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COMPACTIFICATION OF MP3(0, 2) AND
PONCELET PAIRS OF CONICS

M. S. NARASIMHAN AND G. TRAUTMANN

Let M(0, 2) denote the quasi-projective variety of isomorphism
classes of stable rank 2 vector bundles on P3(C) with C\ = 0 and
C2 = 2 . In this paper we study a natural (irreducible) compactification
of M(0 , 2) and describe explicitly the sheaves on P3 which occur
in the closure of M(0, 2) in the moduli space of semi-stable sheaves
on P3 with c\ = 0 , c2 = 2 and c3 = 0 .

Introduction. The space M(0, 2) of stable rank 2 vector bundles on
P3 with c\ = 0, ci — 2 was investigated in detail by Hartshorne [Ha2].
(See also [Au-Dou].) He proved that M(0, 2) has the structure of a
fibre space over the 9-dimensional variety R of reguli, the fibre being
an open subset of a smooth quadric in P5 . (A regulus is a smooth
quadric in P3 with a distinguished system of generating lines.) If S
is the smooth conic in the Grassmannian G of lines in P3 given by
the generators of a regulus p, then the fibre over p consists of smooth
conies C such that S and C are Poncelet related with S as the inner
conic, i.e. a triangle can be inscribed in C which circumscribes S.

To obtain a natural compactification of M(0, 2), we first compact-
ify the fibres over R by taking all conies S, smooth or not, which
are Poncelet related to S; the fibre over p = S is then a smooth
quadric in P5 . We then take as the compactification of the space
R of reguli the Hilbert Scheme C(G) of all conies contained in the
Grassmannian G. The quadric bundle over R extends to a bundle
over C(G), namely the Poncelet quadric bundle associated to the tau-
tological conic bundle over C(G) it is constructed by considering also
the space of conies which are Poncelet related to singular conies, such
that the fibre of this quadric bundle is a pair of hyperplanes in P5 in
the case of a pair of lines and a double hyperplane in P5 in the case
of a double line. This Poncelet quadric bundle Q, which is a normal
projective variety, is the compactification of M(0, 2) we study.

The space Q essentially parametrises a family of semi-stable
sheaves of rank 2 with c\ = C3 = 0, C2 = 2. More precisely it is
shown that Q is a G.I.T. quotient of a space Xss by SL(2) and that
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Xss parametrises aflat family of semi-stable sheaves with C\ = c3 = 0,
C2 = 2 invariant under the action of SL(2) (see 8.1, 8.2). The smooth
points of Q correspond exactly to stable sheaves. We describe in §§9,
10 explicitly the sheaves occurring in the family parametrised by Xss.

Let M(0, 2) by the (schematic) closure of M(0, 2) in the Maru-
yama scheme of semi-stable sheaves on P3 with C\ = 0, Cι = 2,
c3 = 0. We investigate the canonical morphism Q —• M(0, 2) defined
by the family parametrised by Xss and prove (Theorem 4.4) that
the normalisation M(0, 2) of M(0, 2) is isomorphic to the variety
obtained by blowing down Q along the fibres of a Pi-fibration (see
4.2) on a codimension 5 subvariety contained in the singular locus
of Q. Moreover the canonical map M(0, 2) —• M(0, 2) is bijective
and the smooth points of M(0, 2) are precisely the stable sheaves.

We now briefly describe the contents of the different sections of the
paper.

In §2 we mainly review the theory of M(0, 2) from the point of
view of monads, jumping lines and Poncelet conies. It is in particular
shown that the set of second order jumping lines of a bundle & e
M(0, 2) is the conic S° c G "conjugate" to the conic S defined by
the regulus associated with If. This result will be generalized in 7.6
to the case of sheaves which are limits of elements in M(0, 2).

We deal with the Hubert scheme C(G) of conies in G and the
associated Poncelet quadric bundle Q —• C(G) in §3. It is shown
that C(G) is smooth (3.8) and that Q is a normal variety (3.13). We
determine the singularities of Q in terms of Poncelet pairs (5 , C v )
(3.12).

In §4 we define 4 irreducible Weil divisors Qo, Qa, Qβ , Qe on
Q and the complement M of the union of these divisors consists of
Poncelet related pairs (5 , C v ) where S is a regular cut of G by a
plane in P5 and C v is smooth (i.e. corresponds to Af(0, 2)). Let
Sing(<2) be the singular set of Q and let Qexc be the elements of
Sing(β) lying over the space of double lines in C(G). It is shown in
4.2 that Qexc is fibred naturally into a Pi-bundle, the fibres Pi being
the spaces of double structures on a line contained in G.

The main theorem comparing Q and Λ/(0, 2) is stated in 4.4. As-
suming certain results that are proved in the later sections, it is proved
in 4.5 that Q can be blown down to a (normal) variety along the Pi-
fibration of Qexc and that the canonical map Q —> M(0, 2) induces
an isomorphism of this blown down variety onto the normalisation of
M(0,2).
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A geometric invariant theoretic (G.I.T.) description of C(G) is
given in §5: C(G) = ΓSS//SL(2) where Yss is the space of semistable
points for a linearised action of SL(2) on a space Y. In this sec-
tion we also give a criterion for a point of Gv(U ® W) to be stable
(resp. semi-stable) for the action of SL(C/)? where U and W are
finite dimensional spaces and Gr^ denotes the Grassmannian of q-
dimensional subspaces, Prop. 5.1.1.

In §6 a similar G.I.T. parametrisation of Q = Xss// SL(2) is given
for the Poncelet bundle Q.

We construct in §7 aflat family {yVy) of sheaves (of rank 4 on P3)
parametrised by y e Yss. These will correspond to kernel sheaves
in the monad description of sheaves which are limits of elements in
M(0, 2). The proof of the flatness of the family, which involves,
among other things, the use of the Eagon-Northcott complex, is given
in Proposition 7.1. If y e Y and S is the corresponding conic in
C(G), it is shown in 7.6 that the space of "second-order" jumping
lines of JVy (defined as the support of the sheaf RxJVy on G) is the
"conjugate" conic S° . This result is of importance in the investigation
of the map Q ->M(0, 2).

In §8 we construct a flat family {3^}, x e Xss, of rank 2 sheaves
on P3 with C\ — C3 = 0, Cι = 2 parametrised by Xss. In fact a family
of monads parametrised by Xss is constructed; these monads are not
necessarily self-dual as the sheaves are not self-dual. We calculate
some cohomology groups of &x .

In the last two sections we give explicit descriptions of the sheaves
SFX , essentially in terms of the configuration in P3 defined by a Pon-
celet pair (S, C v ) . For instance sheaves in Qe\QaUQβVQo are given
by suitable elementary transformations of a null-correlation bundle or
of the trivial bundle of rank 2 (9.1). A detailed study of all these
sheaves is carried out to prove their stability (resp. semi-stability).

0. Notation and conventions. All vector spaces and varieties will be
over a fixed algebraically closed field 4 of characteristic 0.

GmV denotes the Grassmannian of m-dimensional subspaces of
the vector space V, Fn = ΨV = G\ V the projective space, dim V =
/ι + l .

The invertible sheaf of degree d on ΨV is ff(d), s.t. F v =
Γ(PF, *f(l)). For an ^fPκ-module & we use the abbreviations
9-{d) = 9- ® ff(d) and h^(d) for the dimension of H^d) =
H\ΨV, &{d)). The sheaf of the trivial vector bundle with fibre F
is denoted by F ® ff.
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0.1. The evaluation map Vv <gκf —> ff{\) gives rise to the Koszul
complex homomorphisms /\p+ι F v ®ff(-\) -• /\p F v ®@ defined as
the composition /\p+ι F v ® ^ ( - 1 ) -+ Λ^ K v<g>F v®^(-l) ^ /\p V^ ®
(9. The image is identified with ΩP(p), the sheaf of ^-differentials
in twist p. In particular Ωn(n) = Λ"+ 1 ® ^ ( - 1 ) and ΓίV(p + 1) =
/\ p + 1 F v . The Koszul homomorphism with respect to the fibres over
(x) e ΨV is contraction with x, /\p+ι F v ® (JC) -+/\p Vw .

We frequently use isomorphisms Λ " ^ ^ — A^+1 ^ v based on a
fixed isomorphism /\"+ 1 V ~/. Then the Koszul homomorphism for
the fibres is Ax (up to sign) and we have the commutative diagram

ill

t\n~pV®(x)

Here «^(ρt) denotes the fibre 9
Using the Koszul complex it is standard to verify that there are

natural isomorphisms
k

/\V —> Hom(PF, ΩP+k(p + k), Ωp(p))

for any k, p > 0. The homomorphism corresponding to a e /\k V is
contraction on the fibres or wedging:

n-p-k n-p

λ V AX • Λ V AX
* > aΛ ' \

and it extends to the Koszul complex. Under these isomorphisms
composition of homomorphisms corresponds to the wedge product
up to signs. More generally, if E and F are vector spaces, we have
canonical isomorphisms

Horn IE,F®I\V\~ H o m ( £ ® Ωp+k(p + k),F® Ωp(p))

for any p, k > 0. Given an operator of the left side the homomor-
phism of the sheaves is uniquely induced by the diagram

E®ΩP+k{p + k) y F®Ωp(p)
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where we use f\n~p V ~ f\q+x F v . Finally, if we choose bases of the
vector spaces, a homomorphism

/m ® ΩP+k{p + k)->/n® QP{p)

is considered as an m x ^-matrix (α/y) of elements α/7 e f\k V in
such a way that / m -• / m <g> /\k V is described by (c\, ... , cm) -+
(c\, . . . , cm) (αy). It is sometimes convenient, to consider 4m 0
Λ* F v -* / " instead.

As a special case we mention:

0.2. LEMMA. Let B C 4m ®V and let /im < ^

be the homomorphism induced by / m Θ F v —̂  By

epimorphism iff {/m ®v)f\B = Q for any v eV.

Proof. Consider B as a matrix ^ -> / m ® F . Then £ is an
epimorphism iff bv is a subbundle, i.e. 4P ® x —• /^m ® F Λ x is

injective for any X G K . Since λoB Ax = 0 is equivalent to λoB =
c®x for some c E/m , the lemma follows.

0.3. Incidence transformation. From now on dim V = 4, P3 = P F ,
and G = G 2 K c P A 2 ί / . We consider the flag manifold F c P3 x G of
pairs (x, 1) with x € 1 and let P3 <— F —• G denote the projections,

P Q

which is a P2 (resp. Pi) bundle. Since p* is exact, the functor R =
R'q*p* is a cohomology functor. Some of the standard direct images
are:

2
mi ? H 3 ( - m - 2) = SmS 0 / \ S = SmS 0<?G(-1),

where S, β denote the universal sub-, quotient bundles on G, and
Sm denotes the symmetric power, m > 0.

0.4. Conies in G and reguli. We denote by C(G) the Hubert scheme
of conies in G. This is a smooth variety of dimension 9, see 3.8. Each
conic S c G defines a plane P c Ψ/\2 V, such that 5 c G Π P . If
P is not contained in G (as an α-plane, i.e. a plane consisting of all
lines through a point in P3, or as a /?-plane, i.e. a plane consisting of
all lines in a plane in P3) then S = GΓ\P. The system of lines in P3
parametrised by a given conic S cG can be visualised as a "complete"
regulus. This is a quadric Q c P3 with pq~ι(S) as its underlying set
together with the system of lines on it given by S. We give below a
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list of all types of complete reguli in P3 , which arise in this way from
conies in G. The complete reguli obtained by the configuration of the
dual lines in F^ are also given and denoted by Q v .

S=GΠP

P=α-plane

ScPcG
P=3~plane

S=GIΊP

ScPcφ
P = α - p l a n e

ScPcφ
P=β-plane

(A)

(B)

(C)

(D)

(E)

(F)

(G)
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Note that in the last case (G) the double regulus cannot remember the
plane P of the conic S. In other words, while the reduced line S can
be recovered from the configuration of this regulus in P3, the double
structure on the line is not determined by it, see 3.9. If S = G Π P is
a regular conic section the quadric Q spanned by the lines is regular
and has two systems of lines. The conic S is isomorphic to any line
of the second system.

Since Q ~ Pi x Pi we can identify S with the first factor, s.t.

The second factor parametrises a second (the conjugate) conic S° c
G which is the intersection S° = G n P°, where P° is the plane
orthogonal to P with respect to the quadratic form of G.

We denote by C°(G) the open part of the Hubert scheme of regular
plane sections.

1. Conies and kernel bundles.

1.1. Standard resolution of (?Q(3, 0). Let <?β(3, 0) be defined by
the conic S e C°(G). We can choose a basis e0, . . . , 3̂ G V with dual
basis ZQ , . . . , Z3 G Vy, s.t. Q has the equation ZQZ^ - z\Zj = 0 and
is the image of the standard Segre imbedding ZQ = sô o > z i = soh >

z3 = s\t\. Then <%(3, 0) is generated by the liftings of

the sequence

with

n

is a resolution in P 3 .

It is then straightforward to verify that

- z 3 zχ

- Z 3 Zj

z 2 - z 0

z 2 - z 0

-z2 z0

~Z2
zo

- z 2 z 0
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We also have the exact sequence

0-+/2 >/2®V

where N* is the matrix
N*

N* =

B
0

REMARK. detiV* = e$e?> - e\e-ι is the equation of the dual quadric
Q v c P F V as can be easily verified.

1.2. If 3£ denotes the kernel of i ? v ( - l ) we obtain the exact dia-
gram

0 0

(1) 0

0 0
By 0.2 iVv is an epimorphism and thus ^ is locally free. Of course
by the resolution above we also have the exact sequence

(2) 0 -> JTV(-1) -> Γ v ® ̂  -> ^ β ( 3 , 0 ) ^ 0 ,

where Γ v = Γ^g(3, 0), and we obtain dually

(2V) 0 -> Γ® Ω3(4) -> JΓ(1) ^ ^ e ( - l , 2) -> 0,

since Ext^Q(a ,b)9#)= (?Q(2 - a , 2 - b ) , which follows since the

dualizing sheaf ω e = &Q(-2, -2). We are going to investigate the
sections of 3£{\). By the first column of (1) we are given the diagram

0 0

Γ ® Λ 4 '
ill
r
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A direct calculation shows that dim Γ = 4 and that Γ is presented by
the matrix Γ*: / 4 -+ 41 <g> Λ2 V

Γ* =

•ζ o
ω ξ
η ω
O η\

with ξ = eo A e\, ω = eo A e^ - e\ A e2, η = e2 Λ £3. In particular

1.3. LEMMA. (1) The conic S is parametrised by s2ξ + stω + t2η.
(2) If the zero scheme Z(γ) of a section γ e Γ ~ Π ^ ( l ) is not

empty, it is a line I eS and

(3) y = (s, ί) ® (52ί + ^ίω + ί2*/) = (5 3, Λ , 5ί 2, ί3) o Γ*.

Proof. (1) is immediate from 1.1 by looking at the embedding of
the first factor of Pi x Pi .

(2) If γ e Γ then γ vanishes in (JC) iff γ Ax = 0, see 0.1. If
γ = (e*o, . . . , c*3) o Γ* this means that

aoξ Λx + a\ω f\x + otir\ Ax = 0,

a\ξ A x + OL2(O A x + a^η A x = 0.

However by the definition of ξ, ω, 7/ the vectors ξ A x, 1/ Λ c are
linearly independent, and there is at most one relation of the vectors,

rank[α o aχ a

But it is well known that then

which proves (3), and thus Z(γ) = s2ξ + stω1 + t2ηeS.

1.3.1. COROLLARY. The correspondence 3£ <-» S is 1:1 between
the kernels 3? of regular N9s (with four independent entries) and the
regular conies S e C°(G).

1.3.2. COROLLARY. // X is defined by a regular N, we have the
exact sequence

0 -> rpr ( i ) ) ® ^ -> ̂ ( i ) -^ <?β(-i, 2) -^ 0.
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Proof. Clearly X is defined by S e C°(G). By the lemma con-
versely S is defined by X. Given an arbitrary regular N and X,
a conic S is defined by s2ξ + stω + t2η which gives X. Then the
corollary follows from (2V) or the lemma.

1.4. REMARK. Let G\{^2 ® V) denote the open set of the Grass-
mannian of all 2-dimensional subspaces N c / 2 ®V which are pre-
sented by matrices with 4 independent vectors. The map N \-+ S is a
morphism

G\^2 <8> V) -^ C°(G)

onto C°(G). It is invariant under the action of SL(2) given by
(g, N) —• (/® id)(iV), and thus factorizes into an isomorphism

The transposition map ( x x\) —• (^ y,) induces the involution S —>

5°.
We finally state two further beautiful geometric properties of a bun-

dle X.

1.5. PROPOSITION. Let X be defined as above and let S resp. Q
be the associated conic resp. quadric. Then

(i) the dual quadric Qv c P3 is the set of jumping planes ofX, i.e.
of all planes P c P 3 with h°(X\P) φ 0.

(ii) RιX = ^so(l) f where Rι is the first incidence transform, 0.3.

Proof (i) Let H = {/ = 0} with / G F v . There is a splitting of

which is induced from the Koszul-complex. Therefore we obtain the
exact sequence

0 -+ Γ(JT\H) ^,ί2®Γ{Ωι(l)\H) -+ /2®T@H

ι\\ ι\\2

Hence h°{X\H) φ 0 iff det = f(eo)f(e3)-f(eι)f(e2) = 0, i.e. iff
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(ii) If we apply Rι to (2V) we obtain R1^ = Rι0Q(-2, 1). Since
S is the first factor, we find / / V β ( - 2 , 1) ® 0χ = 0 except for / € S°.
Now RX#Q(-29 1) being supported on 5 ° , we can obtain it as the
simple direct image under Q —• S°, which is the second projection.
Therefore ι

2. Review of M(0, 2). The bundles % e M(0, 2) can be con-
structed in two different ways: from a linear system on a conic S c G
as mentioned in the introduction and from monads, see [Ha2], We
summarize both in the following

2.1. THEOREM. A rank-2 bundle I? on P3 belongs to M(0, 2)
if and only if it is a member of one of the following exact diagrams
(displays). These can be derived from each other.

o o

(D,) 0 • J Γ V ( - 1 ) • Γ v ®(? • <fQ(3, 0)

0 —

0

0

0

ΐ1
—> Lv<g>Ω3(4) —

ί
—> Γ<g>Ω3(4)

t
Λ/®Ω3(4)

0

0

T1

—* X{\)

\

M®Ω 3(4)
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0 0

0 >M®Ω3(3)

I
(D2) 0 > M®Ω 3 (3)

Nv ® & = Nv

0 0

Explanation of (Dj). <2 is the regulus of a regular conic section
5 c G , s.t. Γ^s(3) = Γ^ β (3, 0) = Γ v and L c Γ v is a 2-dimensional
subspace without base points. L ® ̂  —• ^ ( 3 , 0) and Γ v ® ̂  —•

, 0) are the induced epimorphisms, see 1.2.

Explanation of (Ό\). This is obtained by applying <*^( , &) to
(Di), where we use &y = Ω3(4) by formal reasons and

gχtlf{0Q{a , b ) , < ? ) ^ d ? Q ( 2 - a , 2 - b ) .

The latter follows by using the dualizing sheaf ωρ = ^%(-2, - 2 ) .

