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DIFFERENTIAL GEOMETRY OF SYSTEMS
OF PROJECTIONS IN BANACH ALGEBRAS

GUSTAVO CORACH, HORACIO PORTA, AND LAZARO RECHT

Let A be a Banach algebra, n a positive integer and Qn =
{{q\, . , Qn) e Λn: qιqk = διkqi, q{ + + qn = 1} . The dif-
ferential geometry of Qn , as a discrete union of homogeneous spaces
of the group G of units of A is studied, a connection on the principal
bundle G —• Qn is defined and invariants of the associated connection
on the tangent bundle TQn are determined.

Introduction. The structure of the set Q of all idempotent elements
of a Banach algebra A plays a fundamental role in several aspects of
spectral theory. This work deals with the differential structure of the
space

of systems of n "orthogonal" projections in A.
The manifold Qn appears as a universal model when certain poly-

nomial equations are considered. More precisely, if α i , . . . , α Λ

are different complex numbers and a(X) denotes the polynomial
(X - a\) - - - {X - an), then the set Aa = {a e A: a(a) = 0} is a
closed submanifold which is diίfeomorphic to Qn . Thus Qn is the
model for all simple algebraic elements of A of degree n. More-
over, Qn plays a role in the study of arbitrary algebraic (in particular,
nilpotent) elements (see [AS]).

Section 1 contains the description of the differential structure of Qn

and Aa as closed analytic submanifolds of An and A, respectively;
it contains also the proof that Qn and Aa are diffeomorphic.

Using Kaplansky's notion of SBI-rings, we recover a result of Barnes
[Ba] concerning the surjectivity of Aa —• Ba when B is the quotient
of A by its Jacobson radical. In §2 we show that Qn is a discrete
union of homogeneous spaces of G, the group of units of A this
fact, together with a classical result of Michael [Mi], shows that an
epimorphism / : A —• B of Banach algebras induces Serre fibrations
Qn(A) —> Qn{B) and Aa —• Ba. In §3 we obtain an explicit way of
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lifting diίferentiable curves in Qn to G by solving a linear differen-
tial equation which we call the transport equation', this fact is due to
Daleckii and S. G. Krein [DK] and T. Kato [Kal] but its geometrical
meaning is new. In fact, in §4 we define a connection in the principal
bundle G —• Qn and show that the horizontal liftings of differentiable
curves in Qn are precisely the solutions of the transport equation.

Several invariants of the tangent bundle of Qn are calculated in
§5 (covariant derivative, curvature, geodesies, etc.). As observed by
Kato [Kal], [Ka2, II.4] the lifting theorem has important applications
in quantum mechanics (see [Ga], [GS]). A remark about C*-algebras is
in order: our results extend to the case of some involution algebras, in
particular to all C*-algebras. For instance, the transport equation has
a unitary solution if the curve has self adjoint values; in a forthcoming
paper the immersion of

into Qn will be studied, together with associated fibrations Qn-+ Pn
Concerning the references, the reader may consult Rickart's book

[Ri] for the literature up to 1960; the topology of the space of idem-
potents Q = Q2 has been considered in [PR1], [Ra], [Ko], [Ze], [Au],
[Gr] and with special emphasis on the differential struture of Q in
[Ra], [Gr], [Ki], [HK]; for the transport equation the reader may con-
sult [Kal] and [DK2]; in [PR2] the differential geometry of P = P2 is
needed for the study of minimality of geodesies; see also [CPR2] for
a related problem; finally, the case of algebraic operators on Hubert
space, the reader may consult the books [He] and [AFVH]. In particu-
lar, some problems concerning the set Pn in this context are discussed
in [CH]. The set Qn appears, implicitly or explicitly, in various works;
we only mention [Ja, p. 54], [Ka2, II.5] and [DK2, Chapter IV].

1. Differential structure of systems of projections. Let A be a real
or complex algebra with identity 1. Denote by G = G(A) the group
of units of A and by Q = Q(A) the set of all idempotents of A.

Suppose that the polynomial a(X) = Π/Li(^ — aΐ) has differ-
ent roots OL\ , . . . , an in the field. Let gj{X) = Π^iX - &i) and
qj(X) = gj(X)/gj(aj). Then qj(X) has degree n - 1, 0/(a,-) = δJi9

for i Φ j qi{X)qj(X) = h(X)a(X) for some polynomial h(X) and
ΣίLi Qάχ) = ! (because 1 - £/Li qt{X) has degree < n - 1 and it
vanishes at n values, the α/).

