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COMPACTIFICATION OF M (0, 2) AND
PONCELET PAIRS OF CONICS

M. S. NARASIMHAN AND G. TRAUTMANN

Let M(0, 2) denote the quasi-projective variety of isomorphism
classes of stable rank 2 vector bundles on P;(C) with ¢; = 0 and
¢z = 2. In this paper we study a natural (irreducible) compactification
of M(0, 2) and describe explicitly the sheaves on P; which occur
in the closure of A/(0, 2) in the moduli space of semi-stable sheaves
on P; with ¢; =0, c;=2 and ¢3=0.

Introduction. The space M (0, 2) of stable rank 2 vector bundles on
P3 with ¢; =0, ¢, = 2 was investigated in detail by Hartshorne [Ha2].
(See also [Au-Dou].) He proved that M (0, 2) has the structure of a
fibre space over the 9-dimensional variety R of reguli, the fibre being
an open subset of a smooth quadric in Ps. (A regulus is a smooth
quadric in P; with a distinguished system of generating lines.) If S
is the smooth conic in the Grassmannian G of lines in P; given by
the generators of a regulus p, then the fibre over p consists of smooth
conics C such that S and C are Poncelet related with S as the inner
conic, i.e. a triangle can be inscribed in C which circumscribes S .

To obtain a natural compactification of M (0, 2), we first compact-
ify the fibres over R by taking all conics S, smooth or not, which
are Poncelet related to S; the fibre over p = S is then a smooth
quadric in Ps. We then take as the compactification of the space
R of reguli the Hilbert Scheme C(G) of all conics contained in the
Grassmannian G. The quadric bundle over R extends to a bundle
over C(G), namely the Poncelet quadric bundle associated to the tau-
tological conic bundle over C(G); it is constructed by considering also
the space of conics which are Poncelet related to singular conics, such
that the fibre of this quadric bundle is a pair of hyperplanes in Ps in
the case of a pair of lines and a double hyperplane in Ps in the case
of a double line. This Poncelet quadric bundle Q, which is a normal
projective variety, is the compactification of M (0, 2) we study.

The space Q essentially parametrises a family of semi-stable
sheaves of rank 2 with ¢; = ¢3 = 0, ¢, = 2. More precisely it is
shown that Q is a G.I.T. quotient of a space X** by SL(2) and that
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XS parametrises a flat family of semi-stable sheaves with ¢; = ¢3 =0,
¢, = 2 invariant under the action of SL(2) (see 8.1, 8.2). The smooth
points of Q correspond exactly to stable sheaves. We describe in §§9,
10 explicitly the sheaves occurring in the family parametrised by X*5.

Let M (0, 2) by the (schematic) closure of M (0, 2) in the Maru-
yama scheme of semi-stable sheaves on P; with ¢; = 0, ¢; = 2,
c3 = 0. We investigate the canonical morphism Q — M (0, 2) defined
by the family parametrised by X% and prove (Theorem 4.4) that
the normalisation M(0, 2) of M(0, 2) is isomorphic to the variety
obtained by blowing down Q along the fibres of a P;-fibration (see
4.2) on a codimension 5 subvariety contained in the singular locus
of Q. Moreover the canonical map M (0, 2) — M (0, 2) is bijective
and the smooth points of A7(0, 2) are precisely the stable sheaves.

We now briefly describe the contents of the different sections of the
paper.

In §2 we mainly review the theory of M (0, 2) from the point of
view of monads, jumping lines and Poncelet conics. It is in particular
shown that the set of second order jumping lines of a bundle & €
M(0, 2) is the conic S C G “conjugate” to the conic S defined by
the regulus associated with & . This result will be generalized in 7.6
to the case of sheaves which are limits of elements in AM(0, 2).

We deal with the Hilbert scheme C(G) of conics in G and the
associated Poncelet quadric bundle Q@ — C(G) in §3. It is shown
that C(G) is smooth (3.8) and that Q is a normal variety (3.13). We
determine the singularities of Q in terms of Poncelet pairs (S, CV)
(3.12).

In §4 we define 4 irreducible Weil divisors Qp, Q., Qp, Qe On
Q and the complement M of the union of these divisors consists of
Poncelet related pairs (S, CV) where S is a regular cut of G by a
plane in Ps and CV is smooth (i.e. corresponds to M(0, 2)). Let
Sing(Q) be the singular set of Q and let Qex be the elements of
Sing(Q) lying over the space of double lines in C(G). It is shown in
4.2 that Qexc is fibred naturally into a P;-bundle, the fibres P; being
the spaces of double structures on a line contained in G.