Explanation of (D 2 ) . M <z /2 ® f\2V and N c / 2 ® F are 2-
dimensional subspaces such that M is contained in the kernel of the
composed operator /έ2 ® /\2 V —> 7VV ® F ® /\2 F -> iVv (8) /\3 F . By
0.1 we obtain a complex

Λ/(g>Ω3(3) —• / 2 ® Ω ^ l ) —• Nv ®@,

and we suppose that μ is a subbundle and z/ an epimorphism. Such
a complex is called monad and the display (D2) is called the display
of the monad.

Proof. (1) If If is defined by (Di), it must be a rank-2 bundle since
J f v ( - 1 ) is locally free by 1.2 and g7 = ^ v ( - l ) v ( - l ) . Furthermore its
Chern classes must be c\ = 0, c2 = 2, and /z°lf = 0 since Λ 0 ^ = 0.
Hence it is stable and a member of M(0, 2). The same can be proved
if g7 is defined by (D 2 ) .
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(2) It was shown in [Ha2] that hι&{-2) = 0 for any r e Λ/(0, 2).
Then the Beilinson spectral sequence, see [OSS], of I? degenerates,
and its £2 level yields the monad in (D2):

H2(g(-3)) ® Ω3(3) -> Hι(g(-l)) ® Ω ! ( l ) -> tf1^) ® <?

so that Af = # 2 ^ ( - 3 ) , / 2 = / / ^ ( - l ) , T/ 1 ^ = Ny. Then auto-
matically μ and v are sub- resp. quotient bundles.

(3) Clearly the displays (Di) and (D^) are dual to each other.
If (Di) is given we get (D2) from the results of 1.2, for there it
was shown that 3ί is a kernel as in the column in the middle of
(D 2 ) . We also can derive (D^) from (D2) as follows. By 0.2, v
is an epimorphism iff (/ 2 <g> v) n N = 0 for any υ e V. Let now
£2 ® F v -+ Nv be given by the matrix N*: / 2 -> 42 ® F . It is
elementary to derive that the condition for N is satisfied iff TV* is
one of the matrices

e2 eo_

where eo, . . . , £3 € V is a basis. In the first case 5? is an extension
as in (Ό\) by 1.2, and hence (D^) follows from (D^). We show
now that the second case cannot occur: As in 1.2 we find that the
kernel Γ of /2 ® Λ2 V • /2 ® Λ3 V is generated by the matrix

AN* / N

Γ* =

0

0 e2o\

Since M c Γ , the matrix M*: /ί2 —• /f2®/\2 V representing M must
be a product M* = ^oΓ* with a usual 2x4 matrix A. It follows that
the entries αy of M* are contained in the span of eo Λe\ > eo Λ e2,
^! Λ e2. Therefore for any z eV

dij Λ Z = αy(z)^o A e\ Λ £2 + Z3#y

where αy are linear in the coordinates zo, z i , z 2 only and Λy G

/\3 F . Hence, if Z3 = 0,

M* Λ z = (αy Λ z) = (αy(z)^o Λ ̂ 1 Λ β2)

and we see that this matrix is degenerate on the conic ZQ = 0,
det(αy(z)) = 0. This shows that / 2 ® Ω3(3) — ^ / 2 ® Ω^l) is

not a subbundle along this conic.
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2.1.1. REMARK. Assume that v is regular in (D2) and μ injective
but not necessarily a subbundle. Then L = (Γ/Λf)v c Γ v is base
point free iff μ is a subbundle.

Proof. We still obtain diagram (D^), but in (Di) there might occur
the cokernel Ext1 (l?( 1), 0) in the top row and left column. Now both
conditions are satisfied iff E x t 1 ^ ! ) , 0) = 0.

2.1.2. REMARK. If v is regular in D 2 , i.e. coming from a conic
S G C°(G), and μ injective, the sheaf W is still stable, of rank 2,
h0^ = 0, C\ = 0, C2 = 2, C3 = 0. These sheaves occur as kernels in
sequences

where IT G Af(0, 1) and / C P3 is a line, see 9.1.

2.1.3. REMARK. The monad in (D2) is determined by & up to
equivalence. This means that if I? and 8" are given by (M, N) and

' , N') then W ̂  %' iff there exists g G GL(2, / ) s.t.

1 H d

M ' c / 2 ® Λ2 V / 2 <g> VDN'

The proof follows easily from the identifications of M, k2, iVv with
# 2 f ( - 3 ) , Hx%{-\), H1^ respectively.

2.2. Sections of g{\). If λ G L v - Γ r ( l ) is a section of r ( l ) we
obtain the exact diagram

0 0

0

π
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where Z denotes the zero scheme of the section, and / spans the
kernel. Then / as an element of Γ v = Γ^(3) has three zeros on S
with the sequence

If Q —• S is the projection to the first factor, π* yields the right-hand
n

column and thus Z = π~ι(y) consists of three lines of the system S.

Note that we have an isomorphism PLV ~ PL since L is 2-
dimensional.

2.2.1. LEMMA. Let γ e Γ ~ ΓJΓ(l) */n/ λ e £ v ^ Γ^(l) te
sections with 0 ^ Z(γ) c Z(λ). Then γ maps into (λ) c L v

. Let λ' be the image of γ. Obviously also Z(y) c Z(λ ; ). If
f, / are the polynomials in L c Γ v = Γ^(3) corresponding to A;,
λ they must have a common zero. If A', A were independent, also
f, / would be independent, contradicting the assumption that L v

is base point free.

2.3. Jumping lines of &. Let (M, N) be a monad defining a bundle
^ E Af (0, 2). Using the isomorphism /\2 V ~ /\2 F v we can consider
a representing matrix M* of Λf as a matrix of linear forms on /\2 V.
If <̂  € Λ2 ^ w e write

2 4

M*(£): / 2 —> / 2 ® Λ V — v / 2 ® Λ V - / 2

or Af*(£) = M* Λξ. The equation detAf*(^) = 0 is then uniquely
determined by 8? up to a scalar. If we apply the incidence trans-
formation Rι to the monad (D2) we obtain Rι^(-l) = RιJt{-\)
and

0 -> / 2 ® ̂ o(-l) ^ ^ 2 ® ̂ G -> Λ ^ ί - l ) -^ 0

such that i?1// is induced by the matrix Af*(ί). Similarly if we apply
(-1) to the monad we get

^ 1 ^ 0
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and we obtain, that for a line /

(4) « Ί / - ^ / ( - Ϊ ) ® ^ / ( 0 iff rkM*(/) = 2 - / .

As a consequence, if / = {detM* = 0} is the hypersurface in
2 V, the hypersurface

is the set of jumping lines of ί?. If W1- c /\2 V is the orthogonal
of W = (ξ,ω9η), we have ξ\WL = ω\W± = η\WL = 0 and thus
M* = 0 on ΫW1 . Since S° = G Π PW± we find that / is singular
along 5° . We even have

S° = Sing/,

since M* Φ 0 away from W1. By (4) this is the set of jumping lines
of order 2.

Let finally C = JΠPW be the conic cut out by ΨW. Since JW1 n
p ^ φ 0 and PPΓ1 is exactly the singular locus of detM*, J is the
cone over C with vertex VW1. Note that C must be smooth, since
otherwise M* could be given the form (^ J) with α e G, and then
μ would be degenerate in a.

2.4. The associated Poncelet pair. Let <? € M(0, 2) and let 5 , C
be the conies associated with &, see 2.2, 2.3. These are conies in the
same plane P c¥/\2V with S = Pn<G, C = PnJ.

2.4.1. PROPOSITION (Hartshorne [Ha2]). The conic C is Poncelet
related to S with respect to the pencil PL c |^s(3)|, i.e. the tangents
to S in the points of any divisor of the pencil meet on C.
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Proof. L c Γ v = Π%(3) and let T c /έ2 ® f\2V be presented
by a matrix Γ*: / 4 -+ / 2 (g> /\2 V as in 1.2, see also display (DO.
Then S is the conic parametrised by s2ξ + stω + t2η, and P = PPF,
WΓ = (ξ9 ω, η). By Lemma 1.3 a section γ e Γ ~ ΓJΓ(l) with the
zero line / = s2ξ + stω + t2η is given by

γ = ( 5 3 , Λ , 5 ί 2 , ί 3 ) o Γ = ( j , ί ) ® / .

Let now A G L v and / G L c Γ v the corresponding polynomial
having Z(λ) as its zeros, 2.2. If

are two zeros of / , / = 0, 1, let y, = (^, ί, )Θ// be the corresponding
sections of ^ ( 1 ) . By Lemma 2.2.1 both γ0 and γ\ map into (λ) c L v

under Γ ~ Γ ^ ( l ) -^ Γ?( l ) ^ L v . Therefore Λί, 7!, y2 are in a
3-dimensional subspace of Γ. If M is given by M* — AoT*\ 42 —•

/ 4 — > / 2 ® Λ2 F there must be a nontrivial relation
r

(with & ̂  0 since the two rows are independent).

Now it is elementary to verify that the equations of the tangents to
S in li in the plane ΨW are

If (p) G fW is the intersection point, we therefore find

by the shape of Γ*. But then the above relation implies b o M*{p) =
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2.4.2. COROLLARY. There is a bijectίon [If] <-• (S, C) between
M{0, 2) and the set of Poncelet pairs with S e C°(G) and C smooth.

Proof. If (S, C) is given, the conic C determines a pencil on S,
since by Poncelet's closure theorem of [Gr], [Gr-Ha], through any
point of C there is a triangle tangent to S. By (Di), S and the
pencil determine a bundle in M(0, 2).

2.5. REMARKS. (1) This corollary has been generalized to arbitrary
instanton bundles with λ°ί?(l) = 2 in [Bδ-Ίϊ], where C becomes a
curve of deg = c2.

(2) The pair (C, S) of conies reflects the two components of the
monad (M, N). The Poncelet relation between S, C is the geomet-
ric expression for the monad to form a complex.

2.6. Summarizing the results of 1.5, 2.2, 2.3, 2.4, we have: If % e
Λf(0, 2) there is a conic S e C°(G) with quadric Q and conjugate
conic S°, and a smooth Poncelet conic C in the plane P of 5, s.t.

(1) The pencil describing the Poncelet relation is the pencil of zero
lines of sections of ί?(l).

(2) The conic S° is the set of jumping lines of % of order 2 and

(3) If / is the cone over C with vertex PL then J = J ΠG is
the hypersurface of all jumping lines of I? and / = Supp-R^-l)
(=Suppi? ι .#(-l)).

(4) 5° = Sing/.
(5) The dual quadric <2V is the set of all jumping planes of &, i.e.

of all planes H with H°(^\H) φθ.

3. Quadric bundles of Poncelet conies.

3.1. Given two conies S and C in the projective plane P2 one
can try to inscribe a triangle in C which is circumscribed about S.
Poncelet's theorem states that, if there is one such triangle, one can
start from any point on C to construct such a triangle, see also [Gr-
Ha], [Gr]. If C v is the polar dual of C in the dual plane with respect
to S, the Poncelet condition simply says that there are three poinίs
on S, such that the dual triangle in P^ has its vertices on C v . This
condition is now symmetric in S, C v . If it is satisfied we also call S,
C v a Poncelet pair of conies and C v a Poncelet conic with respect
to S. For a given regular S the set of all regular Poncelet conies C v
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with respect to S is open in a quadric in the P5 of all conies with
P^. We need an explicit description of this quadric, which doesn't
seem to exist in the literature. There is a formula for S, C to be a
Poncelet pair, first derived by Cayley, see [Sa], p. 342, and [Gr-Ha].
This however is not symmetric in S, C and one has to transform it
for a pair 5 , C v . In 3.2 we give both a functorial and an explicit
description of it.

3.2. Let W be a 3-dimensional vectorspace and the conic S c
be given by σ e {S2 W)y , i.e. by a symmetric bilinear form WxW

k or W —• Wv . To σ we associate the two canonical forms:
σ

s2σ: s2w (S2W)

σ σ: -> {S2W)y.

The first is the functorial map S2σ followed by the canonical isomor-
phism, the second is defined by

x y \-> σ(x, y)σ.

Now we define

Qσ = S2σ -\σ-σ.

Thus Qσ: S2W -* (S2W)y is a symmetric bilinear form on S2W
and defines a quadric in ΨS2W. We can define Qσ as well by

+σ{x, y')σ{y, x') - σ{x, y)σ{x', / ) ] .

3.3. The matrix representation of Qσ. Let eo, βi, £2 be a basis of
W and z 0 , z i , z2 the dual basis of Wy . The given form σ will be
expressed by

^02
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such that the conic S is given by the equation Σ/</ sijzizj = 0. Then
the symmetric matrix Q(σ) = (Qσfaβj 9 eke\)) is

Q(σ) =

00

01

02

11

12

22

00

Ho
01

500501

2s00an

02

500502

500512

2soos22

11

501 ~ ^ 5 0 0 5 l l

5 0 1 5 l l

501512 ~ <s'02'S'l 1

* ? ,

12

501X02 ~ s00 s12

s 02*ll

S\\S\2

2sns22

22

501502 ~ 500522

502512 ~ 501522

% 5 2 2

S\2 ~~ ̂ 511522

24

When the conic C v is given by the equation Σ κ ;

 cueiej = 0 in
P^ and c denotes the column of the coefficients ordered as above, we
get

Qσ(c ,c) = cto Q(s) o c =: 2Q(s, c).

Explicitly we have for Q(s, c) the expression

^00c00 + ^00^01^00^01 + ^00^02^00^02 + (^01 - 2^00^10^00^11

- ^00^12)^00^12 + (̂ 02 - 2^00^22)^00^22

REMARK. When ordered by the products SijS^i the coefficients as
functions in the c/7 are the same as in the s^. This proves that
Q(s, c) = Q(c, s) and that the condition Q(s, c) = 0 is symmetric
in s and c.

3.4. PROPOSITION. Let S c ΨW and C v c ΨWy be the regular
conies with the equations

= 0 resp. = 0.

Then (S, C v ) is a Poncelet pair if and only if Q(s, c) = 0.

Proof. Let A, B be two 3 x 3 matrices, not necessarily symmetrif
and define Θ(A, B), 0;(Λ, B) by

detOU + 5) = λ3 dεtA + A2Θ(^, B) + A0 ;(^, B) + detB.

Then for any matrix M we have θ{MoA, Moΰ) = det(M) Θ(A, 5 ) .
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The formula of Cay ley, [Sa], says that if S, T are symmetric ma-
trices representing two conies S, T CPU then S, T is a Poncelet
pair (with S as the "inner" conic) if and only if

Θ(S, T)2 = 4det(S)θ(T9S).

Now let

/2SQQ SQ\ SQ2

5 = 5oi 2sn s\2 ] , resp. C =
V 0̂2 1̂22 522 4

be the matrices of the given conies. The polar dual C of C v with
respect to S then has the matrix T = SoCoS. Applying the formula
of Cayley we get

Θ(S, So CoS)2 = 4det{S)θ(SoCoS,S),

which is equivalent to

Now by a rather lengthy calculation this condition is equivalent to

3.5. The quadratic form Q(^, c) determines a quadric bundle Q c
x PS2JF over P52PFV with fibres

By using the homogeneous coordinates %) > > 2̂2 and Coo, . . . ,
C22 we can easily determine the singular locus of Q. If the conic
S c ΨW given by (s) e PS 2 fF v is non-degenerate, then obviously
Qs is smooth, and therefore Q is smooth over the open set of regular
conies in ΨS2WV.

3.6. Singularities of Q over ΨS2Wy. Since Sing(β) is contained in
the inverse image of the discriminant locus of ΨS2 Wy of degenerate
conies, it is enough to describe Qs Π Sing(Q) for s degenerate. We
consider the two cases, where S is a pair of distinct lines or a double
line.

Case 1. If the conic S given by s consists of a pair of distinct
lines, we can choose a basis of W in such a way that S is given by
zxz2 = 0, i.e. Sij = 0 for (/, j) ^ ( 1 , 2 ) . Then β(5 , c) = cnc22 and
<25 is a pair of distinct 4-planes in P»S2 W.
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Calculating in addition all the partial derivatives

ΘQ

dsu' dcij

in (s, c), we find that

Qs n Sing(Q) = {(c) e FS2W\cn = c22 = 0, c0ιc02 - cOocι2 = 0}.

This is a regular quadric in the 3-dimensional intersection C\ \ = c22 =
0 of the two components of Qs. In order to illustrate the points of
Qs Π Sing(Q) as conies in ΨWy let as before C v denote the conic
J2i<jcueiej = 0 The condition c\\ = c22 = 0 means that C v is a
conic through both z\, z2e ΨWy . The possible cases of C v are:

c is a
regular

point

c is a
regular

point

c is a
singular
point

c is a
singular
point

c is a
singular
point.

These cases can be checked easily by the above description of Qs Π
Sing(Q). Note that in the second case C v is singular whereas (s, c)
is a regular point of Q.

If c\ i = 0 but c22 Φ 0 the pair (s, c) is in one component of the
fibre Qs which consists of all conies C v passing through z\ but not
through z2\

In each of these cases (s, c) is a regular point.

Case 2. If the conic S given by s consists of a double line, we can
choose a basis of W in such a way that S is given by z\ — 0, i.e.
Sij = 0 for (/, j) Φ (2, 2). In this case <2(s, c) = c | 2 and Qs is a "
double 4-plane. Again by looking at the partial derivatives we find
that

Qs n Sing«2) = {(c) e ΨS2W\c22 = c02 = cn = 0},

which is a 2-plane in the 4-plane Qs.



PONCELET PAIRS OF CONICS 277

The condition c2i = 0 means that any C v G Qs passes through z2 .
The additional conditions C02 = ci2 = 0 say that C v is a conic

Any such is degenerate with vertex z2 and conversely. Thus the list
of possible conies C v in the fibre Qs is:

c is a
regular
point

c is a
regular
point

c is a
singular
point

c is a
singular
point.

3.7. Associated quadric bundles. The functor Q of 3.2 can be ap-
plied to any scheme of quadrics. In our case we need it only for
schemes of conies. Let E —• T be a rank 3 vectorbundle over a
scheme together with a quadratic form σ as a morphism E x E —• L

σ

to a line bundle over T. Then σ defines the scheme of zeros C cfE
in the projectified bundle, which we call a scheme of conies:

E xE —> L C c P £

\ / \ /

It is constructed in such a way that for geometric points ί G Γ w e
have a conic Q c YEt. We need this only in the case where T is a
reduced variety.

REMARK. In [Na-Ra] Narasimhan-Ramanan give a more abstract
definition and prove that any conic bundle is of the above form.

Now we can apply the functor Q to obtain the quadric bundle QC
as the zero scheme of Qσ:

S2E x S2E -^L2 QCc ΨS2E

We call QC the Poncelet quadric bundle associated to C. We shall
need this construction only in the case of the universal conic over the
Hubert scheme of conies contained in the Grassmannian G c P Λ2 V
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3.8. The Hiϊbert scheme of conies in G C P A 2 ^ . Let C(G), resp.
C(P Λ2 V), denote the Hubert schemes of conies in G, resp. P /\2 V.
There is a natural embedding C(G) c C(F /\2 V) as the subscheme
of conies S CΨ /\2 V contained in G schematically. Any conic S e
C(G) defines a plane P CF/\2V such that S c GΠP as a subscheme.
If P $£ G then 5 = G Π P is a plane section. We distinguish the
following exceptional sets of C(G):

Σ o = set of singular conies in C(G),

Σ α = set of conies contained in an α-plane P c G ,

Σβ = set of conies contained in a /?-ρlane P c G .

Then C°(G) = C(G) \ Σ o u Σ α u Σ ^ is the open part of regular plane
conic sections.