Let Aa denote the solution set of a, i.e., the set of all a e A with
a(a) = 0.
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1.1. PROPOSITION. Let aeA(a). Then

(i) Σ7=i«<(«) = ! ;
(ii) qi{a)qj{a) = 0 ifiφj',

(iii) qi{a) eQ, i= 1, . . . , n;
(iv) <?,(α)α = aqj{a) = a^d), i=l, ... , n.

Proof, (i) follows from £)" = 1 (?;(X) = 1 and (ii) follows from the
equality qi(X)qj(X) = h{X)a{X). From (i) and (ii),

qi{a) =
k=\ k=\

which gives (iii). Finally from a(X) = c(X - oti)qi(X) (with c =
gi(oti) Φ 0) it follows that 0 = a(a) = c(aqi(a) - α/ήf/(α)) and this
completes the proof because #/(#) commutes with a.

Let Q« = Qn(A) denote the set of all ^-tuples of idempotents #/
of A which satisfy qiqj -0 iϊ i Φ j and Σ?=i 9i — ^ -

1.2. PROPOSITION. ΓΛe mapping a —• (<?/(α), . . . , <?«(α)) w α
tίonfrom Aa onto Qn whose inverse is (q\, . . . , qn) —• 53"= 1 α/<?/.

The proof is a straightforward application of Proposition 1.1. Thus,
from a set-theoretical view point, Qn is a universal model for the sets
Aa . We shall extend this result to the differential geometry setting.

1.3. REMARK. I. Kaplansky introduced the notion of SBI-rings
(SBI = suitable for building idempotents) as those rings A such that
the natural mapping Q(A) —> Q(A/R) is onto, where R is the Jacob-
son radical of A.

It is known that for a SBI-ring A, the map Qn(A) —> Qn(A/R) is
also onto for each n = 1, 2, . . . (see [Ja, p. 54]).

It is also known that all Banach algebras are SBI [Ri, p. 58]. These
facts and 1.2 imply that, for every a — (a\, . . . , an) (with at φ a^),
Aa -»(A/R)a is onto, a result due to Barnes [Ba, Theorem 7].

From now on, we will assume that A is a real or complex Banach
algebra with identity. For π-tuples Z = (Z\, . . . , Zn) in An we use
the norm \\Z\\ = maxi</<^ | |Z/| | . The general facts on Banach algebras
and Banach manifolds needed below can be found in [Ri] and [La],
respectively.
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1.4. THEOREM. Let a e Aa be a fixed element, q — q(a) =
(q\(a), ... , qn{cή) € Qn the corresponding system of idempotents. Set

T = {XeA; qtXqi = 0 for all i = 1, . . . , n),

S = {Y G A qkYqt = 0 for all k φ I}.

1.4.(i) A is the Banach space direct sum A = T ®S.
1.4.(ii) For each Z = X + Y, XeT, Y e S, set

and define

φ(Z) = cxp(X')(a + Y) exp(-X').

Then φ is a diffeomorphism from a neighborhood U of O € A onto
a neighborhood V of a. Moreover, φ\unτ is a homeomorphism onto
VΠAa.

Proof. It is clear that every Z e A decomposes as X + Y, where

X = ΣqjZqkeT and

n

for Y^qt = \ and

z = ( Σ qι)z ( Σ q ι ) = Σ qjZqϊ+ Σ

It is also clear that the decomposition is topological, for T and S
are respectively defined as the images of the projections

and Z -

An easy computation shows that the derivative of φ at O is the
identity: in fact, for Y e S Dφ(O)Y = Y obviously; for X e T
Dφ{O)X = [X1, a] = X'a - aXf = X the assertion follows from the
decomposition A — T®S.

Then, by the inverse function theorem, there exist open neighbor-
hoods U' of O and V of a such that φ maps U' diffeomorphi-
cally onto V. Consider next Z = X + Y with φ(Z) e Aa. Since
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φ(Z) = M(a + Y)M~ι, then a + Y is also a root of a. Then
O = Πi(a + Y — α, ) and using Prop. 1.1.(iv):

O = Qj H(a + Y - α f) = gj H(aj + Y- α, )

where L = Y[jφi{Y - (α, - α,-)). If 7 has small norm
min{|α/ - α7 | , / ^ 7} suffices) then L is invertible and therefore
qjY = 0 for each j . Hence < (̂Z) G Aa with 7 small implies Z eT.
This means that (perhaps for smaller neighborhoods) φ is a homeo-
morphism from Uf Γ\T onto V Γ\Va.

