follows easily.
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