3.8.1. PROPOSITION. C(G) is a smooth, irreducible variety of di-
mension 9 and ΣQ , Σa, Σβ are irreducible divisors in this manifold.

For the proof we will make use of the following lemma, see SGA,
VII, Prop. 1.7.

LEMMA. Let X\ c Xι c X$ 6e schemes with X2, X3 smooth and
X\ a locally complete intersection. Then there is an exact sequence (on

0 - Nx^χ2 -> Nx^χ3 -> Nx2ix3\Xx -+ 0

where Nx x denotes the normal bundle of ΛΓ, m Xj.

Proof. (1) Using the differential criterion for the smoothness for
Hubert schemes, the smoothness of C(G) and its dimension will fol-
low if we have proved hι(S, NS,G) = 0, h°(S, NS,G) = 9 f o r anY
conic S C G.

(2) If S c P C P5 = PΛ 2 V is a conic in a plane P in P5 it is
immediate to see that hι(S9 NSJP) = 0, h°(S, Ns,p) = 5, and using
the lemma, that also A 1 ^ , Asf'Pj) = 0, h°(S9 Ns9?5) = 14, wherc
one can use that iVpjP = 3#p(l).

(3) Let P C G . Then hι(P,NP G) = 0, h\P,NP G(-2)) = 1 and
Λ°(P5 ^ P , G ( - 2 ) ) = /*2(i>, iVp,G(-2)) = 0, whereas' /z°(Λ iVPjG) =
3. This can be proved by applying the lemma to P c G c P5, so that
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we have the exact sequence

0 -> NPίG - 3Sp(l) - <?/>(2) - 0,

since iVG5p5 = ^ G (2) . Dualizing this and then tensoring by <fp(l) we
obtain

0 -> <?/>(-l) -> 3^> -> Λ # G ® ̂ >(1) -+ 0.

But Np,G is of rank 2 and its determinant bundle is <fp{l), so that
= ΛΓP G . Thus we have the exact sequence

and the statements in (3) follow immediately.
(4) To prove (1) we distinguish case 1: ? C G and case 2: P (jL

In case 1 we have an exact sequence for S c P

0 - iVs,P - Λ ^ G - NPiG\S - 0.

From the exact sequence

0 - JV/>,G(-2) -+ NPiG - , ΛΓPjG|5 - , 0

we see, using (3), that

NP,G\S) = 0 and /*°(S, JVpjG|5) = 4.

Using (2) we now conclude that indeed hι(S, Ns,G) = 0 and
h°(S, NS,G) = 9. In case 2 the conic S is the (schematic) inter-
section S = G D P. Let us consider the diagram

0

i"
Np,ψs\s

I
0
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We claim that the vertical sequence is split; in fact the natural map
NS,P —* NG,V5\S is an isomorphism. This follows from the fact that
the line bundle on P determined by the ideal sheaf of S in P is the
pull back of the line bundle determined by the ideal sheaf of G in
P 5 , by the inclusion P —• P 5 . Since the vertical sequence is split, the
map

H1(S,NS,G)-+H1(S,NS9Ψ5)

is an injection while Hι(S, Ns,r$) = 0 by (2). Thus Hι(S, NSyG) =
0. We also have

h°(S, NS,G) = h°(S, Λfe>Pj) - h'(S, NG

This completes the proof of the smoothness.

= 1 4 - 5 = 9.

(5) By their definition ΣQ , Σ α , Σβ are subvarieties of C(G). Clear-
ly ΣQ is 1-codimensional and Σ Q , Σ^ are P5-bundles over a P3 (as
space of all α-resp. β-planes) and hence also 1-codimensional. Being
bundles Σa, Σβ are already irreducible. So we are left to show that
also ΣQ is irreducible. To do this let Ω c ΣQ be the open set of
conies consisting of two different lines and which are not in Σa U Σβ .
It suffices to show that Ω is irreducible (in fact dim(Σo\Ω) < 8 since
dimΣo Π Σa, dimΣo Π Σβ = 7 and the subvariety Σ'o c ΣQ of double
lines is of dimension 6, see 3.9.1). Now PGL(F) acts transitively on
Ω as can be seen from the configuration (D) in 0.4: A conic S e Ω
corresponds to a p?ir of planes and two points in their intersection
in PF and thus is determined by a pair (p,p\), (<?, q\) of pairs
of points in P3 such that the four points are independent. It is now
immediate that, given two such configurations in P 3 , one can be taken
into another by a linear transformation in PGL(F).

(6) Finally to prove the irreducibility of C(G), it is sufficient to

prove that the open dense subset C°(G) = C(G) \ ΣQ U Σa u Σβ is

irreducible. But this is isomorphic to the open set G®f\2V in the

Grassmannian of 2-planes in P f\2 V cutting G in a regular conic,
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see the morphism C(G) —> (73 Λ2 V in 3.10 below. But the latter is
irreducible.

3.9. The double lines in C(G). If / c G is a line in F/\2 V con-
tained in G, there is a unique α-plane Pa and a unique y8-plane Pβ
with I C Pa, Pβ The pencil Pen(/) of planes spanned by these is the
unique pencil such that / = G Π P for P G Pen(/), P φ Pa, Pβ . This
can be proved easily by choosing a basis of /\2 V containing a basis
of /.

If now S e C(G) is a double line, the plane P with S c GΠP,
which is determined by S, must be a member of Pen(*Sre(i), and con-
versely any P e Pen(S red) determines a conic structure S on Sred
with S c GDP schematically. Therefore the conies S e C(G) sup-
ported by a line / c G are in 1:1 correspondence with the planes
P e Pen(/). We even have

3.9.1. LEMMA. Let Σ'o c Σ o c C(G) be the subvariety of double
lines in C{G). Then Σ'o is a Ψ\-bundle over the Hilbert scheme
of lines in G, and dimΣQ = 6.

Proof. S —• Sτeά is a morphism Σ'o -^ ^ ( G ) whose fibres are the
pencils Pen(/). It is left to the reader to verify that this is a Pi-bundle.
It follows that dim ΣQ = 6.

3.10. The modification C(G) -> G3 Λ
2 ^ Let Z = G3 Λ

2 ^ be the
Grassmannian of 2-planes in P/\2 F . We denote by W —• Z the tau-
tological 3-bundle and by Wz its fibre over z . The projective bundle
PS2WV of quadratic forms in the fibres of W can be considered as the
Hilbert scheme of conies in Ψ /\2 V. Therefore we have an embedding

z
and the composed morphism is a modification of the Grassmannian
(73 Λ2 V with exceptional divisors ΣQ , Σ^ . Thus the modification
consists in putting in all conies in a- or β-planes.

3.11. The quadric bundle Q —• C(G). The universal conic over
PS2WV can be constructed as follows. Let π*W be the pull back
of the tautological bundle to PS2WV . There is a universal quadratic
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form σ on π*W which has values in the relative hyperplane bundle

Jϊf = ^p 52wv (1) such that we have

(5)

π*W <g> π*W C -> Pπ*W

The universal conic C over P*S2WV is the zero locus of the form

σ. Clearly the restriction of the conic bundle C to C(G) c P52WV

is the universal conic bundle over the Hubert scheme C(G).

Now we apply the Poncelet functor Q to the universal conic bundle

over C(G) c PS2WV. Thus from (5) we obtain the quadric bundle

QC and its restriction Q to C(G):

Q <-+ QC c π*PS2W

(6) I I
C(G) *-> P52WV.

If we consider π*P*S2W as a fibre product we have

Q ^ QC <-> P52WV X Z

(7)

Then for any z EZ the fibre

is the Poncelet hypersurface of bidegree 2 considered in 3.5. It is at
the same time the quadric bundle over ΨS2W? , or QC\ΫS2W? .

3.12. Singularities of Q. If the conic S e C(G) is regular then the

fibre Qs of Q over *S is non-degenerate and therefore Q is smooth

over the open part of regular conies. If S is singular, then Q^nSing Q

has the same description as in 3.6. The proof consists in using local

coordinates (derived from C(G) c PS2WV for example) and then in

calculating partial derivative as in 3.6. Thus

(i) If S G C(G) consists of two different lines e, f, the pair

(S, C v ) is a singular point iff C v is singular and passes through both

e and / .
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(ii) If S e C() is a double line with Sΐeά = e, then (S, C v ) is a
singular point iff C v is singular and e e Sing C v .

3.12.1. COROLLARY. The codimension of Sing Q is 3.

3.13. PROPOSITION. The quadric bundle Q is a normal irreducible
variety.

Proof, Let C(G) <̂-> PSWV be the embedding of 3.9. From diagram
j

(6) we obtain the diagram

where y*π*SP2W is the bundle of all conies in the dual plane defined
by the universal conic over C(G). The embedding of Q into this bun-
dle is regular, since any fibre of Q consists of the Poncelet quadric in
the corresponding fibre ΨS2W of j*π*ΨS2W. Since C(G) is smooth
by 3.8.1, it follows that Q is a local complete intersection, see SGA 6,
VIII, Prop. 1.5. On the other hand, the codimension of the singular
set of Q is > 2 by 3.12.1. It follows from [Hal, Prop. 8.23] that Q
is normal. Since Q is equidimensional of dimension 13, β|C°(G) is
irreducible and dim(Q \ Q|C°(G)) < 13, Q must also be irreducible.

4. Boundary components of Q and Main Theorem. We define 4
(positive) divisors on Q as follows. Let QQ , Qa, <2̂  be respectively
the inverse images of ΣQ, Σ α , Σ^ (3.8) by the canonical projection
Q -> C(G), and let Qe be the subvariety of pairs (5 , C v ) with C v

singular.

4.1. PROPOSITION. The divisors Qo, Qa, Qβ and Qe are irre-
ducible.

Proof. Since the Poncelet bundle associated to the space of conies
in P2 is irreducible, we see that Qa and Qβ are irreducible. To show
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that Qe is irreducible, let Ω' be the open subset of Qe consisting of
(S, C v ) where S is a regular cut of G by a plane in P5. Then Ω' is
irreducible and Ω' is dense in Qe and Qe is of pure dimension 12
and dim((2 3 -Ω') < 11.

To prove that Qo is irreducible consider the diagram, see (7) in
3.11,

<2o *-* Q ^PS2Wy xz PS2W->PS2W

I . I I
Σo ± C(G) A Z

and the induced map φ

Qo A j*μ*FS2(Ψ)

Let i? c j*μ*FS2(W) be the space of smooth conies. Since ΣQ is
irreducible we see that R is irreducible. For C eR, φ~ι(C) consists
of pairs (S, C) where S is a singular conic in the dual plane one of
whose components touches the dual conic C v .

Thus φ~x (C) is irreducible of dimension 3, being the image of Pi XP2
by a finite map. Hence φ~x{R) is irreducible. Now φ~ι(R) is open
and dense in Qo, since, in the space of conies in P2 through a point
in P2, the subspace consisting of smooth conies is dense.

4.2. Ϋ\-fibration on the exceptional set βexc Recall, 3.12, that the
singular set, Sing Q, of Q is contained in Qo n βo and consists of
pairs ( 5 , C v ) where S and C v are both singular having a position
as in (i), (ii), 3.12. Let Σf

0 c ΣQ be the space of double lines and let

βexc = Sing Q n π " 1 (Σ'o), π: Q - C(G).

We claim that Qeχc has a natural structure of a Pi-bundle, a fibre
being the pencil Pi of double structures on a line contained in G'r
see 3.9.1. Let L(G) be the Hubert scheme of lines contained in G
and D -> L(G) the tautological Pt-bundle. Let S2(D) -> L(G) be the
P2-bundle which is the relative Hubert scheme of pairs of points on
the fibres of D -> L(G).
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A point of Qexc consists of a pair (5 , C v ) where S is a line with
a double structure in G and C v is a singular conic in the dual plane
having a singularity at the point in the dual plane determined by S.
Let / be the reduced line associated to S. We may view C v as a pair
of points on /. Thus we obtain a map βexc —• S2(D), whose fibre at
(19 P 9 Q) € S2(D) 9 where / is a line in G and p, q G / , is the pencil
Pen(/) of double structures on / contained in G.

Note that we have the diagram of Pi-fibrations

βexc > S2(D)

4.3. ΓΛe component M(0, 2) o/ίλe Maruyama scheme containing
M(0, 2). Let M(2 0, 2, 0) be the Maruyama scheme of
all semistable coherent rank 2 sheaves on P3 with Chern classes
cx = 0, C2 = 2, C3 = 0. The moduli space of vector bundles
Af(0, 2) is a smooth connected open subset of Λf(2; 0 , 2 , 0 ) ;
we denote by Λf(0, 2) the (reduced) schematic closure of Af(0, 2) in
M(0 0, 2, 0), and by Af (0, 2) —> Af(0, 2) its normalisation.

4.4. THEOREM. (1) The variety Q {see 3.11) can be blown down
along the Ψ\-fibration Qexc —• £2(£>) (defined in 4.2) to a normal
variety Q, i.e. the push-out Q of the diagram

Qexc > β

in the category of varieties over 4.
(2) There exists a canonical morphism

Q—+M(0, 2)

φ

which induces an isomorphism of the blown down variety Q onto the

normalisation Af (0, 2) of Af (0, 2).



286 M. S. NARASIMHAN AND G. TRAUTMANN

(3) Let Q° denote Q\QevQaVQβVQo (see4Λ). The restriction of
φ to Q° maps Q° ίsomorphically onto M(092). The inverse of this
isomorphism is the map of Corollary 2.4.2 which associates to a bundle
the corresponding Poncelet pair (S, C) of smooth conies. Moreover the
"boundary" Λf(O, 2) \M(09 2) is the union of the four Weil divisors
which are the images by φ of Qe, Qa, Qβ and Qo.

(4) The normalisation map M(0, 2) - ^ M(0, 2) is bijective and the

smooth points of M(0, 2) correspond precisely to the stable sheaves in
Af(0, 2).

REMARK 1. In the formulation of the theorem in [Na-Ίϊ] the blow
down of the Pi-fibration of Qeχc had been overlooked.

REMARK 2. Under Xss// SL(2) = Q the stable points of X s s under
the SL(2)-action correspond precisely to the smooth points of Q, see
6.7.1.

REMARK 3. The sheaves or their equivalence classes in the 4 bound-
ary components can be characterised geometrically by the Poncelet
pairs (S, C v ) by which they are defined. This can be found in §§9,
10.

In particular the generic points of the divisor Qe are the sheaves
&, which are obtained by the elementary transformations

where If' is a bundle in Af(0, 1) and L is a line in P3, see 9.1.

REMARK 4. The semi-stable but non-stable sheaves in the boundary
are characterised as extensions

0 -+ JfLuq -> & -+ ̂ u / 7 -> 0 ,

where L, K are lines and /?, q points in P3, ^wq is the ideal
sheaf of the union Lu{q} (with a simple multiple structure in q if
q e L), see Theorem 10.5. The blow down of the Ppfibration of Qexc

is explained in terms of the sheaves in 10.6.

REMARK 5. For any \&\ e M(0, 2) let 5° = S u p p i ? 1 ^ , / ="
Suppi? 1 ^(-1) ? where Rι is the incidence transformation. These
sets are the generalised sets of jumping lines of order ^ 2 resp. of all
jumping lines of &. In the proof of 8.3 it is shown that S° and /
only depend on the equivalence class [F]. However, which is more
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important, we have the

COROLLARY. Any \^\ e M(0, 2) is already determined by the pair

(5°,/).

Proof. By 8.3 (d) the pair (S° 9 J) determines a quadric hyper-
surface J c Ψf\2V such that / = G ΓΊ / and / is singular along
S° c Sing/. If [P] £ φ(Qexc) then (5°, 7) determines the plane
ΨW or ΨW1 by 8.3 (e), (£). If ΨWL

 CΫI\2V is any splitting of
PΛ 2 V = PΛ 2 Vy -> VWW, see 8.3 (b), then C v = ΨWV n 7 , 8.3 (d),
and hence S? is determined by (5°, /) through (5 , C v ) . If how-
ever [5Π E φ{QcXC), then we can choose any plane ΨW in the pencil
Pen(Sred) and define C v = VWy n 7 . Then (S, C v ) determines the
class [5Π independently of the choice of PίF by (1) of the theorem,
i.e. (S°, /) determines \&\ in this case, too.

4.5. Proof of Theorem 4.4. (a) We first prove the existence of the
canonical map φ and part (3) of the theorem. In §6 we will construct a
projective variety X with an SL(2)-action such that, if Xss is the open
subset of semi-stable points for this action, then the good quotient
XSS//SL(2) is isomorphic to Q. Moreover we construct in §8 a flat
family {5^}, x e Xss, of rank 2 coherent sheaves on P3 with c\ =
0, c2 = 2, c3 = 0. It is proved in §§9, 10 that the sheaves &x

are semi-stable. Moreover if x and x' are on the same SL(2)-orbit
then &χ ~ SFx'. Hence there is a canonical morphism from X s s to
the Maruyama scheme Af(2 0, 2, 0), and this induces a morphism
Q—>M(2;0,2,0).

Φ

(b) We will now prove that Φ maps Q onto M(0, 2), so that we
will obtain a morphism Q —• M(0, 2). We first show that Φ maps
Q° isomorphically onto M(0, 2) c M(2; 0, 2 , 0 ) . Let X° be the
inverse image of Q° in X s s . Now each sheaf ^ , x € X s s , comes
with a monad display (22) in §8. If x & X° this is a monad of a
bundle by 6.8 with jry = ^ (see 7.1.2) and J4 = iVv ® ^ . So,
X° and hence its quotient Q° are mapped into M(0, 2) under Φ.
The Poncelet pair (5 , C v ) of smooth conies associated to x is the
Poncelet pair associated to the bundle in 2.4.2 with C v the polar
dual of C, see 6.8. Now by Corollary 2.4.2 Φ|Q° is a bijection
from Q° onto Af(0, 2). Since both varieties are smooth Φ\Q° is an
isomorphism. Since Q is irreducible by Proposition 3.13 and Q° is
dense in Q, we now see that Φ maps Q onto M(0, 2). We thus
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have the canonical morphism Q —• M(0, 2). Observe that we have
φ

proved already the first parts of (2) and (3) of the theorem.
(c) We now proceed to prove (1) and (2). It is proved in 8.4 with

preparations in §7 that Q —• M(0, 2) is injective on Q\ Qexc, con-
φ

stant on the fibres of the Ppfibration on QQXC and induces an injective

map S2(D) —• Λf(0, 2). Since Q is normal (Proposition 3.13) and φ

is onto, φ lifts to a surjective morphism Q -?-+ M(0, 2). Since the fi-
bres of φ are connected, the normalization map M(0, 2) —• M(0, 2)

is bijective. Using the Stein factorization of φ and Zariski's main the-
orem, we see that

If Qexc —• S2(D) is the Pi-fibration we also have *7*^βexc = @S\Ώ) > s o

that the map S2{D) —> M(0, 2) induced by S2{D) -• M(0,2) is a

morphism. We thus have a commutative diagram of morphisms

Qexc • β

1 #

S2{D) > Af(0,2)

with 0*^ρ = #M(oΪ2). It is easy to verify from this that M(0, 2) is the
required push out. Thus we have proved (1) and (2) of the theorem,
and also that the normalization map v is bijective.

(d) From the above we know that

is an isomorphism. Under this the divisors Qe, Qa, Qβ, <2o
mapped to divisors, since βeχc c Qo and dimζ?eχc = 8 (as a P2-
bundle over Σ'o c C(C)). Hence they are also mapped to divisors in
M(0, 2) or M(0, 2). This proves the second part of (3).