Considering the maps φ as analytic local coordinates in ^ , we
obtain:

1.5. COROLLARY. Aa is a closed analytic submanifold of A whose
tangent space at a eAa can be identified to the Banach space T.

1.6. REMARKS, (i) The choice of the chart φ may seem rather
artificial; for instance, the derivative at O of φ\(X + Y) =
exp(X)(α + K)exp(-ΛΓ) is X + Y -> Xa - aX + Y = [X, a] + Y
and the equalities qi[X', α]#/ = (αy - otϊ)qiXqj (i φ j) show that
Dφι(O) maps Γ onto T and £ onto S. Thus, </>i also provides
charts for the analytic structure of Aa . However, we have chosen the
map φ because it is the exponential map of the natural connection
to be studied later (see §4). This remarks applies also to the charts
chosen below for Qn .

(ii) An obvious consequence of 1.3 is that Aa is locally arcwise con-
nected for all a as above. For the simpler case of a(X) = X(X - 1)
this is a result of Zemanek [Ze, 3.2] for complex Banach algebras,
which was generalized for real algebras by Aupetit [Au, p. 413]. How-
ever both results have been also proved in [PR1, 4.3] (see also 2.2(iii)
below).

1.7. THEOREM. Qn is a closed submanifold of An .

Proof Fix qeQn and define V = {X = (Xx, . . . , Xn) e An: qrXiqs

= 0 for r Φ i and s Φ i or r = s = i, and ^/X/^ + Qi^kQk — 0 for
iφk}.
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The map θ: An -* An , 0(Z Z 9 ... 9 Zn) = (XΪ9 ... 9 Xn) defined

by

xk =

/

Λ - l

/̂ι = ~ /]
k=\

is a projection onto V whose kernel is the set S' of all Y = (Y\, ... ,
Yn) £ An with qrYiqs = 0 for r = / and s > i or s — i and r > i.

Thus r ' e y = ^ . For X e V put

ί/AΓ/ήfy if 7 < / ,

- QiXiQi if / < /.

Observe that qiXqi = 0 for / = 1, ... , Λ .
Consider now the map ψ: An -> An defined by

ψ(Z)i = v/(X + Y)i = txp(X)(qiYi) e x p ( - Z )

f o r l e Γ , F € 5 ;. Then Z)^(O)r = Y for 7 e S" and, calculating,

= [X,qi] = Xi ΐorXeT', ι = l , . . . , / i .

This means that Dψ(O) = identity and ^ is a diffeomorphism from
a neighborhood of 0 onto a neighborhood of #. For Y e Sf such
that || Y|| < 1 it is easily shown that q + Γ e Qn if and only if Y = O.
This completes the proof.

REMARK. According to Proposition 1.2, the bijections connecting
Aa and (?„ are given by algebraic expressions.

The next result, whose proof follows easily from the theorems above,
shows that Qn is a universal model for the sets Aa of simple algebraic
elements of degree n .

1.8. T H E O R E M . The map a —• {q\(a)9 . . . , qn{β)) is a diffeomor-

phism from Aa onto Qn whose inverse is given by (q\9 ... 9 qn) —•
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Σ/Li <*iQi Consequently, for any other β = (β\, ... , βn) with βt φ
βj the map a —• Σ?=i βiQiiP) ™ a diffeomorphism from Aa onto Aβ .

2. Fibrations. The group G of invertible elements of A acts on
Qn by inner automorphisms on each coordinate: if g e G and q =
(0i, . . . , 4 M ) Ξ Λ I then gtfg"1 = (g^i^- 1

? . . . , gqng~ι)eQn.

2.1. THEOREM. Lei # be a fixed element of Qn and define π: G

(i) /̂zer̂  exist an open neighborhood U of q in Qn and a local
section σ: U —• G of π

(ii) the orbit Vq = {gqg~ι: g e G} is open (and closed) in Qn

(iii) π: G —• Vq is a principal fiber bundle with structure group GQ =
{geG: gqx =q{g, i= 1, . . . , n).

Therefore Qn is a discrete union of homogeneous spaces of G.