(e) To complete the proof of (4), observe that QQXC is contained in
the singular locus QSing c β 0 of β . Now β s i n g \ βeχc is dense in
Qsing I n fact by 3.12, a Poncelet pair (5 , C v ) in βsing corresponds
to a singular conic S with a pair of points one on each component. We
can approximate a double line with a pair of (eventually coincident)
points on it by a singular conic consisting of distinct lines along with
a point on each componentJSince φ is an isomorphism on Q\ βeχc >
we see that ^(Qsing) = M{09 2)Sing On the other hand by Theorem
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10.5, a point in Q corresponds to a stable sheaf precisely when it is
a non-singular point of Q.

5. Geometric invariant parametrisation of C(G). In order to define a
universal family of sheaves we have to construct a suitable parametri-
sation of the quadric bundle Q —> C(G), since a universal family does
not even exist over M(0, 2) [Hi-Na]. This will be done in such a way
that we construct a morphism X —• Y of projective varieties, acted
on by SL(2, / ) , which is equivariant, and such that the induced mor-
phism Xss// SL(2) -> ΓS7/ SL(2) on the good quotients is the quadric
bundle.

As a first step we construct Y in this section. Recall that C°(G) =
G\{£2 ® F)/ SL(2), where G\{£2 ® F) is the open part of the Grass-
mannian consisting of regular subspaces N c / 2 ® V defining the
right parts /2 ®Ω}{\) —• Ny ®@ of bundle monads, 1.4. The space

Gf(/2 ® V) of semi-stable points of the Grassmannian however does
not parametrise the complete Hilbert-scheme, see Remark 5.9. The
parameter space Y is constructed in such a way that its semi-stable
points form a modification of Gf(/ί2 ® F) . It is essentially the set of

Γ e G4(/2 ® Λ2 V) such that

Γ c K e r ( / 2 < g ) / \ F

for some N e G^C^2 ® V), and only if TV is regular we have an exact
sequence

2 3

(8) 0 -* Γ -+ / 2 ® l\ V -+ Nv ® /\ F -+ 0.

It turned out that in the degenerate cases of TV the subspaces Γ pro-
vide us with the necessary information in the limit cases: They deter-
mine the degenerate conies in C(G) and we have Γ ~ Π/Γ(l), where
Jf is the corresponding kernel sheaf, thereby generalizing the results
of §1, whereas the degenerate spaces N do not determine them. The
result is the space Y c G^/ί2 ® W) constructed in 5.7. In 5.8 we
show that N is determined by Γ for semi-stable Γ.

As a preparation we prove a stability criterion for points in Grass-
mannians, of the above type, which is essential for our constructions.

5.1. Let U9 W be finite dimensional vector spaces and let SL([/)
act on Gq{U ® W) by L H ( J 0 id)(L). This action is induced from
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the linear action of SL(U) on /\q(U®W) via the Plucker embedding
Gg(U ® W) c PΛ^(U <8> W). Therefore it makes sense to characterize
the stable and semi-stable points of this action in the sense of Mum-
ford, [Mu-Fo], see also [Nel]. The result is

5.1.1. PROPOSITION (Stability criterion). Let SL(C/) act on the
Grassmannian Gq(U ®W) as above. Then a point L e Gg(U ® W)
is stable {semi-stable) if and only if

dimL n (t/' ® W) < ^ i m U' dimLv J dim U

for any proper subspace 0 φ U1 ^ U.

Proof Let A be a (non-trivial) 1-parameter subgroup of SL(U).
a basis (e 0, . , e{) of U, A is given by the diagonal matrix A(ί)
[ ί α o , . . . , ί α i ] , α o > α j > > α 7 , Σ ^ ^ = 0 .

In
A(ί) =

[ ί α o , . . . , ί α i ] , α o > α j > > α 7 ,

Let ^o, . . . , V/i be any basis of W. Consider the basis {et®Vj} of
U®W. Since the action of SL(C/) on t/(8)ff is given by g(u®w) =
gu®w for u e U, w eW, the action of A on J7 ® ίF is given by
the diagonal matrix

(each /α> occurring (Λ + 1) times), with respect to the basis f$ =

eo ® ̂ o > , fn =
fln+\ = β\ ® ̂ o , (

We now use [Mu-Fo, p. 88, (* * *)# or Nel, p. 121] with N = 1
to get

μ(L ,λ) = -q r ( / + 1 ) Λ + / + J ^ dim(L Π L/)
i=0

where Lz is the subspace spanned by (fo, . . . , f). In our case

ro = = rn = α 0 rn+ι = = r2n+\ = e*i

Hence
/-i

, A) = -qai + J ^ dim(L n
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As in [Nel, p. 121] we consider the cases

α o = •• = OLP = l-p; (Xp+i = "- = α/ = - ( p + 1 ) foτO<p < / - l .

Here μ(L, λ) = q(p + l ) - d i m ( L n L ( p + 1 ) Λ + / l ) ( / + 1). But L{p+ι)n+p =
Uj,®W, where t/^ is the span (in 17) of βo, . . . , ep .

Thus μ(L, A) = <?(/? + 1) - dim(L n (£/; ® W)){1 + 1).
Thus μ(L, λ)>0 (resp. > 0) if and only if

dim(L Π (£/' ® W)) < q (resp. <)
V V p )) p + j V

for 0 < p < /. Since every (p + 1)-dimensional subspace of U is
conjugate under SL(ί/) to t/^ the result follows. In 6.3 we need

5.1.2. PROPOSITION. Let U = /2, άimW = 3 and let M e
Gi^1 ® W) and Γ E G 4 ( / 2 ® W) with M c Γ . 77ẑ π

(1) The pair (M, Γ) e 6 2 x G4 w semi-stable if and only if M and
Γ αr^ semi-stable in G2 and G4 respectively.

(2) If (M, Γ) w semi-stable and one of the components is stable,
then (M, Γ) is stable.

Proof. (1) Let λ(t) = ( / O

r i ) be a 1-parameter subgroup with

a0 + αi = 0, cq < 0 . As in the proof of 5.1.1 we have

μ(M,λ) = aι(-<

Since the action on the product is linearised via the tensor-product
Λ 2 ( / 2 ® W) ® /\\/2 ® FT) we must have

From this it is clear that (M, Γ) is semi-stable if both components
are semi-stable. To prove the converse, let (Λf, Γ) be semi-stable.
Then we have

2(dimM + dimΓ) < 3.

If M were not semi-stable, dim Mr\e§®W = 2 or M ce$®W. By
the inclusion M c Γ also dimΓn(e-0(g) W) > 2, but by the previous
inequality this should be < 1. Similarly if Γ were not semi-stable,
dimΓ Π (e0 ® W) > 3 and then M n ( e o ® ( f ) = O. However this is
not possible since dim M = 2.

(2) Follows directly from the formula (*).

From now on W will be 3-dimensional and P2 =
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5.2. The conic S{T) .Let Γ c / 2 ® W be a 4-dimensional subspace,
dim W = 3. The description of the conic S(Γ) in 1.3 motivates the
following definition

S(Γ) := {(w) e ΨW\u ® w e Γ for some u φ 0 in Z 2 } .

For arbitrary Γ this set could be the whole plane, for example if
u <g> W c Γ for some u.

5.2.1. PROPOSITION. (1) For Γ e G 4 ( / 2 ® W) the following condi-
tions are equivalent:

(a) Γ is semi-stable.
(b) S(Γ) is a conic.
(c) S(Γ)φFW.

(2) Γ w stable iff the conic S(Γ) is regular.

Proof. (1) If Γ is not semi-stable, by 5.1.1 there is some O ^ W G / 2

with u®W cΓ (dim(w (8) W) Π Γ > 3) and hence 5(Γ) = P ί F . This
proves (c) => (a). It remains to prove (a) =>> (b). We consider the
2-dimensional kernel Σ in

0 _> Σ -> / 2 ® Wy -+ Γ v -> 0.

Since G4(/2<g) Ŵ ) -• G 2 ( / 2 ® H>"v) is an SL(2)-equivariant isomor-
phism Σ is stable (semi-stable) iff Γ is stable (semi-stable). By the
criterion 5.1.1 this means dimΣ(Ί(w<g) Wy) < 1 (< 1) for any uφQ.
If Σ is the image of the matrix Σ* = ( z

z> $): / 2 -+ / 2 ® Wy , we find
that Σ is semi-stable iff the determinant zw' - z'w Φ 0 in S2Wy,
and this then defines a conic. To see that this is S(T), we consider
the diagram on ΨW

o
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in which the two cokernels identify. The homomorphism Σ ® ff —>
41 <g> ^f(l) is injective in the semi-stable case. By the fibre description
of / 2 ® Ω*(l) -+ Γ v ® ̂ , see 0.1, we find that suppg? = S(Γ), and
the left column shows that this is a conic given by detΣ* = 0.

(2) Now it is easy to see that S(Γ) is regular iff Σ* has no zero
as any entry in any equivalent representation. This is equivalent to
Σ n ( κ ® Wy) = 0 for any w ^ 0 , i . e . Σ stable.

5.2.2. REMARK. (1) If S(Γ) is regular then & ~ &s(3) of degree
3 on S. In the following S(Γ) shall always be given the structure of
the equation det Σ* = 0.

(2) S(Γ) is nothing but the determinantal variety of the homomor-
phism of the top row.

5.3. Normal forms. In the following tableau the matrices are Σ*,
Γ* defining Σ, Γ as images of / 2 -> / 2 ® Wv, / 4 -> /2 ® W
respectively, and eo, e\ ,e-ι e W, ZQ , z i , z-χ e Wy are dual bases.

S(Γ)

Σ*
Z
2 "

(I)

stable
case

0]
z

0

z

(II
1
) (ID (II")

semi-stable cases

(Ill)

e
o ° •

e
1
 e

o
β
2
 e

1
0 e

2

e
o

e
1

e
2
0

0 '

0

e
1

e
2

"
e
o

e
1
0

0

o •

0

e
1

e
2

'
e
o

e
1
0

0

0 "

e
o

e
1

e
2

'
 e
o

e
1

αe
2

βe
2

0

0

e
1

5.3.1. LEMMA. IfTe G4(/2 ® FT) is semi-stable it can be presented
by one of the normal forms in the above tableau.

The proof follows immediately if we choose the bases of Wy so
that *S(Γ) is defined by the matrices Σ* of the form given.

5.4. REMARK. Note that the normal forms of type II 7, II, II" give
the same conic although they are not on the same orbits under SL(2).
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However the orbit of Γ of type II is in the closure of that of type II'
or II" in the tableau. For if we consider the 1-parameter subgroup
( α

 α - i ) , its action on the Γ of type II' is given by

Im e\ a
a

-i = I m
ae\

a
a~

= Im
a

and the latter tends to the direct sum as a —> 0.

5.5. An unusual parametrisation of P5. By the previous results we
have a morphism G 4 ( / 2 Θ W)ss -> FS2Wy given by Γ -> (detΣ*),
where Σ* is any matrix defining Σ. This morphism factors through
the good quotient, [Mu-Fo], [Nel], G4{/2 <g> ίΓ)ss//SL(2) -> ΨS2Wy

and we have the

5.5.1. PROPOSITION. G 4 ( / 2 Θ W 0 S S / / S L ( 2 ) ~ΨS 2W y isanisomor-
phism.

Proof. Indeed this is a bijective morphism, which follows from the
listing of the normal forms above. Since PZ>52 Wy is smooth and the
quotient is irreducible and reduced, it must be an isomorphism by
Zariski's main theorem.

5.6. In order to obtain a similar parametrisation of the Hubert
scheme of all conies in P5 = P/\2 V and later in G = G^V c Ff\2 V
we use the above parametrisation for each plane P c P5 and let the
planes vary in the Grassmannian Gi/\2V. So we consider the tauto-
logical bundle

2

W - G3 /\ V = Z.

We denote by W = Wz c /\2 V the 3-dimensional subspace given by
z G Z , see 3.10. As in the absolute case there is the induced action
of SL(2) on the Grassmann bundle

This can be linearised as follows. Since W c Z x /\2 V we get tίϊe
embedding

G4(/2 ® W) c Z x G4
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as the subvariety of pairs (z, Γ) satisfying Γ c k2<g>/\2 V. Since Z is
not affected by the action, it is enough to consider the linear action on

4 2 v) Therefore the relative statement on stability reads the
same way as that in 5.1.1, 5.1.2.

5.6.1. PROPOSITION. For ( Z , Γ ) G G 4 ( / 2 ® W ) the following condi-
tions are equivalent:

(i) (z, Γ) is stable (semi-stable).
(ii) d i m Γ n (u <g> Wz) < 1 (< 2) for any 0 φ u e /2.

(Hi) S(Γ) CFWZ is a regular conic (conic).

Also we obtain analogously

5.6.2. PROPOSITION. The map (z, Γ) -> 5(Γ) induces an isomor-
phism G4(/2 ® W)SS//SL(2) ~ PS2WV o/ί/ze £0θd quotient with the
Hilbert scheme C(P/\2 V) = ΨS2WV of conies in Ψ f\2 V.

5.7. Parametrisation of the Hilbert scheme C(G). Since we are only
interested in conies contained in the Plϋcker quadric G = G2V c
P / \ 2 F , we have to characterise those (z, Γ) for which the conic
^(Γ) c G Π ΫWZ scheme-theoretically. Note that by this, the case
where G Π ΨWZ is a pair of lines and S(Γ) is a double line with
5(Γ) r e d being one of the lines, is excluded. To do this we consider the
quadratic forms:

σ(Γ) =detΣ* € S2WZ determined up to a scalar,

p(z)k = quadratic form e S2WZ of G n f>Wz.

Note that σ(Γ) = 0 if Γ is not semi-stable, and p(z) = 0 if ΫWZ C G.
The condition S(Γ) c G Π ΨWZ is now expressed by p(z) Λ σ(Γ) = 0,
which is well defined. Next we consider the open subset

G\(ά2 ® V)

of the Grassmannian of right monads iV as in §1, s.t. the morphism
/2 ®Ω}(\) -• Ny ®@ is surjective, see 1.2. Recall that then N
defines a 4-dimensional kernel Γ by (8) and a regular conic section
S(Γ) = G Π ΨWZ by 1.3. Therefore we have an equivariant morphism
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Now we define

F C ( ? 4 ( / 2 8 W )

as the closure of the image of e, which is an imbedding. Then Y
is 12-dimensional and irreducible. Also Y is invariant under SL(2)
since the image of e is. Therefore we have the induced action and
linearisation and

γss = r n G 4 ( / 2 ® w ) s s .

Since Y is defined as the closure, the condition σ(Γ)Λp(z) = 0 is sat-
isfied for any ( z , Γ ) e Γ s and therefore the conic 5(Γ) is contained
in GΠPWZ as a subscheme. Therefore there is the morphism

given by σ(Γ). This factorizes through the good quotient Yss// SL(2)

5.7.1. PROPOSITION. 7 S S / / S L ( 2 ) —• C(G) is an isomorphism.

Proof. Clearly the morphism is surjective, since its image contains
that of G\{42 ® V), which is dense, and since the quotient is pro-
jective. It is also injective: ΨWZ is determined by S(Γ) and also the
equivalence class of Γ c / 2 ® Wz by the normal forms, see 5.4. Since
the quotient is also integral, [Mu-Fo], and C(G) is smooth, it must
be an isomorphism by Zariski's main theorem.

5.7.2. REMARK. One can even show that Yss is smooth, whereas
Y is singular. To do this, consider the subvariety Y' c G^{/2 ® W)
defined by σ(Γ) Λ p(z) = 0. We have Y c Y' and Yss c 7 ' s s , Y'
being also invariant. Now one can show that dim TPY'ss = 12 for any
p G Y1 s s . One has to consider the different types of points, choose ap-
propriate bases of Γ and the bundle W, and to use local coordinates
of the Grassmannian G^/\2 V. It turns out that the Jacobian ma-
trix of the equations of Y' always has rank 5 in the 17-dimensional
manifold G 4 (/ 2 ® W)ss. Therefore for any peYss z

12 = dimp 7
SS < dimp Y

fss < dim TpY
fss = 12.

Hence 7SS is smooth and defines a component of Yι. However we
don't need this result.
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5.8. The morphism 7S S -> G | s ( / 2 <g> V). If Γ e G 4 ( / 2

can consider the induced homomorphism

297

we

(10)

Λ(Π

5.8.1. LEMMA, / / ( Z , Γ) e 7 S S then N = KerΛ(Γ) w 2-dimensional
and semi-stable.

By this we obtain a morphism 7S S - ^ Gf(J2 Θ K). It is now easy

to see that the morphism ε of 5.7 is a section of 1/ over G%(/f2 ® K),
since for regular JV the space Γ defined through (8) is stable with
N C KerΛ(Γ) and thus TV = Ker/z(Γ).

Proof of the Lemma, (a) If the conic S{T) is regular, then Γ is
presented by a matrix

-ξ
ω

Ά
.0

0 '

ω

2

wz, wzcf\v,

such that each vector 52^ + stω + t2η e f\2 V is decomposable, since
S(Γ) c G. This is equivalent to ξ Aξ = 0, η Λη = 0, ξΛω = 0,
η Λ ω = 0 and ω Λ ω + 2<i;Λί7 = O.

If ιS(Γ) = G Π ΫWZ is a regular conic section, there is nothing to
prove, because then N must be given as in 1.2. If ΫWZ C G is an
α-plane, then there is a vector x e V with ξ = x Λxf, η = x Λy,
co = x Λ y! for some x', y, y' e V. These vectors must form a
basis, since ζ 5 ω , η are independent. Now we see that N must be
presented by

^2 . ^ 2 0 TZ

0

which is semi-stable.
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(b) If ΨWZ c G is a β-plane, we must have ξ,ω,η e /\2H,
/ / c K , s.t. also ω Λ ω = 0 and hence all products are zero. Since ξ,
ω, η are independent, we find a basis x, xf, y of H s.t. £ = xΛx',
ω = —JC; Ay, ?/ = y Λ x . In this case the kernel is represented by

/2®V
x y
x1 x

which is stable in this case.
(c) If S(Γ) = G Π ΨWZ is a pair of lines, Γ must be presented in

normal form, see 5.3,

'ξ
ω
V

.0

0"
0
ω

n.
where the lines in G are parametrised by (sξ + tω) and (sω + tη).
Then ξ = x Λx', ω = x Λy', η = y Λyf for some vectors x9 y, y',
which are independent. Then the kernel is represented by

x 0

which again is semi-stable.
(d) All other cases are treated analogously.

5.9. REMARK. One can consider Yss —• G | s ( / 2 ® V) as a Schubert-
type blow up by filling in the 4-dimensional subspaces

Γ c Ker

If we go to the quotients we get a modification

rss//SL(2) > Gf(/2®V)//SL(2)

C(G) • i?

It is not difficult to see that R is a ramified cover of the space PS2 V
of all quadrics in P F V by looking at [N] —• (detiV*). Away from
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the singular quadrics this is the 2-sheeted cover of regular reguli by
distinguishing a system of lines in a quadric, see Remark 1.4. The
transposition

ιχ x'\ \x
y y\

of the parametrising matrices defines the decktransformation. The
space R is the minimal completion of this covering. By the above
modification C(G) —• R it is possible to extend the quadric bundle of
Poncelet conies.

6. Geometric invariant parametrisation of the quadric bundle Q —•

C(G).