Proof. Given q' e Qn define

It is clear that σ(q) = 1 and o[q)qι = qΊσ(q'). Thus, for every q' in
a neighborhood U of q, we have σ(qf) e G and σ(q')qσ(q')~ι = q'.
This proves (i) and (ii) and the rest of the statement follows from
standard arguments (see [St, §7]).

2.2. REMARKS, (i) An invertible element g belongs to Go if and
only if q^gq\ = 0 for all k φl. Thus, the Lie algebra of GQ can be
identified to {X e A: qkXq\ = 0 for all k Φ 1} .

(ii) With the notations of 2.1 and 1.6 it is easy to describe trivializa-
tions of the tangent bundle TQn and of a suplement NQn of TQn

in the trivial bundle ε: Qn x An —> Qn . We call 7VQW the "normal
bundle" of Qn . Given # e (?„ , let t/^ = {qι e Qn: σ(tf') € G} . Then
h:UqxAn -+UqxAn, defined by

is a diίfeomorphism which trivializes simultaneously τ:
and a bundle z/: Λ^QΠ -• Qn where (NQn)q = Sf (as in 1.6).

(iii) Given q € Qn, its connected component (in Qn) can be de-
scribed as the set {gqg~ι: g G G0} , where G° is the connected com-
ponent of 1 in G: in fact, it suffices to replace G by G° in the proof
of 2.1. Of course, similar statements hold for Aa . This generalizes
[Ze, Theorem 3.3] and [Au].
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2.3. COROLLARY. Consider a fixed q e Qn and a continuous curve

γ: [0, 1] —> Qn such that γ(0) = q. Then, there exists a continuous

curve Γ: [0, 1] —• G such that Γ(0) = 1 and πoγ = γ, where π(g) =

gQg~ι

We consider now the behaviour of the functor Qn under epimor-
phisms.

Let f:A-+B be a continuous homomorphism of Banach algebras
which preserves the identity

Clearly / induces maps (?(/): G{A) -> G(B), and fn: Qn(A) ->
Qn(B). We shall prove that fn is a Serre fibration when / is an
epimorphism [Sp].

2.4. THEOREM. Let f:A—>B be a {continuous) epimorphism of
Banach algebras. Then fn: Qn(A) —• Qn(B) is a Serre fibration. In
particular, fn is onto if and only if its image intersects every connected
component of Qn(B).

Proof. Replacing A and B by C(Im, A) (= algebra of all maps
Im -> A) and C(Im , 5) respectively (where / = [0, 1]), it suffices to
show that if γ: I —• Qπ(5) is such that y(0) = q! = fn(q) for some
q €Qn(A) there exists a curve γ: I —> Qn(A) such that fn°7 = ϊ-

For this, we consider the commutative diagram

G(A) -ί-+ G(B)

π\

Qn{A)

where π ^ ) = gήf^"1, πq\h) = Λ^Λ"1 (^ e G(Λ), A e G(5)). By
the local triviality of πq> proved in 2.1, there is a curve <5: / —> (7(2?)
with J(0) = 1 and π^J = y. Michael [Mi] proved that / : G(A) ->
G(B) is a Serre fibration; therefore, there is a curve ε: / —• (7(̂ 4) such
that e(0) = 1 and f o ε = δ. To finish the proof it suffices to define
γ = nq o e, which satisfies fnoγ = γ.

The next theorem extends results of Raeburn [Ra] concerning the
set πo(P(A ® 2?)) of all connected components of the idempotents of
A ® B, where 4̂ is supposed to be commutative.

We omit its proof and that of the proposition below because they are
simple combination of Raeburn's techniques without previous results.
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2.5. PROPOSITION (cfi [Ra, p. 383]). Let A be a Banach algebra and
B\, . . . , Bn be open balls in C with paίrwise disjoint closures, centered
at OL\ , . . . , an, respectively. Let U — B\ u U Bn and Av = {a e A:
the spectrum of a is contained in U}. Then AJJ is open in A and
f = (/i 5 , fn) Au —• 4̂Λ w an analytic retraction onto Qn, where
f: U —• C w defined by fi(z) = ^ ybr z e Bk and fn(a) is obtained
by means of the holomorphic functional calculus.

2.6. THEOREM (C/ [Ra, 4.5, 4.7]). Let A and B be complex Banach
algebras. Suppose that A is commutative with spectrum X. Then the
Gelfand map A —> C(X) induces bίjections

πo(Qn(A®B))-+[X,Qn(B)],

{Qn{A®B)}-{Qn{C{X,B))}

where [ , ] denotes homotopy classes of maps and {Qn(C)} is the set
of orbits of the action of G(C) on Qn(C).

2.7. REMARK. If A is the algebra of complex continuous functions
on the 3-sphere, B is the algebra of all 2 x 2-matrices over C and
n = 2, we reobtain the example of [PR1, 7.13].

3. Lifting C1-curves. The transport equation. In this section we
describe a method which leads to a lifting Γ of a curve γ: [a, b] —•
Qn, as in Corollary 2.3, valid when γ is rectifiable and continuous.
For the sake of simplicity we only consider n = 2, the general case
being similar and somewhat more involved. The reader can find the
details (for n = 2) in [PR1]. Our present interest in this construction
lies in that it leads to the transport equation.

Consider a continuous rectifiable curve γ: [a, t] —> Q and a par-
tition Π: t0 = a < t\ < ••• < tn = t such that \\γk - y^+1|| < 1
(fc = 0, . . . , n - 1), where yh = y{tk) then

Yk-ύ^G (fc = 0, . . . , n- 1) and

Thus, σ can be thought of as a "discrete" curve of units which con-
jugates γo with γn . Putting u(U) = σΛ σi, it can be shown [PR1,
§5] that the limit Γ(ί) = limw(Π), when the length of the partition
Π tends to zero, exists and defines a unit of the algebra. Moreover
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Γ: [a, b] -* G is continuous and rectifiable. If the original curve γ
has a continuous derivative, then the value

(l/Λ)(Γ(ί + h) - Γ(ί) is, approximately,

(l/λ)(cτ,+ΛΓ(ί)-Γ(O), where

σt+h = γ(t + h)γ(t) + (1 - γ(t + A))(l - γ(ή).

Then,

(l/A)(Γ(ί + h) - γ(ή) = (l/h)(σt+h - l)Γ(ί)

= (l/h)(2γ(t + h)γ(t) - γ(t + h) - y{t))T{t)

= (l/h){γ(t + h)(γ(t) - γ(t + A)) + (γ(t + A) -

and

Thus, the lifting Γ of γ constructed by the limiting process described
above satisfies the initial values problem

Γ=(γγ-γγ),

Γ(0) = 1.

In the general case n > 2 the initial value problem is

where γ = (γ\, ... , yn)\ [a, b] -* Qn is of class C 1 . Observe that
Σ i hϊk = Άϊi - 7i(l - 3Ί) = ΫiYi - ϊiΆ because γ2 = 1 - yi and
h =hYι+ Yih (differentiate γ\ = γ\).

As we said before, we shall not justify all the assertions about Γ.
Instead we include the proof of the following result due to Daleckii,
Krein and Kato, for the sake of completeness (see [DK2, IV, Theorem
1.1]).

3.1. THEOREM. Let γ: [a, b] —>• Qn be a C 1 curve. Then, the
unique solution in A of the initial conditions problem

Γ(α) = 1,
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where γ = Σ,l=ι hYk > satisfies
(i) Γ(t)eG (te[a,b]),

(ii) T(t)γ(a)T(tyι=γ(t) (te[a,b]).

Proof. Existence and uniqueness of Γ follow from general facts [La,
p. 71]. To prove (i) consider the companion problem

I Δ(α) = 1,

and observe that (ΔΓ)# = ΔΓ + ΔΓ = 0. Then ΔΓ is constant on
[a, b] and, since Δ(α) = Γ(α) = 1, it is ΔΓ = 1. Thus Γ(ί) is left
invertible in A moreover, Γ(ί) belongs to the connected component
of the identity in the set of left invertible elements. It is easy to see
that this component is completely contained in G. This proves (i).

To see (ii) we compute ( Γ - ^ Γ ) ' (k = 1, ... , n):

observe that γγk = (ΣyiYdVk = Ykϊk, because y^ = 0 for / φ k,
and that yky = yk{ΣYiYi) = -YkiΣYiYi) = ~YkYk, because yk =
YkYk + Yύk and Σ Yk = ( Σ Ykϊ = Γ = 0. Thus

(Vι7k^y = ~Γ~liYkYk ~Yk + YkYkW = 0

and Γ ' ^ Γ is constantly yk(a). This completes the proof of (ii).