6.1. As in 5.6 the Grassmann bundle G2{42 ® W) -* Z =
G$/\2V can be described as the flag variety of pairs (z,Λf) e
Z x G2{42 0 Λ2 V) with M c 42 ®WZ. Analogously the induced
group action of SL(2) can be linearised through the Pliicker embed-
ding by the action of /\2{42®/\2 V). Since Z is not affected, (z, M)
is (semi-)stable iff M e G2{42 ® Λ2 V) is (semi-)stable. To each
M we can also associate a quadratic form detΛ/* e S2WZ where
M*: /2 —* 4 ® Wz represents M. As in 4.6 we obtain the

6.1.1. PROPOSITION. (I) For each (z, M) e G 2 (/ 2 ΘW) the follow-
ing are equivalent:

(i) (z, M) is semi-stable {stable).
(ii) dimΛf Π (M ® Wz) < 1 (=0) /or any uφO.

(iii) detΛf* ^ 0 in S2WZ (detΛf* = 0 is the equation of a regular
conic).

6.2. By this result we obtain a morphism (z, M) —> (detΛ/*)

G f ( / 2 ® W)// SL(2) -> P52W.

This moφhism is bijective and hence an isomorphism.

6.3. Let now X c G2{42 ® W) x z C?4(/2 ® W) be the flag subva-
riety of the product bundle, defined as the set of all (z, M, Γ) with
(z, Γ) G Y and Λf c Γ. If 7 —> G 4 ( / 2 ® Λ2 V) is the canonical

composition

/ 2 ( g ) Λ F
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and if T is the tautological subbundle on the Grassmannian G4, we
obviously have X = G2γ*Ύ. Thus X —> Y is a Grassmann bundle,
άivaX = 16. The induced SL(2)-action on the product bundle leaves
X invariant, and the action is again linearised via the embeddings

X C G2(/

C Z X P f\

c Z x p (f\ (/2 (g) y\ ) ) )

Thus ( z , ¥ , Γ ) E l i s (semi-)stable iff (M, Γ) e G 2 ( / 2 ® ίΓz) x
® Wz) is (semi-)stable. Fortunately we have the

6.3.1. LEMMA. (1) (z, M, Γ) eX is semi-stable iff each component
is semi-stable in Gι{^2 ®WZ), G^1 ® Wz) respectively.

(2) (z, M, Γ) G X s s Z5 5ίαWe //on^ of the components is stable.
(3) There are stable pairs (z, M ,Γ) e Xs without M and Γ being

stable, see Remark 6.7.2.

Proof. (1) and (2) had been proved in 5.1.2. In this proof it is
possible that μ(M, λ) or μ(Γ, λ') are zero for different λ 's but never
simultaneously. In such a case (M, Γ) is stable but not Λf and T.
An example is provided by the pair M c Γ, defined as the images of
the matrices

Λ 2^ 2

\
e\
ei

.0

o •
0
e\0 e2

respectively. Then (M, Γ) is stable but neither M nor Γ.

6.4. By the above lemma the projection X —• Y maps Xss —• Yss

π

and X s s c π~\Yss). Since X s s is open and π'^Y**) is irreducible
as a bundle over 7 S S , also Xss is irreducible and smooth.
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6.5. PROPOSITION. / / ( z , M , Γ ) € l is semi-stable, the pair ((σ(Γ)),
(det Af *)) G ΫS2W^ x ΨS2WZ is a Poncelet pair and determines a pair
of Poncelet conies S{T) CΨWZ, Cy(M) c

Proof. For the proof we use the normal forms of the spaces Γ c
/ 2 <8> Wz given in 5.3. Let eo, e\, 2̂ G Ŵ  and ZQ , z i , Z2 G fl^v be
dual bases, as in 5.3.

Case 1. S(Γ) is regular and its form is σ(Γ) = z 0 z 2 - z\. Then
with the notations of 3.3 the Poncelet quadric

Qσ(Γ) = {C00C22 ~ COlCl2 + C02Cn + C\χ = 0} C ΫS2WZ.

We have to verify that detM* = Σ / < ; Ctjeiβj satisfies this condition.
As M c Γ is a 2-dim. subspace, we Rave

M* =
βl

0:4

β4

0

e\
0

where we use the normal form of Γ*. When a^ = aiβj - otjβj we get

^00 = «12 ? ^01 = Λ13 , C02 =

Inserted into the formula:

this expression vanishes because of the Plucker relation of the ay .

Case 2. 5(Γ) is a pair of lines, Z0Z2 = 0, and the matrix Γ* has
the form (II') say. Now by 3.3

and from

β\ βl

CU4 e\
e2

we obtain coo = 0. This shows that again (detM*) € Qσ(T) If
has the form (II") we would get C22 = 0.
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Case 3. S(Γ) is a double line; this can be treated as case 2.

6.6. By the last proposition the morphism

has its image contained in the Poncelet quadric bundle

Q c FS2WW X Z FS2W

ϊ
C(G)

such that for the fibres over a point z we have the Poncelet bundle

QZCFS2W? χψS2Wz

of the plane FWZ, see 3.3. Again we have

6.6.1. PROPOSITION. The induced morphism φ

XS S//SL(2) —ψ—+ Q

1 " I
rss//SL(2) f C(G)

w an isomorphism.

Proof. Clearly the morphism factorizes through the good quotient.
The surjectivity can be shown directly by constructing M c Γ for a
pair of conies using the normal forms, or simply by remarking that it
must have a dense image and that Xss// SL(2) is projective, whereas
Q is irreducible.

The morphism is also injective. Since we know this already for
Yss// SL(2) -• C(G), we have to show injectivity in the fibres for fixed
σ(Γ). If Mi, M2 C Γ and (detΛff) = (det A/J), we can assume

with the same Γ*. When αY are the Pliicker coordinates of Av and
Cy the coefficients of detM*, the formulas of the proof of 6.5 show
that ajj = λajj in the different cases of S(Γ). But this proves that
the matrices A\, A2 span the same subspaces, i.e. M\ =
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Finally as in the previous cases Xss// SL(2) —• Q must be an iso-
morphism, since the quotient is integral and Q is normal.

6.7. By the general theory of good quotients there are open sets
Qs c Q and C(G)5 c C(G) such that their inverse images in the
parameter spaces are Xs and Ys respectively. (However Xs is not
mapped necessarily into Ys, nor Qs into C(G)S.) But we know
from Lemma 6.3.1 that Q\C(G)S c Qs, since the stable conies are the
regular ones in C(G). Therefore the semi-stable but non-stable points
can only lie over C(G) \ C(G)5, i.e. in the fibres over the degenerate
conies in G. It turns out that we even have:

6.7.1. THEOREM. The non-stable points of Q are exactly the singu-
lar points of Q.

The proof follows easily from the description of the singular points
(S, C v ) G Q in 3.12 on the one hand, and from the characterisation
of the semi-stable points (z, M, Γ) e X in 6.3.1 on the other hand.
However one has to take special care of those points (z, M, Γ) which
are stable without M, Γ being stable.

6.7.2. REMARK. The stable points (z, M, Γ) for which neither M
nor Γ are stable correspond exactly to those pairs (*S, C v ) which are
smooth points of Q but with both conies S and C v singular. The
corresponding sheaves in M(0, 2) are stable and will be treated in
10.4, 10.7, see also 10.5.

6.8. Points in Xss parametrising bundle monads. The projective
variety X has been constructed in such a way that it completes the
space of monads (D2) of bundles in 2 and simultaneously serves as
a parameter space of Q. We are going to identify the part of Xss

which consists of monads for bundles. Let Q° be the complement of
the 4 Weil divisors Qe, Qa, Qβ > Go i n Q a s defined in §4. Then
<2° consists entirely of pairs of regular conies and maps onto C°(G).
Let X° c Xs resp. Y° c Ys be the inverse images of Q° resp. C°(G)
in X resp. Y. We then have the diagram of SL(2)-quotients

X° • Q°

1 1
Y° > C°(G)
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6.8.1. LEMMA, (i) The open and dense set X° c Xss is the set of
monads of bundles in M(0, 2).

(ii) The open and dense set Y° c Yss is the set of right arrows of
such monads, and is isomorphic to G\{^2 ® V), see Remark 1.4.

Proof. If (Af, N) denotes a monad (D2) for a bundle, we have
N e G%(/2 ® V) and M c Γ = Ker(/ 2 ® Λ2 F -+ Ny ® Λ2 H The
pair of conies (5, C) associated to the bundle and thus to (M, TV)
had been described in 2.4, see also 1.3, as S = S(Γ) = G Π ΨW and
C = {detΛf* = 0} Π ΨW, where PJF = PWZ is the plane of S. Then
x = (z, M , Γ) is a point of X belonging to X°, since S and the
polar dual C v of C form by this description exactly the pair (5 , C v )
associated to x. If on the other hand x = (z, M ,Γ) e X° is given,
then y = (z, Γ) e Γ° defines a regular plane conic section 5(Γ) =
GΠFWZ. By the proof of 5.8.1 we find that there is an TV € G§(/°® V)
defining Γ as its kernel. (In fact Y° is the image of the imbedding
ε of 5.7.) Now the pair (M, N) is a bundle monad (D2) by 2.4.2,
since both conies S(Γ), Cy(M) are regular.

7. The universal kernel sheaf over Yss. By the construction of Y
we have got the following diagram of morphisms

(11)

Gf{/2 ® V)

Let N resp. T denote the tautological subbundles on the Grassman-
nians respectively. Let furthermore p and q denote the first and
second projection of P3 x Γ for any second space T. We define the
sheaves JV, si and %> as kernel, image and cokernel of the composed
homomorphism

which is derived from the imbedding Ω1 (1) c Vv ®̂ fp3 and the canori"-
ical epimorphism / 2 ® Vy ® ̂  —• Nv . Therefore we have the exact
sequence

(12) 0 -> ̂  -> / 2 ® p Ω^l) - ^ ήf*i/*Nv -^ g7 -^ 0.
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We can transform this sequence into the equivalent sequence (12') by
the same construction as in 5.2 (9), where A is the universal quotient
on G 2 ( / 2 ® F ) ,

(12') 0 -> JIT -> #V*AV -> / 2 ® p*^ 3 ( l ) -* ̂  -> 0.

If y G Γ s s , we denote by

ΛJ, S/y, ^y

the sheaves induced on the fibre P3 x {y} ~ P3 and call them the fibres
of the sheaves respectively.

7.1. PROPOSITION, (i) The sheaves sf and yV are flat over Yss.
(ii) q*jV{\) — γ*Ί ® /\4 F v /i locally free, and for a point y =

(z, Γ) e 7S S we /zαve Γ® Λ4 F v = ΓJsy(l).
(iii) Supp W is finite over the exceptional set £ c P , where E =

ι E0 = Gf(/2®V)\Gs

2(/2®V).

7.1.1. REMARK. One could do the same construction of JV and
si over Gf(/2 ® V). However in this case JV would not be flat.
The modification 7SS —• Gψ is necessary to obtain a flat sheaf, and

indeed our JV can be considered the flattening of the corresponding
sheaf over Gf. On the other hand the modification v was necessary
in order to extend the quadric bundle of Poncelet conies across the
boundary of the completion R, see 5.9.

Proof, (a) First we are going to show (iii). If N = v(y) we have an
exact sequence

with ^N — ψy and the

7.1.2. LEMMA, (α) N is stable iffWN = 0.
(β) If N EEO then g# is a skyscraper sheaf 4X or jίx © 4y or an

extension 0 —• 4X —• 85v —• ^x -> 0 where /x = @ j/n{x) on P3.

Proof, (α) It follows from the stability criterion 5.1.1 that N is
stable iff N Π (ξ ® V) = 0 for any ζ e / 2 . On the other hand ffN = 0
iff N Π {/2 ® z) = 0 for any z e V, see proof of Theorem 2.1 and
0.2. It is immediate to see that these two conditions are equivalent.

(β) If iV is only semi-stable it must be represented by a matrix
N*: / 2 -> / 2 ® V of the form

0 1 \x 0
or | A
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up to equivalence, with y £ Span(x, y'). Now it is easy to verify
that the cokernel of

(13) *2®Ωι{l)—^/2®d?^WN^0

is £x or /jfφ/,;, or an extension of 4X by itself, by using the equiv-
alent presentation

(130 ^ 6 ®& —^ / 2 ®^f(l) -+ gfr -• 0,

where ^ * v can be determined as the kernel of JV*V: / 2 <8> F v -> / 2 .
Now (iii) follows directly from this lemma.

(b) To prove (ii) we first remark that q*p*Ωι(2) = f\2 Vy ®<fγ* and

by the projection formula. Therefore we obtain the exact sequence

2

0 -> 0*/T( 1) -> / 2 Θ /\ F v (8) ^ r s -> F v (8) ι/*Nv.

On the other hand by the definition of v we have

Γ G Ker ί / 2 ® l\ V -> ΛΓV ® /\ F J if iV = i/(z, Γ),

and therefore, using Λ1' Vy - Λ

4

4"'

The quotient sheaf 3ί = q*Jf{\)ly*T ® /\4 Vw is supported on E,
since for N φ Eo the space Γ is the kernel. But 31 is also a subsheaf
of the quotient bundle / 2 <8> Λ2 ̂ v ® ̂ y-/?*T ® Λ4 ̂ v Since 7S S is
irreducible, & = 0.

(REMARK. If we knew flatness already then the base change homo-
morphism Γ ® /\4 F v —• Γ^J(l) would be an isomorphism already.
We are going to prove this directly, which then implies flatness.)

(c) LEMMA. For any point yeYss, Hι(Ψ3 x {7, **{y)jr{\)) = 0 for
sufficiently small neighborhoods U{y) c Γ s s {for the proof see (e)).
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4Using this lemma we find that Γ® /\ Vv --> ΓJ$(1) is onto by the
diagram

> 0

On the other hand from

we get the diagram

which induces the diagram on sections

This proves that Γ<g> /\4 ^ v —• Γ ^ ( l ) is an isomorphism.

(d) Proof of the flatness. We put S^ii^, y) = ^ ^ , <9yl*ι{y))
for any ^xy-module. From (12) we get the exact sequences, N =
i/(y), on P3

0

0
? y) 0,

0.

By the previous diagram ΓJ$(l) -> / 2 ® Γ Ω 1 (2) is injective, and hence
&ar\(sf(l), y) has no sections. But since 8^ is a sky-scraper sheaf,
also ^or\{s/{\)9 y) is a sky-scraper and hence must be zero. This
proves that s/ is flat over Yss. Now also Jiί must be flat over Yss

since p*Ωι(l) is a bundle.
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(e) Proof of Lemma (c). Since Suppg7 —• 7S S is finite we have
//'(P3 x U, &) = 0 for i > 0, and the same is true for any coherent
sheaf & with S u p p ^ c Suppg7. If E —• i 7 is a homomorphism of
vector bundles there is the Eagon-Northcott complex

> l\ E®S2Fy -> l\ E®Fy -> /\ £ -» £ ® / \ F -> F ® / \ F -> 0

which is exact wherever E —• i 7 is onto. We consider this complex in
the case #V*AV(-1) -• / 2 ® ̂ fP x y » , see (12 ;), which has ^ ( - 1 ) as
kernel.

Putting q<9{d) = /q®p*@Ψι{d) for the moment, the Eagon-Northcott
complex is locally over Y of the form

^ ^ ^ l) - ^ 2̂ f -^ ^ -* 0.

Let ^ = Kerα/, ^ = I m α / + i , % = ̂ }/^i, and let us write j

for i/ 7(P 3 x C/, &). Since the complex is exact away from
we have Suppg/ c Suppg" and W% = 0 for j > 0.

Since 7 / 4 ^ = 0 for any & and H3ffi(-3) = 0, we get the following
chain of vanishings.

= 0, H23T2(2) = H2^2(2) = 0,

= 0, HxJir{\) = HXZX{2) = 0.

By the same method we even get

Hi(F3xU,J'(d)) = 0 ϊovd>2-ί, / > 0.

To get the vanishing of the lemma we consider a local resolution

^ ^ - ^ m{y) -* 0

of the maximal ideal on U c y s s and put ^ = Ker /?,. We obtain
the exact sequence

• 0

where the ^J are ̂ ά-χ{jV{\), JZj-i). Since ^ is locally free outside
Suppf, Supp^ί c Supp^ and again H-iJ^ = 0. As in the previous
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part we get from HιJV{\) = 0 the desired vanishing

Hι(Ψ3x t/,

This completes the proof of the proposition. By the same calculation
we even get

/y'"(P3 x U9^(y)Jr(d)) = 0 for i > 0, e > 3 - i.

Hence we have the

7.2. COROLLARY. For any y e Yss, Hιjry{d) = 0 for i > 0,

Proof. We have

(d)) H^id) > / / / + 1 ( P 3 x

7.3. Evaluation map and the sheaf %'. The isomorphism y*Γ®
4 κ v = 9*^(1) induces the homomorphism (called evaluation map)

0 -> ̂ *y*T ® /\ F v -^ ̂ r( l) -> ^(1) -> 0

with cokernel

7.3.1. LEMMA. ΓAe evaluation map is injective and & is flat over
7 S S .

Proof. If y e Y° CΪ G^(/ 2 ® F) = set of regular bundle epimor-
phism, then jVy is a bundle and ̂  is a line bundle on a quadric in
P3. This proves that r a n k ^ = 0. Since rankΓ = 4 = rank^f, the
kernel must have rank = 0 and thus is 0. To show that 9 is flat we
consider the sequence

0 -> ̂ 0 ^ ( 3 ? , y) -> Γ® Λ4 ^

where we have put 9*rXi&,y) = &r\(&,ffiy/m(y)), as in 7.1.2, (d).
Since ^ is injective, the sheaf ^ o r ! = 0. This proves flatness.
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7.4. The display of Jfy. If y e Yss we write ^ = &*orι(&, y).
Clearly S u p p ^ c S l ippy. From the defining sequence (12) we ob-
tain the exact diagram for the fibre sheaves on P 3 :

o

(14)

0

0 0

By the flatness of sf , χs/y(m) = 2χ<?(m) is constant and we obtain
^ = h°&y . In particular the skyscraper Jy φ 0 iff % Φ 0.

7.5. Zero sets of section of J$(l). We are now able to generalise
the results for kernels of bundle monads in Lemma 1.3 to any of the
sheaves jVy.

7.5.1. PROPOSITION. (1) Let y e Γ s s and s e ΠΛJ(l). If the zero
scheme Z(s) is neither empty nor a point, it is a line belonging to the
conic S{Γ).

(2) The conic S(Γ) is exactly the set of all zero lines of sections of

Proof. Since supports of Ήy, 9^ are 0-dimensional we find
%xtx{s>fy,0) = 0. It follows that s e Γ ^ ( l ) has the same zefo
scheme as a section of ΛJ(1) and as a section of / 2 ® Ω 2(2), since
/2®Ω}{\y ^ ^ ( l ) v is onto. Let now γ eT c /2® f\2V, γ =
(ξ, η)9 correspond to s. A point (z) e FV is a zero of s iff (ξ Λ z,
77 Λ z) = 0. If now Z ( J ) is not 0-dimensional, then ξ and ?7 must
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be linearly dependent and by the definition of the conic S(Γ) in 4.2
define a point of S(T). Conversely any point of S(T) comes from
some γ e Γ with a line as zero locus.

7.6. Conjugate conic S° and RXJV. If S e C(G) is a conic we
define the "conjugate" conic S° e C(G) as follows. If S = G n fW
we let S° = GΠfW1 where W1 is the orthogonal of W with respect
to the quadratic form of G. Then S is regular iff S° is regular. If S
is a double line then also S° is a double line with the same reduced
line but with a different plane. If however S c FW c G we define
S° = S. It can be shown that this map S •-• S° is an involutive
morphism of C(G).