3.2. REMARK. The proof of part (i) could have been omitted be-
cause it is a general fact that the solution of f = φT, Γ(α) = 1, where
φ: [a, b] —» A is a continuous curve, is a curve of invertible element
of A.

If A is an involutive Banach algebra, i.e. there exists a continuous
antilinear mapping x —• x* such that (xy)* = y*x*, 1* = 1 and
x** = x (x 9 y G A), we consider the unitary group of A

U = {ueG:u~l = w*}

and the self adjoint part of Qn

Pn = {p = (Pi, . . . , Pn) e Qn' Pk = Pk (/c = 1, . . . , n)}.

For these algebras more specific results hold. We omit the details
about the differential structure of Pn .
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3.3. COROLLARY. If γ: [a, b] —• Pn is a C 1 curve then the solution
oft=γΓ, T(a) — 1, defines a curve Γ: [a, b] —> U which conjugates
the curve γ.

Proof It suffices to show that Γ(ί) e U for every t e [a, b]. Ob-
serve first that

because

Σ ^ + ̂ ^ = Σ **= (Σ ?*) = r = °
Thus (Γ*Γ) = f * Γ + Γ * f = 0 and Γ*Γ is constant. But Γ(0) =
Γ*(0) = 1, so Γ*Γ = 1. Now, Γ(ί) is invertible for all t, by Theorem
3.1, so 1

3.4. REMARK. Of course many liftings of γ may exist. But Γ is
the unique horizontal lifting of γ with respect to the connection we
shall define in the next section. This fact completes Kato's remark [Ka,
II.4.2, Remark 4.4]. Moreover, if our σ 's, used to obtain the transport
equation, are multiplied (at left or at right) by (1 - (% — yk-\)2)~1^2 ,
where (1 - r ) " 1 / 2 = Σ m = o ( ' i / 2 ) ( - / ' ) m f o r IIΊI < 1 ? we get a different
"discrete" lifting of γ but in the limit it becomes the same continuous
curve Γ. In this sense, the local solution [Ka, p. 102, (4.18)]

ΠίO = (1 - (γ(t) - ym2rιl2{y{t)y{Q) + (1 - y(ί)))(l - 7(0))

is related to the global solution Γ.

4. The connection. Let q e Qn be fixed and π: G —• Qn defined
by π(g) = g<lg~ι = (gQ\g~ι, . . , gQng~λ). It is very easy to show
that the derivative of π at g e G(Tπ)g: (TG)g: (TG)g -> (TQn)π{g)

is given by

(Tπ)g(X) = g[g-χX, q]g-χ (X G (TG)g)

where [Z , q] = ([Z , qx], ... , [Z , qn\) for all Z eA.
We say that X e {TG)g is vertical if (Tπ)g(X) = 0 or, what is the

same,if [g~ιX,q] = 0. Then, if Vg ={Xe (TG)g: [g~ιX,q] = 0 } ,
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it is clear that Vg = g V\ and that

= {X e A: qkXqt = 0 for all / φ k}

This shows that

Hι={XeA:qιXqι=O(i=\,...,n)}

is a supplement of Fi in A (= (ΓCr)i) and, in general //^ = ^T/i is a
supplement of F^ in A (= (TG)g). Moreover, Hg-h = Hgh (g G ( ? ,
heH). Finally, the projections Ag: (ΓG)^ -> ^ , i;^: {TG)g -> F^
given by

verify

Clearly the mappings g -^ hg and g —• v g from G into the
bounded linear operators on A are differentiate. All these facts show
that g -* Hg defines a connection in the principal bundle π: G —• Q^ .

For the theory of connections we refer the reader to [KN]. However,
we are dealing with Banach manifolds and bundles, which requires a
few notational changes.

From now on by "curve" we mean a C°° curve.
Given a curve γ: [a, β] —• Qn , a horizontal lifting of 7 is a curve

Γ: [α, β] -* G such that πΓ = y and f (ί) e i7Γ(/) (ί € [α, jff]).

It is a general fact that, for each g0 e G such that γ(a) = goPg^1

9

there is a unique horizontal lifting Γ such that Γ(α) = go. In par-
ticular, if y(α) = q there is a unique horizontal lifting Γ such that
Γ(α) = 1 .
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4.1. THEOREM. Given a curve γ: [a, β]-+ Qn the horizontal lifting
Γ such that Γ(α) = 1 is the solution of the transport equation

n

(4.2) f = γΓ, where γ =

with initial condition Γ(α) = 1.