REMARK. Γ -> Γ° can be defined by continuity.

We are now going to generalise Proposition 1.5, (ii) to any kernel
sheaf of our construction:

7.6.1. PROPOSITION. Let y e Yss and S = S(Γ). Then S° =
Suppi? 1 ^, = Suppi?1^; as reduced schemes.

Proof. Since it seems complicated to show that the family R\JVy

and their supports form a flat family, we proceed to calculate Rι<§y

in the different cases of S(Γ), which also gives a beautiful insight into
the structure of those sheaves.

Case 1. ye Y° and defines a regular conic S(Γ) e C°(G) was
treated in 1.5.

Case 2. y defines a regular conic S(Γ) c ΨWZG in a β-plane. Since
the entries of Γ are decomposed we can choose a basis eo, e\, eι e Wz

s.t. Γ is represented by the matrix

Γ* = e0 ex

-e2 eo_
^ 0 2 .

where e\j = βil\βj , and then Nv is represented by the matrix iVv* in
the above form, see (10) in 5.8. By 0.3 the homomorphism induced
is surjective, i.e. 8J, = 0 and we have the exact sequence
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If we apply R' we get, see 0.4,

^2 o , A>V

We can now calculate this homomoφhism as follows. Let py be
dual to βij, i.e. the homogeneous Plϋcker-coordinates of Ff\2 V, and
let Gij = {pij Φ 0} . If x = X) Xjβi defines the homomorphism Q v —>

@Q and if Qv\Gjj ~ / 2 Θ <9Q is trivialised, this homomorphism can
be expressed by the matrix

1 ~ ΊΓlJ
IJ

This follows immediately if we choose a basis of (V/U)v, the fibre
of <2V at U G G/7, where pμv are the Plϋcker coordinates of U, and
k, / are complementary to /, 7 . If we choose for example G01, we
get the homomorphism

'Poΐ

The Fitting ideal of RιJ/Λ

y\Goι therefore is generated by
P12 ~~Pθ2 which is the ideal of the conic S(Γ) parametrised by s2eo\ +
ste\2 + t2βo2 - Since S = S° here, this settles Case 2.

Case 3. y defines a regular conic S(Γ) c VWZ c G in an α-plane.
Again upon choosing a basis of V we can assume that Γ, JVV are
represented by the matrices

Pn
Pn
- 1

. 0

-P02

-Pθ3

Pn
Pn .

Γ* =

^ 0 3 .

In this case

(15)

= /2 ® Z where Z is the kernel in
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and Λy is the kernel in

(16) O-+Λy -*/2®& -+/2®sέe0 ->0

where we use that here ^ = /2 ® 4e .

To proceed further we have to digress into computations for the
sheaf Z. If we write x for e0

 a n d apply the same transformation as
in 5.2 (9), we find that Z is the first syzygy of /&(x)(l), i.e. we have
exact sequences

0 -> JT -> ( K / x ) v ® ̂  -+ Λf (1) -^ 0,
(17) 3 2

0 -> /\{V/xY ®^(-2) -^ /\(V/x)w Θ^(-l) -^5- -• 0.

From (17) we get ΓJT(l) = /\2(V/x)w and that

2

Hence if £ e f\2{V/x) induces 5* —• / x , the same element gives the

induced homomorphism RSΓ(l) —• / . Moreover, if we apply R° we

get

J ^ Rθ/f

where Px = P(V/x) is the α-plane of x and <̂  is identified with an
element of (V/x)y = f\2(V/x).

Now we are able to calculate RxjVy in Case 3. First we determine
the homomorphism in (16) by the induced sequence

0 •

o > / 4 ® A 4 ^ V — T
Γ*



314 M. S. NARASIMHAN AND G. TRAUTMANN

It follows that A is the matrix

e\2

Passing now to

A =

we get the diagram

(-1)

Now under /\2(V/eo) ~ (V/eo)v we have e\2
?23 <-+ e\ and hence

But this is exactly the equation of the conic S(Γ) in the α-plane
Peo = V(V/e0) = r(eOι, e03, ^02) which is given by s2e0ϊ +steO3+t2eO2

Since here also 5 = S°, this proves Case 3.

Case 4. y defines a pair of lines 5(Γ). We assume that S(Γ) is a
plane section as in (D), 0.4, since the other situations are only special
cases of this. If S is the union of the two lines e, / which define
the pencil of lines in E through p, F through q respectively, then
S° consists of the lines βQ, fo which describe the pencil of lines in
E through q, F through p, respectively.

Let &y be the quotient of JTy s.t.
It will be shown in 10.2 that

= EuF and
is an extension

0 0
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where ^F(P) C (?F is the ideal sheaf of p in the plane F. Choosing
two generating sections of ^F{P) we obtain the resolution

(18) 0 -> &F(-3) • / 2 ® ̂ F ( - 2 ) -* ^F(p)(-1) -* 0.
{a9b)

Since Rι#(-m - 2) = S 2 S ® /\2 S, where 5 is the tautological
subbundle on G, it is easy to derive that i?1^Jp(~m - 2) is the re-
striction of Rι&(-m - 2) to the /?-plane Pp of all lines in F, and
that the homomorphism ^ F ( - 3 ) —• ^F(—2) becomes contraction with
a: S® f\2S\PF -> Λ 2 ^ I ^ F . Hence from (18) we get the sequence

(19) ® P F ( )

This shows that the support of i?1/^ jF(p)(~l) is the line /° and that
the homomorphism (a, b) must be injective. Indeed Rx/κF{p){-\) =
^ o , since S\Pp ^ Ω]> (1) and (19) can be transformed into]>

as in 5.2 (9), where a is the equation of f° c PF
Similarly we obtain i?1/^£:(g)(~l) = ^ o .
Now we consider the resolution of Φ which can be constructed

from the resolution of the ends.

If we apply Rι we find that the sequence

0 -> Rι**E(q)(-l) -* Rλ&y -+ RX™F(P){-1) -> 0

is exact because the left-hand side of (19) is injective. This proves
that Rι&y is an extension of &fo by &e*, and that S u p p i ? 1 ^ = S°.
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8. The universal sheaf & over Xss. Recall that in 6.3 we have
defined X to be the flag subvariety

of all triples (z,M,Γ) satisfying (z, Γ) € Y and M c Γ c / 2 ® Wz

Let
Y

G2{/®/\V) G4(sf®/\V)
be the projections in M, T the tautological subbundles respectively.
By the definition of X we get the exact sequence

0 -> μ*M -> y*T -> B -• 0

on X where B is defined as the quotient bundle. As before we denote
by p, resp. q, the first and second projection of P3 x X s s , and we
denote (id xπ)*yΓ again by JV, so that we have JVX = Λi(jc) by abuse
of notation and similarly for &. Since we had the inclusion q*y$T ̂ +
^Γ(l) we obtain the exact diagram (up to the factor ®Λ4 ^ v in the
top row)

0 0

0 • q*μ*M • q*γ*Ύ • q*B • 0

0 »• q*μ*M > yΓ(l) • ^ " ( 1 ) • 0 ,

0 0

in which y is defined as cokernel. Since B is a bundle and & is
flat we conclude that also y is flat over Xss. Thus for any point
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x = (z, M, Γ) we have the diagram (up to <8>/\4Vy)

0 0

I i
0 > M%@ > Y®@ > (Γ/M)®<f > 0

II 1 1
(21) 0 > M®@ > jVy{\) > ^ ( 1 ) > 0

1

0 0

on P3. We also recall that we have a monad display generalising (D2)
of §2:

0 0

I 1
0 y M<g>Ω3(3) • jrx • 9 χ »• 0

I 1 i
(22) 0 —7-* ¥ ® Ω 3 ( 3 ) > I2®Ωι(l) »• Jtx > 0

1 1
A

I
0 0

where J?X is defined as the cokernel and srfy comes with the definition
of JVy, see 7.4.

8.1. PROPOSITION. For any x e Xss the sheaf 9χ is semi-stable of
rank 2 with Chern classes C\ = 0, Cι = 2, £3 = 0 on P3.
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Therefore the family y defines a morphism of X s s into the Maru-
yama scheme which will be discussed in 8.3.

Proof. We only prove here that &χ is torsionfree with the Chern
classes indicated. Semi-stability will follow from the geometric de-
scription of the sheaves in §§9 and 10.

It is enough to prove that Jΐ^ is torsionfree by diagram (22). Since
depth jf(x) > 2 everywhere, it is enough to show that Jί is locally
free outside a curve, see f.e. [Si-Tr]. If M* is a matrix representing
M, and the homomorphism of the fibre over (JC) G fV,

is degenerate, i.e. has rank < 2, then for any y e V also the matrix
M*ΛxΛy has determinant zero and therefore vanishes on the α-plane
P(x). If now M* is degenerate on a surface, its det M* would be
identically zero on the Grassmannian, which contradicts semi-stability
of M, see Proposition 6.1.1. This proves that &x is torsionfree. The
calculation of rank and Chern classes follows immediately from the
diagrams.

8.2. Cohomology of &χ. The cohomology dimensions hιJ^(d),
hι^χ(d) can be summarised in the following tables.

d

> 2

1

0

- 1

- 2

- 3

< - 4

h° hl

*

4

2

2

t

t

t

h2 h3

t

t

t

d

> 2

1

0

_ γ

-2

- 3

< - 4

*

2

2

2

t

t

t

h2 h3

t

t + 2

* *

for

Here t = h°^y - h% < 2, see 7.1.2.

for

Proof. We fix x and y and omit the index. It was shown in Corol-

lary 7.2 that tiJT{d) = 0 for / > 0 and d>2-i.
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Since HιjV{d) — HιSF{d) for / > 0 and d > - 2 , the same is
true for &. Next we show that also 0 = h3yT(d) = h3^(d) for
d = - 2 , - 3 , which settles the case h3: From the display (14) of
Jfy = JV in 7.4 we obtain easily 0 = H2sf(d) = H3jV{d) for these
d.

Next we state that h2jV(d) — t for d < -2, which also follows
from the same display by h°& = hιsf{d) = h2Jf{d).

The case h2JV{-\) = 0 is more subtle. To obtain this we note that
h2Jf(-\) = /z2JΓ(-l) and that for Jf we can replace the row of Jf
in (14), 7.4 by the row

R

where the matrix R is the kernel of

see (9) in the case of a plane. Now it is easy to see that in the few cases
of degenerate iV*v the induced homomorphism / 2 <g> T@ —> Π f ( - l )
is onto which implies / / 2 ^ ( - l ) = Hι Im(i?)(-1) = 0. By this the
case h2jy(d) is settled for all d.

For d > -2 we also have H2Jlf{d) = H2^{d), and for d = - 3
the exact sequence

0 —> H2JV{-y) —• H29r(-3) —> M ® H3<?(—3) ~> 0,

and hence Λ 2 ^(-3) = 2 + ί.
Finally Λ ^ ( - l ) = Λ ^ - l ) = 2 and Λ1^* = Λ 1 ^ = 2 follows

from Riemann-Roch and h°J^ = h0^ = 0. Of course Λ°^(l) = 4
and Λ°^(l) = 2 by our earlier result.

8.3. Morphism Q —-> Af(0, 2). Let Aί(2; 0 , 2 , 0 ) be the Maru-

yama scheme of all semi-stable coherent rank 2 sheaves on P3 with
Chern classes c\ = 0, C2 = 2, C3 = 0 which contains M(0, 2) as
an open part. Let M (0, 2) be its closure. The family ^ , X G X s s ,
provides us with a morphism Xss —> M(2; 0 , 2 , 0 ) . Since by our
construction 9^ = 9^, if O(x) = O( c'), this morphism is SL(2)-
equivariant and factors through the good quotient Q — Xss// SL(2).
By the description of Af(0, 2) in 2.4.2 the open set Q \ Qo U βα U
β^ U β^, see 4, maps isomorphically onto M(0, 2). Therefore we

have a surjective birational morphism Q —• M(0, 2). We are going
φ

to investigate how far it is from being an isomorphism.
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Let Q -ϊ * C(G) be the projection of the quadric bundle and let

Σ'o C Σ Q C C(G) be the subvarieties of all double lines, resp. of all
singular conies. We write

By 4.2 this is 2-dimensional over Σ'o and indeed a P2-bundle.

8.4. PROPOSITION. (1) β \ Qexc —• Af(0, 2) is injective.
φ_

(2) The fibres of Qexc —> Af(0, 2) are in the Pi 's of double struc-
φ

tures of the conies in Σ'o.

Proof, (a) The injectivity on Q\QQXC will follow when we prove that
the pair (S, C v ) of conies given by x e Xss is determined by the class
[&c] through S u p p i ? 1 ^ and S u p p Λ ^ ί - l ) . Since RxJfy = Rl^x

the reduced conic S is already determined by S° = S u p p i ? 1 ^ , see
7.6.

(b) If x = (z, M, Γ) e Xss denote W=WZy ^ = ̂ x, S = S(Γ),
and C v = C V ( M ) . We consider the diagram

0 > ^ x > Λ 2 V • W > 0

I? II II?

o ( 2

where the vertical arrow in the middle is the quadratic form of the
Grassmannian, which identifies the orthogonal W1- with (/\2 V/W)y ,
and provides an isomorphism of the cokernel W with Wy . If we
take any splitting of the first sequence we get a projection

r-L C P / \ F .

(c) From diagram (22) we get the exact sequence

0 -> Λ°Λf (-1) ^ / 2 ® ̂ b(- l) ^ ^ ^

where M* is a matrix representing M , which also is a homomorphism
on the Grassmannian by /2 <g> Λ4 Vy ® f\2 U -f / 2 for ί / e G 2 F ,
and which we also denote by M*. It follows that RQJί(—\) = 0 and

- l ) = {detM* = 0}.
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Moreover from the display (14) we obtain that i?°j/(-l) =
Rιs/{-\) = R0^, and from (22) the exact sequence

0 -+ R0^ -+ Rι^(-l) -» RxJ?(-\) -» R°& -> 0.

Since Supp^ = Suppg?, also Suppi? 0^ = SuppΛ°g\ and the se-
quences show that

/ = Suppi?^(-1) = SuppRιjr(-l) = {detΛΓ = 0}.

REMARK. M* is determined by R}Jΐ(-\) through /2 -» /2®Γ^G(1)
up to equivalence.

(d) LEMMA. There is a unique quadric hypersurface 7 c Ψ f\2 V
such that J = G Π / and J is singular along S° c J.

Proof. Let / be the equation of any quadric hypersurface / with
J = GO J and let q be the equation of G. Since S° is contained
in the singular locus Sing(/) (because S° c ΨW1 n G c / and M*
vanishes on ΨW1), for any /? e 5° there is a unique λ(p) G / such
that

for all derivatives with respect to the Plϋcker coordinates of Ϋ f\2 V.
Because G is regular, λ is a regular function on S° and hence con-
stant. Then / = {/ - λq = 0} is the unique hypersurface of the
lemma.

Since however {det M* = 0} has the properties of / in the lemma,
J = {detM* = 0} . On the other hand the conic Cy{M) in ΨWy has
exactly the same equation, see 6.5. If ΨWy c F/\2 V by some splitting
in the diagram of (b), we obtain

c v = ψwy n 7.

Therefore the injectivity of φ on Q \ Qexc will be proved if the plane
ΨW or ΨWL can be determined by &.

(e) If we consider Q \ π'^Σ^) clearly ΨW is determined by S° =
Suppi? 1^, since each S and S° is a pair of distinct lines. In this case
the injectivity follows if we show that Suppi? 1^ and Suppi?^(-1)
are invariants of the class [&"\ e M(0, 2). If & is stable, there
is nothing to prove. If & is semi-stable and non-stable then the pair
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(S, C v) is semi-stable, see 3.12, 10.5 with S and C v both degenerate.
It is shown in 10.5 that in this case ^ is an extension of the type

0 0,

where Jίχjq > ^KUP a r e ideal sheaves of a line and a point as indicated
in the figure, which is determined by (S, C v ) .

(If q E L then ^Luq is the ideal sheaf of the line L with a multiple
structure in # with tangent vector in the plane E, similarly for KUp .)
It follows first from 7.6.1, Case 4, that, if we consider the sheaf yV,
Suppi? 1^ is independent of the extension class; hence the same is
true for Rιf = Rljr. Second we have J ^ u ^ - l ) c J^(- l ) c ^ ( - l )
and hence R°^LUq(-l) = 0. Therefore from the extension sequence
of & we also obtain the short exact sequence

0 - l U ^ υ
which shows that the support of i ? 1 ^(- l ) is independent of the ex-
tension. This proves injectivity of φ\Q\ π ' ^

(f) Let us now consider the regular points over Σ'o, i.e.
π~1(Σ'o) \ Qexc Because these correspond to stable points x e Xss

with &x stable, see 1, the supports of i ? 1 ^ , R}^x{-\) are deter-
mined by [9^]. But here we have to show that ^x determines the
plane ΨW or FW1.

Now in the case of stable pairs (S, C v) with S a double line we
only have two cases of C v as indicated in the picture, see 3.12.

ΠPW 3PW IPW
case 2

In Case 1 ΨW1 = Sing7 since FJV1 c Sing/ and the latter is-
2-dimensional. Therefore the plane is determined by & in this case.

In Case 2, J has an equation a b = 0 such that one factor, a say,
is not in S° = S c W c /\2 V as a 2-space. This implies

S1 <£a±nb±
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Because here S1 and Sing/ both are 3-dimensional and contain

ΨW±=S±nSingJ.

This again proves that FW1 is determined by & 9 since S = S° and
/ are determined by &.

(g) Finally we consider the restriction ^|Qeχc If (5 , C v ) G Qexc

the conies are of the type

E>W E c ΠP.

with the singular point of C v being the point S e FWy and C v

determining two points L, K eS. The triple (S, L, K) determines a
pair of lines in P3 with a plane E and a point p eE. The sheaf ^ =
SFX coming from a point x defining (5 , C v ) again is an extension

0 0,

see (e), and \9f\ = [cAup θ J ^ U p ] in Λf(0, 2), where the double
structure of p in one of the lines shows in the direction of the plane
E. But now the class \&\ cannot remember the plane (whereas the
extension class of & can, as can be shown easily). Thus (S, C v ) —•

φ

\&\ forgets the plane FW, but \^\ determines the triple (S,L,K).
This shows that φ\QQχC blows down the Pi's of double structures of
the conies S e Σ'o, see 4.2, 3.9.

8.5. REMARK. An "Orbit-Lemma" is true for Q\QQXC: Let x, x' e
X s s with q(x), q(x') £ Qexc. Then ^ = Fχ, iff 0{x) = O(x').

9. Sheaves in the boundary with regular conic S. In this section we
start with the detailed geometric description of the sheaves represent-
ing boundary points of the moduli space. Since we fix a semi-stable
parameter point x = (z, M, Γ) in each case with y = (z, Γ) and
associated space N, we drop the indices and write

W=WZ.
and also

S = S(Γ), C V = C

In this section we assume that S is a regular conic, which could be
a regular plane section, or contained in a β- or α-plane, see 9.1, 9.2,
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9.3 respectively. It is convenient in this case to consider the Poncelet
conic C in the same plane ΨW of S, which is the polar dual of C v

w.r.t. S. Since the Poncelet condition for degenerate C just means
that one of the lines of C must be tangent to S, we have to consider
the following cases:

case 1 case 2

9.1. The sheaves in Qe\QaVQβUQo The pairs (S, C) in this
set are characterised by S to be a regular plane section and C to be
singular. In such a case the homomorphism defined by N is a regular
epimorphism as in 1.1, 1.2, and we have JV -=> X > g* = ̂  = 0, and

(—2 , 1), where Q here denotes the quadric defined by S.