Proof. We have seen that the solution Γ of (4.2) is a lifting of π,
i.e. πoΓ = γ (see 3.1). By the uniqueness of both objects it suffices to
show that the horizontal lifting Γ with Γ(α) = 1 satisfies (4.2). We
recall that Γ satisfies

(4.3) Γ(t)qΓ(t)-ι=γ(t) (te[a9β])9

(4.4) ΓeHΓ = ΓHl9 i.e. f (ί) e T{t)Hx (te[a, β])

or, what is the same

(4.5) Γ-ιγΓ = q

and

(4.6) Γ- ! f eHx.

Differentiating (4.5) we get 0 = Γ-ι(-TT-ιγ + γ + y Γ Γ " 1 ^ and
cancelling Γ"1 and Γ, we get

(4.7) γ = [ΓΓ-1, γ].

Now, (4.6) means that qiΓ~ιΓq\ = 0, (/ = 1, ... , n), which can also
be written as

(4.8) qΓ-iΓ = Γ-ιΓ(l-q).

Replacing (4.5) in (4.8) we get Γ~ιγt = T-yΓ - Γ^1fT"1yΓ which,
after cancellation, gives

(4.9) yΓΓ"1 = f Γ - 1 ( l - y )

and

(4.10) f 1 f 1

Finally,

1 , yi]7iT (by 4.7)
1
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This last expression coincides with f because y/ΓT"1 = I Γ " 1 ^ - yz)
by (4.9) and therefore y/ΪT~'1y/ = Γ Γ ' ^ l - yz-)y/ = 0. This proves
the theorem.

4.11. REMARK. In general, if γ: [α, β] —• Qn is a curve with origin
q' — goqgQl then Γ is the horizontal lifting with origin go if and
only if it is the solution of the problem f = γΓ, Γ(α) = go

We compute next the 1-form, the 2-form and the curvature form of
the connection.

We recall that the 1-form θ assigns to each X e {TG)g the hor-
izontal component of g~ιX £ (TG)\ = S?, the Lie algebra of H.
More explicitly,

n

θgX = vdg-ιX) = g~ιvg(X) = Σqig-ιXqi.
i=\

The 2-form dθ of the connection is defined by

dθ(X, Y) = \{X - ΘY - Y ΘX - Θ([X, Y])}9

where X, 7 e (TG)g, [ , ] denotes the Lie bracket and Z W
denotes the derivative of W in the direction of Z , i.e. W is ex-
tended to a vector field on a neighborhood of g and given a curve
δ:(-ε,ε)-+G such that δ(0) = g and δ(0) = Z,

dtt=o

Although the notation is the same, the Lie bracket should not be
confused with the commutator bracket of the algebra.

From the computations

z = l ι = l

and

i=\
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we get

The horizontal differential of θ, also called the curvature form of
the connection is Ω(JT, Y) = dθ{hgX, hgY) for [X, Y] e (TG)g.
Explicitly

, Y) = ί-

= -I vS Σ
rφs

Qi

ί = i

ί = l

V
where qk = 1 - qk =

ί = l

The structure equation Ω(X, 7) = ί/6»(Z,
trivially satisfied.

, ΘY] is thus

5. Calculations on the tangent bundle, geodesies. Consider q € Qn

fixed and let A\ = {X € A: qiXqi = 0, i = I, ... , n} (in §4 we
c a l l e d i t Hi). It i s c lear that H = {g E G : gqi = qig, i = I, ... , n}
operates at left on A\ by h • X := hXh~x.

Thus we define the associated bundle of π : G —• Qn with standard
fibre A\, denoted by G <g> A\ —• Qn , where G® A\ := G x Λi/ ~ ,
(^, JΓ) ~ (gΛ, h~ιX) forheH and the map G Θ Ax -> β« is
determined by (,§•, X) —»• π ( ^ ) . It is a general fact that this vec-
tor bundle is isomorphic to the tangent bundle TQn, by means of
(*,*)-> (π(g), gXg~ι) e {TQn)π(g). Given a curve γ: [a,β]-+
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Qn the parallel displacement of the fibre (TQn)γ^ along γ from
a to te[a,β] is defined by xl

a: (TQn)γ(a) - ( Γ β Λ ) y ( 0 , τι

a(Z) =
Y(t)ZT(t)~x, where Γ is the horizontal lifting of y with origin
Γ(α) = 1.