9.1.1. PROPOSITION. The sheaves & in Case 2/3 are exactly those
which can be obtained by an "elementary transformation"

1PW

where W e Λf(0, 1) is an instanton bundle with cι%} = 1 (i.e. a
null-correlation bundle), I is a line in P3 and π is an epimorphism.
The data (%", /, π) are in 1:1 correspondence with the pairs (S, C) e
βΛ<2c*U{2/?U(k as follows

(i) g7' w ί/ze όwm//e m Af(0, 1) = PΛ 2 ^ \ ^ 2 ^ determined by
the pole a of the component C2 of C in the plane ΨW,

(ii) / is the tangent point of the component C\,
(iii) the epimorphism π corresponds (in a way described in the proof)

to the plane ΨW through a, I and intersecting G regularly in S.

Cases 2 and 3 can be distinguished by $"\l ~ 2fft and g"\l ~

COROLLARY 1. Each such SF is μ-stable, since %' is μ-stable.
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COROLLARY 2. Let B —• G x M(0, 1) fee the protective bundle of
homomorphisms %' -* ffχ{\) mod scalars for ( / , g " ) G G x M(0, 1)
and let B° be the open part of epimorphisms. Then the elementary
transformation gives us an isomorphism

B° *-+ Qe\C°(G)

onto the open part of the boundary component Qe defined by9Λ, Cases
2 and 3.

Proof, (a) Let SF be given. Since S is regular we can choose a basis
βi of V such that the space N can be presented by the matrix

see 1.1, 1.2, and such that / = eOι = eo Λ β\. Moreover since CV(M)
is a pair of lines, the matrix representing M must have the shape

a

such that M* Λ N*1 = 0. By our convention /\2 F ~ /\2 F v

 ? the conic
C has the equation I oa = 0 in P f F ~ PWV (duality given by G or
S). By this form of M* we obtain the exact diagram

0 0 0

0 • Ω 3(3) —1—+ Ωι(l) » ^ ' > 0

1 1 I
(23) 0 • /2<8>Ω3(3) • /2®Ωι(l) > Jt > 0

(ba)

1 I 1
0 > Ω 3 ( 3 ) •• Ω » ( l ) •• 2 " »• 0

I ' I 1
0 0 0

with cokernels y , ^f, i " respectively. On the other hand the monad
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(22) of & in 8. gives the mid row of the exact diagram

o o

i i

(24)
I 1
i I

o.

tfoker

I I

In this the composite 5F1 —• / 2 ® & is still injective, which follows
from the upper right-hand square of (23) and from

/2®Q}{\)

since / = e§\. This shows that (24) is exact. Since a is indecompos-
able, <§?' is a typical bundle of ^ ( 0 , 1) = PΛ 2 V \ G, see [Ha2]. It
remains to identify the cokernel. By the definition of &' —*• / 2 (8) &
we get the diagram

Ω3(3) Ωι(l)
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which shows that &oker = *f/(l). (In particular we have obtained the
two equivalent descriptions of &1 which is a sheaf of the boundary
of M(0, 1).)

(b) It is also easy to verify that the subspace W c /\2 V is isomor-

phic under Λ2 V - Λ2 ^ v to the kernel of the composed map

2

f\ F v = ΓΩ1(2) -> Γ r ( l ) -> Γ^/(l),

using the above matrices. This shows that the plane ΨW is determined
by π . Conversely we had just constructed π from /, <z and the plane.
Thus we have established (i), (ii), (iii) if & is given.

(c) Let now an elementary transformation be given. We can find
a monad for & by going backwards in the diagrams (23) and (24).
First we can determine /, a and the plane FW by π as in (b). Let
9F1 be defined as the kernel of / 2 ® & -+ <f/(l), and define Λf as the
pullback in diagram (24). Since &' and IP' have the resolutions as in
(23), we get the resolution of Jΐ by adding up. Then 0 -» ^ -^ Jΐ —•
/ 2 ® ̂  and the resolution of ^f give us a monad. To see that this
defines a pair (S, C) of the above type, we consider the composed
homomorphism

which must have the entries eo, e\ i n its first row because of / = e$\
and M* Λ iV*v = 0, and which must be an epimorphism. By 0.2 we
must have dim(^o, β\, v, w) = 4 or = 3 in a special configuration.
If dim = 3 it would follow that the entries /, a, b of M* are con-
tained in a /?-plane, see 7.6, Case 2, and <z would be decomposable.
Therefore N* defines a regular conic S and M*, by its shape, a
degenerate conic C as in Cases 2 or 3.

Case 4. If the conic C consists of two tangents we get a degenerate
case of the elementary transformation by replacing I?' by a sheaf of
the type &1 considered above. Thus a sheaf & in 9.1, Case 4, is
given as the kernel of an epimorphism π

0 -+ f -+ 20 -i> (9ι (1) θ ffi (1) ^ 0,
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where π corresponds to the plane ΨW through the axis lχ, /2. The
proof is a special case of the one just made. Note that by this we
extend the morphism of elementary transformation to Λf(0, 1). If
we compactify this along the direction of the epimorphisms we would
leave the set of regular conies S.

ΊPW

Note that also in this case & is stable, since it is easy to show
that any sheaf &' as above is stable (but not //-stable any more): If
&Q c &' is a sub-sheaf of rank 1 with ^ ' / ^ o ' torsionfree, we can
assume c\&$ = 0 and hence 5ζ' c ff an ideal sheaf. The diagram

0 0 0

0

0

0

0 0

I

I
ffoker

i
0

0

shows that Supp(ffoker) is at most O-dimensional if Z ψ 0 , and
that then χ ^ ' ( m ) < \χ9~'{m) for large m.

Case 5. Again this is a degeneration of Case 3 or Case 4. We obtain
here an exact sequence
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where ^ v v = Iff as in the previous case and where & is supported
on L as an ^-module extension

0 —> ^/(l) —••$?-> ̂ /(l) —̂  0.

Here both the extension and the epimorphism depend on the plane
ΨW, but we omit further details. Again SF is stable.

ΠPW

9.2. The sheaves in Qβ\Qo These are the sheaves corresponding
to a pair (S, C v ) where S is a regular conic in a /?-plane. Since
ΨW is a /?-plane, we have W = /\2 U where PC/ C P F is a plane,
which can be considered now the dual of ΨW by f\2 Uy ~ U. The
dual conic S v c ΨU can now be considered as the base conic for the
Poncelet property and we can also consider Cy{M) as a conic in ΨU
given by the equation

detΛP = 0 inPi7 5

where the entries of M* are elements of W = /\2 U ~ Uy . Moreover
we choose a basis e,- of F such that

and such that the matrices Γ*, N* representing the spaces Γ, N are
given by

m 0

Γ* =

as in Case 2 of 7.6.

en

.0 e02.

P=ΠPUcI>.
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9.2.1. PROPOSITION. (1) The sheaves & in Qβ\Qo are elementary
transformations of the type

where 91 is supported by the conic C v c P c P3 and is the cokernel
ofM*:

0 -+ / 2 0 Ω2

P(2) — ^ / 2 ® 0P — 31 -> 0,
M*

where M* is the matrix of M with entries in W = f\2 U [β is a
Cohen-Macaulay module on C v ) .

(2) The sheaf & is a stable rank-2 bundle on P with C\&{\) = 0,
= 2 and is the kernel of N*v,

0 -^ 9 -+ / 2 (g) Ω),(i) _?£

/ίΛ entries of N* in U). Its jumping lines are the points of S, which
at the same time are the zero loci of sections of

REMARK. These sheaves are well understood, see [Ba].
(3) The Poncelet relation of Sy with C v in P has its expression

in the exact sequence

0 -> ̂ (-1) -+ (Γ/M) ® Ω2P(2) -+ & -+ 0

obtained in (25) of the proof.
(4) The restriction of 5T to P splits into

(5) Each such & is stable.

Proof, (a) We first remark that the homomorphism Ω3(3) —• Ω1 (1)
a

defined by ae /\2 U c /\2 V splits into -

Ω2

P(2) >ffip®a\>(\)
(«,0)

when restricted to the plane P = PC/, see 0.1.
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(b) Let us consider now the diagram

0 0

I i
r\ j? 4 fry. C\ 3 / \ \ A/" </£? Γ\

II 1 I
Γ*

0 0

which is defined by Γ*. From this it can be proved first that z^ =
0, i.e. & is an ^-module (ZQ, ..., z$ € Vy are the dual coordi-
nates). If we restrict this diagram to P we obtain the splitting as
indicated in the diagram, where we identify S?~or\{&, <?p) = &(—l) =

JV\P

It follows that
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and that we obtain two different presentations of the sheaf & which
are equivalent by using a transformation based on Ω]>(1) c Uy <g><fp
as in (9) of 5.2.

(c) Let now the sheaf 31 be defined as the cokernel of M* as
homomorphism on P and as in the proposition. Then we obtain the
exact diagram

(25)

M <g> Ω p (

J
(Γ/M) <g> Ωp(2) = z = (Γ/M) Θ Ω*

I

and in particular the sequence (3) of the proposition.
(d) If we restrict display (22) of <F to P we obtain

M®Ωp{2)
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thereby obtaining the splitting

(e) Finally we consider the diagram

0 0

I Z 3 α / / I Z3 !

0 • Γ/Λ/®Ω3(3) • ^ • 9 ^ 0

Since z$&(—l) = 0 the multiplication by Z3 lifts to a, and by the
splitting of the bottom row we obtain the exact diagram

0

Γ/MΘΩ3(2)

I
Γ/AfΘΩ3(2)

Altogether this proves (1), . . . , (4) of the proposition. For the proof
of stability we can take a subsheaf &1 c SF with &ΊSP' torsionfree,
with c\SF' = 0, r a n k ^ ' = 1, since 2 ^ is //-semi-stable. Now a
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diagram analogous to the one of 9.1, Case 4, shows that the Ψa/ίer is
O-dimensional and thus χSF'(m) < \χ^{m) for large m.

REMARK 1. The sequence (3) of the proposition describes the Pon-
celet situation in terms of bundles in the plane P, see [Ba] and also
[Tr2]. Since &xtl{&90) = ^ v ( l ) , S?v = &(2), and ^xt^{3l,(9) =

(dual of 31 on its support), we also obtain the exact sequence

0 -> (Γ/M) v ®0p^> &{2) -> ̂ v ( l ) -> 0,

where Γ v = Π^ (2). This shows that we get all Poncelet curves if we
vary the 2-dimensional subspaces of Γ f (2).

REMARK 2. We can also investigate the epimorphisms /2 ® (9 —•

31 {X) -> 0 for a given conic C v in P as in 9.1. The result is that the
pencils c ΨT3l{X) = P3 describe the 4-dimensional family of regular
conies Sy c P to which C v is Poncelet related. Thus also in Case 9.2
the epimorphisms π correspond to the regular conies. Moreover the
elementary transformations investigated here also extend the ones of
9.1 to the case of β-planes.

Now we can describe the different situations of the conic C v .

Case 1: in which C v is regular. Then 31 = (9C^{X) is the line
bundle of degree 1 on C v .

Cases 2, 3: in which C v is a pair of lines. In this case the matrix
M* cannot be split and defines 31 as a nontrivial extension

0 — > @ L - + 31 —> O κ — > 0 ,

where L, K are the two lines of C v in the plane P.

Case 4: in which C v consists of a pair of tangents. Here 31 is the
direct sum ^ θ <9κ

Case 5: in which C v is a double tangent. Now 31 can be a non-
trivial extension again depending on M*, 0 — > ^ L — > ^ — • ^ —• 0.
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9.3. The sheaves in Qa\Qo These are the sheaves corresponding to
a pair (S, C v ) where S is regular in an α-plane and thus determines
a cone Q c P3. Any plane P = PJ7 in P3 not passing through the
vertex eo serves as a base of the cone which is isomorphic to the
α-plane ΨW, and we assume

The conic Q Π P can be identified with the given conic S. Now we
can choose a basis eo, . . . , £3 such that

= (eι,e2,e3) and Γ* =

0

0

see 7.6, Case 3. Then the equation of S in P is z | — zi Z3 = 0, where
the z ; denote the dual coordinates, and the matrix N* is necessarily
a direct product

As shown in 7.6, Case 3, we have in this case 8" =
2 times the skyscraper sheaf ke = #/*t(eo), and

where JΓ is the first syzygy of the ideal sheaf m(eo) (1), or equivalently
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We first investigate the sheaf 9, which of course by §7 is determined
by the cone Q alone. Let §? be the cokernel in:

0 0

1 1
0 > Γ ® Ω 3 ( 3 ) > Jf > 5? > 0

II I I
0 > Γ ® Ω 3 ( 3 ) > X > & > 0

I I

I I
0 0

9.3.0. PROPOSITION. 9 is the ideal sheaf JjQ c <9Q of any line

of the cone and & = ̂ (e^Jj^Q φ is a reflexive Cohen-Macaulay

module of the singularity e§).

Note that in this case, we have only 5?(2) c #(2) ~ %xt^{&, (9).

Proof. We have ΓJΓ(l) = /2®W c / 2 ® Λ 2 ^ and thus the diagram

0 0

0 • /2®ίf(-l) • /2®W®@ •• 3t{\) • 0,

0 > /2®<?(-l) > /2®<? • # ( 1 ) y 0
ψ

1 1
0 0
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in which φ becomes the matrix (_z| ~/2) by the entries of Γ* and

the canonical resolution of 5f as /2 ® Z . But such a φ is exactly

the resolution of an ideal J^ w with / = {zι = z 3 = 0}, say. It

follows that §?//&(eo)§? has dimension 2 and hence is isomorphic to

F. Therefore & ~

The different situations of C or C v (we also identify C with a
conic in the plane P ~ ΨW) can now be interpreted by the struc-
ture of the bidual sheaf ^ v v . The situation is similar to that in 9.1
except that all sheaves are singular in the vertex and for elementary
transformations we have to consider lines on the cone.

9.3.1. PROPOSITION. Let SF correspond to a Poncelet pair (S, C v )
with S a regular a-conic. Then for 0 -> & -> ^ v v -+ 31 -> 0, we
have,

(i) ^ v v is locally free outside the vertex eo and C\^ww = 0.

(ii) ^ v v = i*π*(^vv\P), where P3 ^ p 3 \ {e0} -^ P, and thus
i

^ v v is determined by the 2-bundle y v v | P with Chern classes cx = 0,
0 < c2 < 2.

(iii)

{ 2 //C w regular,

1 J / C Z5 α tangent and a secant,

0 J / C is a pair of tangents.

(iv) & is stable in each of the different cases of C, which will be
described below.

Proof, (a) The sheaf Z is also the kernel of
and 2T\P = Ω)>(1). It follows immediately that

Moreover, the homomorphism

can be described by

I
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and the dual of any homomorphism Ω3(3) • Z c Ω*(l) is of
e0Λa

this form. ^
(b) Let now & denote the cokernel of

—>/2Θ^-^^-^0

where as before M* represents M. Then from 0 -* ̂ " -> ̂  —•

y —• 0 we get & = ̂ v . In our case moreover M* = eo ΛA for
some / 2 —• / 2 ® t/ and thus we have the diagram

A

( 2 6 )

0

which, after restriction to P, gives the exact sequence

(26P) 0 -* ^ V | P - , / 2 ® Ω]>(2) -^> / 2 ® ̂ p(l) — Φ -> 0.

(c) This proves the proposition: Since ^ V | P is reflexive on P , it
is locally free. We must have

by (a) and diagram (26). Hence 9~y is locally free on
Taking the dual of this identity yields (i), (ii). From (26p) we get
Ci(^v\P) = 0, c 2 ( ^ v | P ) = 2 - /z°Φ, where we note that Φ must
have 0-dimensional support. This proves (iii), since it is shown below
that h°Φ = 0, 1, 2 in the different cases of C .

We are going now to describe ^ " v v —• 31 in the different cases
of C. Note first that the conic C v c Pί/V ^ PWy has the equa-
tion det^ = 0, where as above M* = eo Λ A with entries in CΛ,
This follows from our convention /\2 V ~ /\2 F v and Λ2 W — ^ v ^
^ = ̂ 0 Λ (7.

Case 1: in which C v is regular. In this case the entries of M* or
A span the space W or U and the sheaf ^# in display (22) must be
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locally free except at eo. Since Supp^ = {eo} > it follows from the
same display that also & is locally free on P3\{e0} Moreover, if we
consider (26P) in this case, we see by the form of the matrix A that
Φ = 0 and hence ^V\P and &\P are bundles with Chern-classes
c\ = 0, Cι = 2. Its jumping lines are exactly the points of C v as can
be calculated from its representing matrix A. Since C v is the polar
dual of C w.r.t. S, the jumping lines are the polars of points of C
w.r.t S.

There is a unique subspace L v c T{9Γ\P)(\) s.t.

(27) 0 - L v

the cokernel of the evaluating homomorphism is
sequence is nothing but the restriction of the sequence

- l ) , and this

0 -+ (Γ/M) <g>^(-l) -> ̂  ^ ^ -* 0.

If we start with (27) and apply /*π* we obtain the diagram

0 0

1 1
0 0

1 I
v v »• #

I 1

I 1
0 0
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Therefore 31 = Γ in thisin which 9* is the pullback of & c
case.

REMARK. If we pursue the point of view of elementary transforma-
tions ^ v v —• SΓ, the sheaves ^ v v and F can be defined by C c P

h

and eo, and then the epimorphism h corresponds to a conic S which
is regular and in Poncelet relation with C o r C v .

Stability. In Case 1 the sheaf ^ v v has no non-zero section and thus
//-stable, hence also & is //-stable.

Cases 2/3: in which C is a pair of lines, a tangent and a secant of
S. Let L be the line joining the tangent point with the vertex and K
be the line joining the pole of the secant with the vertex. In this case
the sheaf & can be described as follows:

(a) 31 is the structure sheaf

of the line L with a multiple point in
sequence

and we have the exact

0.

(b) The restriction ^ V V | P is the unique 2-bundle on P with
C2(^rWW\P) = 1 such that its jumping lines are the lines in P through
the pole a. (Such bundles are never stable, since h°(3ryy\P) = 1, see
[Ba].)
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(c) There is a unique subspace V c Γ(^"V V(1)|P) s.t. the evalua-
tion map yields the sequence

0 -• L v ® * H - 1 ) -> ̂ V V | P ^ ^ 5 -+ 0.

Pulling this up via i*π* we get the pullback diagram

0 0

I 1
0 > Lv<g>^(-1) > & > £" > #

II I I
0 • V' ®@{-\) v « r v v > <?Q > 0 .

I i

1
0 0

(d) 3Γ is stable (although ^ v v is not semi-stable).