Given X e (TQn)q and a vector field Z defined near # the covari-

ant derivative DXZ is DXZ :=X Z + [Z, X], where

Λ v v d

and Λ z = -7—
' = 0

for a curve δ: (—e, e) —• (?« such that (5(0) = # and ^(0) = X.

5.1. PROPOSITION. For every curve a: [α, /?] —• An the element
Da/dt = a + [α, y] w ŵ // defined and has the following properties:

(a) Ϊ / ytayt = 0 for all i = 1, ... , n then γi(Da/dt)γi = 0 for all
i = 1, . . . , n (in other words, Da/dt is tangent if a is tangent).

(b) if ytayk = 0 for all i φ k then γi(Da/dt)γk = 0 for all i φ k
(i.e. Da/dt is normal if a is normal).

Proof, (a) Differentiating y^ayi = 0 we get

0 = yiayi + yiixyi + yiayi.

Multiplying by yz at right and left we have

(5.2) yάiayi + yiayi + y^y^i = 0.

On the other hand

Da . . .,
Vi~dtri = γ*aγi + γ '

7i

and YiΣkfaVk = ViΣk(ι ~ 7k)h because γk = ykyk + γkγk (differ-
entiate y^ — yk)\ thus

Vi
A: A:

because Σk Vk = 0 a n d 7I7A: = 0 ^ / ̂  fe.
This shows that

7/-^7/ = y/άy/ + y, fly,7i + y,7, fly, = 0, by (4.2).

The proof of (b) is similar.
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This shows that for every vector field Y of Qn along γ, the formula
Da/dt = Ϋ + [Y, γ] defines another vector field of Qn , the covariant
derivative of Y.

The torsion of the connection, defined by T(X, Y) = DχY-DYX-
[X, 7] in general, turns out to be in our case

(5.3) r(x,r) = [r,x]-[x,?],

where X, Y e (Γβπ), and X = Σ?=i X^ , ? = Σ/Li ̂

5.4. REMARK. For n = 2 the connection is symmetric, in the
sense that its torsion is zero everywhere: in fact, for n = 2 we have

j

These equalities, when replaced in (4.3), prove the assertion. How-
ever, for n > 3 this is no longer true.

The curvature of the connection, expressed by R(X, Y)Z =
DX(DYZ) - DY(DXZ) - D[XiY]Z for X, Y, Z e (Γβπ)^ , is given,
in our case, by

(5.5)
. ϊ = l

or, abbreviating

(5.6) /?(Z,7)Z

We study now the geodesic curves of the connection, that is, the
curves γ: [a, β] —»• Qn such that Dγ/dt = 0. It is a well-known fact
that this condition is equivalent to τ'a(γ(a)) = γ(t), (t e [a, /?]). The
equation defining the geodesic curves can be written as

(5.7) 7k + [?k,n = 0, k=l,...,n.

Using the commutation rules obtained from X) γ,• = 1, γf = γ, and

Viϊk = 0 f ° r i / ^ , we get

(i) 7/7/ = ( 1 - 3 Ί ))Ί ( / = 1, . . . , « ) ;
(ϋ) 7i7k + 7ih = 0 (/ φ k)

(iii) Σ?fe = 0;
( i v ) γiγf = γfγi ( / = 1 , . . . , « ) ;
(v) 7ifr7i = 0 (i= 1, . . . , n ) .

These equalities imply that (5.7) is equivalent to

(5.8) y* + yfc ( ^ y , 2 ) + ( ^ y , 2 ) y f c-2y2 = 0, (A: = 1, ... , n).
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It is easy to exhibit all the solutions of (5.8) which satisfy γ{t) € Qn

for all t. In fact, for q e Qn , X e (JQn)q, γ(ή = etXqe~tx (teR)9

satisfies (5.8) and all the solutions of (5.8) with the additional condi-
tion γ(t) G Qn, have this form. The connection is also complete, in
the sense that its geodesies are defined for all t G R, and the expo-
nential map of the connection is given by

ExP ( ?: {TQn)q -> Qn , = exqe'x.

Properties of minimality of length of geodesies are studied in a
forthcoming paper ([CPR2]).
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