Proof. We first investigate the sheaf S? which was introduced as
the cokernel of M ® Ω3(3) -* / 2 ® ̂ . Since now M* = e0 A A with
(up to equivalence)

and since we get the exact sequences

e0M
0-+Ω 3 (3)

the sheaf & must be an extension of the kind
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Taking the bidual gives us a diagram

0 0

o

(28) 0 > 0 > ̂ v v > JFK > 0 ,

1 I

0 0

as can be easily checked. Restricting the evaluating sequence
(Γ/Af) ® 0(1) -* & -» % to P we obtain the diagram

0 0

(29) 0

0 0

where S? is defined as cokernel. Now J? is supported on S = QπP
and an ^--module, since &\P = ^s(-l) and 0^ ®@p = //. Since
by the middle row its depth is = 1, it is a line bundle on S. But
h°£? = 1, indeed Λ°(^VV |P) = 1. Therefore & = &s > Now the
proposition can be derived:

It is clear that d ( ^ v v | P ) = 0, c 2 ( ^ v v | P ) = 1 by (29) and that
= 0. The jumping lines are exactly those through a, which
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follows from 0 -> & -» ^ v v -> J ^ -> 0 by restricting to P and by
investigating the result of ®&L> for a line L' c P. Finally (c) follows
by pulling back the middle row of (29), which also gives the definition
of 3ί . Since <9L = <%/# we get (a).

To prove the stability of & we remark that for any nonzero section
of ^ * v v the composed homomorphism must be onto 31:

If now SF1 c & is a rank-1 subsheaf with ^ j ^ = <F" torsionfree,
we can assume that C\^ — 0. Then we get a diagram

0 0 0

1 1

1 1 I

I i 1
0 0 0

which is exact, because φ" is nonzero and injective, and because &"
is torsionfree. Since ψ must be surjective, we conclude that &" = 0
and 9T" = J"κ .

Now

_ 2

This shows that χ&\m) <
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Case 4: in which C is a pair of tangents. In this case the bidual
v v = 7/f, too, and we have the diagram

(30)

o o

- i )

- i )

in which 31 is defined by the right-hand column, and thus determined
by the cone. It fits into the diagram

0 0

0 0

(31) 0 0,

0 0

which is derived in the proof. Also in this case & is stable.

Proof. Because C consists of two tangents we can choose the basis
of U so that /i = e\, h = e-i. By the shape of the matrix Γ* above
we find that the only possibility of M* = e§l\A is the direct sum

A = 0 Ί
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It follows from the previous proof that 5F = Jχι θ Jί2 and therefore

grMM = j^vv = iff Furthermore the diagram (29) now becomes

0 0

I 1
0 > 2^>(-l) > &\P > &\p > 0

I I 1
(29') 0 > 2<fP(-l) • Ί0p • & > 0 ,

I I
4i θ 4i = = 4i θ //

*1 2̂ *1 (2

1 I
0 0

and we conclude that Sf = ^-(1) as in Cases 2/3. Since
^ | P = ̂ , ( _ i ) ? the right-hand column becomes the top row of the
next diagram

0 —

(32) 0 —

0 —

0

ί
— 4τ(-l) —

I
—» 2(fP(-l)

\5
1 Φ

— 2^(-2) —

ί
0

0

ί

I
-> 2&p —

ί'
., 2^>(-l) —

ί
0

0

ί
—> 4e Θ 4e —

i

t

— . 2^(-l) —

ί
0

—* 0

—̂  o,

—* 0
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where Z3 is the equation of the line ^ c P through β\, β2. The
homomorphism ^ can be given (up to equivalence) by

φ =

s.t. det#? = z\ - z\Zι is the equation of the conic S (see definition

of 9). From this we see that

0 - z 2

-Z! 0

If we apply Uπ* to the last diagram (32) we obtain

0 0 0

0

(33) 0 0,

0 0 0
where now E is the plane Z3 = 0, spanned by the two lines L\ U
L2 = QnE. The top row of (33) gives us the diagram (31) with
the definition of £%. Diagram (30) follows from diagram (29') by
pulling backjda Uπ* again, which first gives the corresponding dia-
gram with & = itπ*(^\P) and §?, and then imbedding the sequence
0 -• 2<f(-1) -* 9" -»• & -> 0 into its first row.
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The proof of stability of & is reduced to that of Cases 2 and 3 as
follows: We have the two diagrams

0 0

1 i
0 > f > 0Q y 0Lχ y 0

ί
0 y f y f (1) • <9Lι @@u y 0

1 1
0 0

0 0

I I
0 y & y @Q • &\ y 0

II I I
0 y $ y 3?{\) y M > 0

I 1

i I
0 0

where we use in the first one, that 9 = J"L 9 Q , and where 31 \ in
the second is the sheaf 31 of the Case 2/3 with L = L\. From the
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right-hand column of the second we obtain the diagram

0

0 0

I 1
9[ > ^ i

1 I
l(f y M

i 1

0

0

1 I
0 0

in which &[ is the pullback and must be isomorphic to ^ Θ J"L2 . Now
we can use the top row to proceed as in Cases 2/3 to prove stability
of &, because any non-zero section of &[ factorises through <9Q :

1\ l

Case 5: in which C is a double tangent. This is a special case of

e o

T£ c

Case 4 and we obtain by the same method that ^ v v = Iff and the
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diagrams

0 0

I 1
0 »• 9 > f > 9~ • 0

0

I I
0 0

where now ^ denotes the double structure of L in Q. Again by the
same method the stability of & can be proved.

10. Sheaves in the boundary with singular S. If the conic S is
degenerate the sheaves JT and & are of completely different nature.
The sheaf Jί is always semi-stable and S only determines the stable
gradation of JV. We are going to describe this gradation first. As in
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§9 we drop the indices of the sheaves and conies for a given point

If & is any coherent sheaf on ΨV we write as usual
χ^'(d)lτk3Γ. If & is semi-stable there is a filtration 0 = 9^ c
&[ C ••• C 9n = & by coherent subsheaves, such that &ί/&j-\ is
stable for 1 < / < n and ^ ( ^ ) = ^ ( ^ ) , [Ma2]. The direct sum
G r ( ^ ) = 0 ^ / ^ - 1 is unique up to isomorphisms and called the sta-
ble gradation. In order to describe the stable gradation of the JT 's for
singular conic S, we consider the following rank-2 sheaves associated
to planes in P3 together with an ordered pair of points in the plane.

10.1. Let E c P3 be a plane and p, q eE. The sheaf J?(p, E, q)
= Jf is defined by the exact diagram as follows:

0

Λϊ Q

0

In this diagram /*(p)(l) is the ideal sheaf of p in twist 1, Z its first
syzygy and π the epimoφhism defined by the plane E by the

10.1.1. LEMMA. There is a I : 1 correspondence between
P H o m ( J , £q) and the set of planes E through p, q {ifp — q the
line p~~q is replaced by a tangent direction in p).

Proof. The Koszul resolution of Z and an epimorphism give rise
to a diagram

• Z > 0

I
0 > MQ)(-D • ^ί-1) 4 0
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with a = (z\, Z2, Z3) consisting of a basis of (V/x)y , and with the
linear form e vanishing in p = ( c) and #. Conversely any such
e factorises through a and /*(#)(—1), thereby defining a non-zero
homomorphism Z —• ^q .

10.1.2. PROPOSITION. The sheafJf(p, E, <y) has the following prop-
erties:

(i) rk .# = 2 am/ ^Uf(rf) = ^(rf + 2)(rf + 3)(2rf - 1).
(ii) Λf /zα5* C/zer« polynomial 1 - h + h2 - h3.

(in) ^ is μ-stable.
(iv) The sections of ^(\) are in one to one correspondence with the

lines in E through p, so that a line is the zero locus of the section.
(v) h°Jt(l) = 2 and Jt has the evaluation sequence

where ^E(Q) C ̂  denotes the ideal sheaf of q in E.
(vi) hιJί(d) = 0 for d>\.

Proof, (i) and (ii) follow directly from the defining diagram. Since
JΓ is reflexive with c\Z = - 1 and h°Z = 0, this sheaf is //-stable
and then also Jt. That h°Jί(l) = 2 and hιJt(d) = 0 for d > 1 also
follow easily from the definition and properties of Z. To prove (v)
we consider the diagram

0 0

I
0 > 2@{-\)

I I
0

0 > Md)(-\) > &(-!) > ̂  0

0
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used already in the proof of the lemma. The cokernel of e1 is
"*>E{q){-\) and this is isomorphic to &. From this we also see that
any section of Jt{\) must have its zero locus in E. Finally to prove
(iv) we note that any section of Z{\) vanishes exactly on a line LD p
and gives rise to a diagram

0 0

0,

0

0 0
where β consists of two independent linear forms with cokernel the
ideal of the line they define. Therefore a section of Jt{\) must vanish
on a line L in E through p, and gives rise to the diagram

0 0

i i
df(-l) <?(-!)

• I I
0 > Jt > Z • 4q »• 0 ,

1
0 • J?Lυq

1
0 0

in which either q £ L or J l U 9 is the ideal sheaf of L with a multiple
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structure in q. Conversely given any such line, we can define the
section by the last two diagrams.

10.1.3. COROLLARY. For any line L with p e L c E there is a
diagram

0 0

(-1)(-1)

'LUq

(-1)

(-1)

0 0

For later use we also need the

10.1.4. LEMMA. Any non-trivial extension of /nE(cι)(-\) by
is of the above form J^^q for some line L as above.

(-1)

Its proof can be derived from the equalities

and will be left to the reader.

10.2. The sheaf JV for singular conic S. We consider first the
generic case in which S is the intersection of G with a plane and
consists of two different lines e, f. Then S defines a regulus in P3

supported by two planes EuF.
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By the construction in 10.1 this configuration defines the sheaves

,E9q) and JIT*= Jt{q, F, p).

10.2.1. PROPOSITION. Let JV = JVy be defined by y = (z, Γ) with
= S(Γ) as above. Then

(i) JVe Θ Jiff is the stable gradation of Λ*.
(ii) Let Γ be presented by one of the normal forms

(a)

'ξ 0Λ
ω 0
η ω
0 ηj

(b)

\

ω
ω

(c)

ίξ \

ω ξ
ω

n)

see 5.3.

Then in these different cases Jf is an extension'.
(a) 0 -> JTe -• yf -> jrf -• 0 {non-trivial),
(b) ^ = ^ ^ 0 ^ ,

(c) 0 ^ ^ - * ^ - > ^ £ ^ 0 {non-trivial).
(iii) ΓAe different cases of JV are distinguished by the singularities

on JV:
(a) S ing^ = {/?}, (b) Singer = {p, q}, (c) Singer =

10.2.2. REMARK. At the first glimpse it is a surprise that each of
the sheaves JVe, Jff has two singular points whereas Jlf has only
one in cases (a) and (c), but this is in accordance with the depths of
the sheaves in these points.

Proof. By 5.3, Γ has only three normal forms in (ii). Let Λf be the
space associated to Γ by 5.8. Then Nw is presented by a matrix of
the type

(x 0\ (x 0\ (x x'\

\y y1) ' \o Ϋ) ' \o y'J
in the three different cases respectively, where p = (x), q = ( / ) . Iij
the direct sum case (b), we then have

cr
p q — tx ,

and the display diagram (14) gives us X = Zp Θ Zq, where
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denotes the syzygy of /*(/?)( 1). In the situation (a) we get the diagram

0 0

I 1
0 > yTe > JIT > 3T« > Ap y 0

0 • Zv > J f > Zq > k/p • 0

I 1

I 1
0 0

in which the middle row follows from the shape of (* y ) and a cor-
responding extension diagram. Here ^ = /q , too. In case (c) we get
the analogous diagram with p , q interchanged, and in the direct sum
case (b) the diagram specialises to

0 0 0

I I 1
0 > yVe > jf , jrf • 0

I I 1
0 • Zp > 3t »• Z* > O

I 1 1
0 > 4q > Γ »• Ap > 0

I 1 1
0 0 0

From these diagrams we easily derive (i), (ii), and also (iii) by looking
at the local cohomology groups H^JV, H^y^f etc.
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From the extensions in (ii) we can determine also the sheaf "§ by
the diagram (in case (a) for example)

0

0

0

0

ΓθΩ3(3)

I

I

0

ΓφΩ3(3)

0

i
Γ" e Ω3(3)

1

1

0

0,

0

0 0 0

where F and Γ" are defined by the shape of Γ, by which we have
an exact sequence

0 - >

0 - >

Γ -+
n

Γ
n

/ 2 φ fΓz

—^ Γ"
n

10.3. LEMMA. Lβί x = (z, Af, Γ) e X s s 6e α semi-stable point
with Γ &s /« (a) or (b). PΓ//A the previous notation the following are
equivalent:

(i)
(ii)

is stable,

(iii) the pair (S, CV(M)) is not singular, i.e. CW(M) is not a pair
of lines passing through the two points e, f e ΨWy of S, see 3.12,

(i).

3PW
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Proof. For example in case (a) we have: M n Γ ^ O if and only if
M is presented by a matrix of the form

ίaξ + bω 0 \
\ * cω + dη) '

and such M are exactly those which define singular conies C v passing
through both points e, f. The cases (b), (c) are proved similarly.

10.4. PROPOSITION. Let x = (z, M, Γ) be a stable point with Γ
of type (a) or (b). Then the sheaf SF = SFX is stable and fits into a
diagram

0

1
Λ/®Ω3(3) s

1

1

I
0

0

1
2Ω3(3)

1

1

0

0 > y Γ e • j r > jrf > 0

0 > Λ^ > y > Λ f ( p ) ( - 1 ) »• 0

A similar statement holds in case (c) with e, f interchanged.

Proof. The diagram follows immediately from 10.3 because Mπ
Π/f*(l) = 0, and from (v) of the proposition in 10.1. To prove
stability, let F ' c F be any rank 1 subsheaf with torsionfree quo-
tient 3Γ" = 9ΊSF1. We can assume c\SΓ' = 0, otherwiseP(^')(d) <

would be trivially satisfied. If JV' = JVe Π &1, we obtain
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an exact diagram

0 0 0

1 I 1
0 > JV' > &' > g " • 0

"φ "φ "φ

0 > jre > y > * » F ( P ) ( - 1 ) • 0.

1 I 1
o • JV" > &H > g 7 " • o

1 1 I
0 0 0

By definition we have χ^F(p)(d - 1) = ft1) ~ * a n d X%"id)

- 1 - l(d) with /(</) = χ^"(ύf). We have to consider

Since rk^f' = 1 we have JIT/vv = df(c) and by the definition of Jf
there is a diagram

0 • jr' •• <?(c) »• S?q •• 0

n n n

0 y J^e > z > /q »• 0

s.t. χyy'{d) = χ<f(d + c)-e with ε = 0, 1.

Now J^e is μ-stable with c\= —\ and therefore c = c\Jf' < — 1
If c < —2, we get immediately

A(d) = (d + 2 ^ - (d + C

3

 + 3\ + ε + l{d) > l{d) > 0 for d > 0.

If however c = - 1 , we only have

A(d) = ε + l(d)>0 for d » 0.
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This proves that SF is semi-stable, and that it is even stable if the case
e — 0, Ή" = 0 does not occur. But in this case JV1 — ̂ ( - 1 ) , and by
Corollary 10.1.3

— ^LUq

for some line L in E through p and finally

by Lemma 10.1.4 for some line K in F through q. Therefore we
have proved that if SF is not stable under the assumptions of the
proposition, it must be an extension of the form

Now the proof will follow from Lemma 10.3 and from

10.4.1. LEMMA. If & is an extension as in (34) then C v c ΨWy

is a singular conic through e and f.

Proof. We use the incidence transform to show that Suppi? ! ^(-1)
= G Π / is given by a union / = Hk U HL of two hyperplanes in
Ψ/\2 V and s.t. JΠΫW = C v passes through e and / (for notation
see 8.4, (b)). This contradicts the assumption of the proposition by
10.3.

First we note that i?°J^u^(-l) = 0 since R°&(-1) = 0, and there-
fore we obtain the exact sequence

0 - RιSKUp(-l) -> Rι^(-l) - RιSLUg(-l) -+ 0.

Therefore it is enough to determine the supports of the ends of this
sequence. Since we have the sequence

we obtain the exact sequence

0
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where Pq is the α-plane of q in G. Further from 0 —
&L —> ^a —> 0 with some ae L we get

R°/a • 0

0 > J?Pa,HL > &HL • &Pa > 0

where HL c G is the cone of all lines in P3 meeting L. It is a
hyperplane section

HL = GΠ HL.

Therefore Suppi? 1^!-!) = HL and hence

SuppRι^LUg(-l) = HLU Pg.

Similarly

But since p G L and q e K we have P^ c //*: and P^ c HL and
thus

Finally it is easy to show that the unique hyperplanes HL , HK inter-
secting G in HL , Hκ pass through the points e resp. / if we choose
an embedding of ΨWy as in 8.4 (b). This proves the lemma.

Now we can prove the

10.5. THEOREM. Let x = (z, M, Γ) € Xss with S = 5(Γ) singular,
and let & = 9χ be the corresponding sheaf. Then SF is always semi-
stable and the following conditions are equivalent:

(i) (S, C v ) is a singular point of Q.
(ii) x is not stable.

(iii) «y /s not stable.
(iv) ^ w an extension of the type

0 -> J^u/7 ^ ^ ^ ^iu^ -^ 0,

defines the stable filtration of &.

Proof. We restrict ourselves to the generic situation of a singular
S, the proof in the other cases is the same. By the previous proof we
obtain (iii) => (ii). Since (iv) => (iii) is obvious and (i) *> (ii) by
10.3, we only have to show that (ii) => (iv). It is sufficient to consider
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only the case (a). By 10.3 we have ¥ n Γ / e ( l ) φ 0 if x is not
stable, and the dimension of this intersection cannot be 2. Therefore
we obtain a diagram

0 0 0

M'<g>Ω3(3)

'lUq

Λ/®Ω 3 (3) M" <g> Ω3(3)

where Mf = M n Γ / e ( l ) , M" is the image of M under
, and where the cokernels must be of the form Jiυq by 10.1.

The other cases of (S, C v) with singular S are treated similarly;
one only has to interpret Luq in case q e L as a line L with a double
structure in the point q, the tangent plane of which determines the
plane E, in which L is contained.

10.6. REMARK. If S is a double line the non-stable pairs (S\ C v)
are given by two points L, K eS or two lines in a plane in P3.

ΠPW E = F

The corresponding sheaf is now an extension

The class \ί?\ = [Jίup ®^κup] cannot remember the plane ΨW be-
longing to the Pi-fibration of QQXC, which is blown down. If L = K
we obtain the most degenerate element [*fίup ®^ίup] i n M{0, 2).
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S = G Π ΊPW
IPW

10.7. We close with some remarks on the embedding & —• ̂ v v

for a generic stable pair (S, C v ) E Qo
We have shown in 10.4 that in such a case the sheaf & is stable

and an extension of /np{p)(-1) by ^ . Now we can show that for
smooth C v through one of the points, say / , there is a diagram

0 0

I I

1 1
(35) 0

and that moreover & is locally free outside q. This implies that
c 3 ^ v v = 2, whereas c 3 ^ v v = 4 in 9.2 for sheaves in Qa .

Proof. The first column is the definition of yKe . Next we prove that
& is locally free outside of q in this case and that the cokernel erf
gr c grw [s /q p o r t h i s w e consider the display diagram (22). One
can show that J[ is locally free outside q if C v is regular as in the
picture above, and that Jί is reflexive. Moreover g" = F = ^ in
that case, so that also J / is locally free outside q and therefore ^ ,
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too. Finally we have the diagram

363

0

from which it follows that 31 = 4q . Going back to (35) the induced
homomorphism 4q —• £q must be nonzero and hence an isomor-
phism, for otherwise 4q would inject into *VF(P)(-1) > which is not
possible. This proves the diagram (35).

If in the previous example however C v is a smooth conic through
both of the points e and / , we see by the analogue of diagram (36)
that now the kernel and cokernel of si —• 20 is kp Θ kq and equals
31. Thus in this case Jt and ^ v v are singular at p and q and
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