The main theorem comparing Q and M (0, 2) is stated in 4.4. As-
suming certain results that are proved in the later sections, it is proved
in 4.5 that Q can be blown down to a (normal) variety along the P;-
fibration of Qexc and that the canonical map Q — M (0, 2) induces
an isomorphism of this blown down variety onto the normalisation of

MO, 2).
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A geometric invariant theoretic (G.I.T.) description of C(G) is
given in §5: C(G) = Y*//SL(2) where Y is the space of semistable
points for a linearised action of SL(2) on a space Y. In this sec-
tion we also give a criterion for a point of Gr(U ® W) to be stable
(resp. semi-stable) for the action of SL(U), where U and W are
finite dimensional spaces and Gr, denotes the Grassmannian of g-
dimensional subspaces, Prop. 5.1.1.

In §6 a similar G.I.T. parametrisation of Q = X*//SL(2) is given
for the Poncelet bundle Q.

We construct in §7 a flat family {.#;} of sheaves (of rank 4 on P3)
parametrised by y € Y*. These will correspond to kernel sheaves
in the monad description of sheaves which are limits of elements in
M(0, 2). The proof of the flatness of the family, which involves,
among other things, the use of the Eagon-Northcott complex, is given
in Proposition 7.1. If y € Y and § is the corresponding conic in
C(G), it is shown in 7.6 that the space of “second-order” jumping
lines of %, (defined as the support of the sheaf R..% on G) is the
“conjugate” conic S°. This result is of importance in the investigation
of the map Q — M (0, 2).

In §8 we construct a flat family {#}, x € X*, of rank 2 sheaves
on P3 with ¢; = ¢c3 =0, ¢, = 2 parametrised by X*. In fact a family
of monads parametrised by X is constructed; these monads are not
necessarily self-dual as the sheaves are not self-dual. We calculate
some cohomology groups of % .

In the last two sections we give explicit descriptions of the sheaves
F , essentially in terms of the configuration in P; defined by a Pon-
celet pair (S, CV). For instance sheaves in Q.\Q,UQzUQ, are given
by suitable elementary transformations of a null-correlation bundle or
of the trivial bundle of rank 2 (9.1). A detailed study of all these
sheaves is carried out to prove their stability (resp. semi-stability).

0. Notation and conventions. All vector spaces and varieties will be
over a fixed algebraically closed field £ of characteristic 0.

GV denotes the Grassmannian of m-dimensional subspaces of
the vector space V', P, = PV = G,V the projective space, dimV =
n+1.

The invertible sheaf of degree d on PV is @(d), st. V'V =
I'(PV,&(1)). For an &y-module # we use the abbreviations
F(d) = F ®c(d) and h'F(d) for the dimension of H'S (d) =
HY(PV , F(d)). The sheaf of the trivial vector bundle with fibre F
is denoted by F® 7.
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0.1. The evaluation map V'V ® @ — @(1) gives rise to the Koszul
complex homomorphisms A\’ VY ®@#(-1) = A\’ VV ® & defined as
the composition A**! VV@a(-1) - N2 VVRVVee(-1) - NP V'V
@ . The image is identified with QP(p), the sheaf of p-differentials
in twist p. In particular Q"(n) = A""'® #(~1) and TQ?(p + 1) =
AP V'V . The Koszul homomorphism with respect to the fibres over
(x) € PV is contraction with x, A’ VV @ (x) = AP VV.

We frequently use isomorphisms A" ?V ~ A’*! V'V based on a
fixed isomorphism A\"*! V ~ # . Then the Koszul homomorphism for
the fibres is Ax (up to sign) and we have the commutative diagram

NHex) —— Q(p)((x) c AP VY
!l !l 2l

/\n—p Ve <x> /\n—p V AXC /\n—p+1 14
Here & (pt) denotes the fibre F/7ptFpt -

Using the Koszul complex it is standard to verify that there are
natural isomorphisms

k
/\V — Hom(pV, Q***(p + k), Q*(p))

for any k, p > 0. The homomorphism corresponding to a € /\k V is
contraction on the fibres or wedging:

n—p—k n—p
N Vax— AVax

and it extends to the Koszul complex. Under these isomorphisms
composition of homomorphisms corresponds to the wedge product
up to signs. More generally, if £ and F are vector spaces, we have
canonical isomorphisms

k
Hom (E Fo V) ~ Hom(E @ Q***(p + k), F @ Q?(p))

for any p, k > 0. Given an operator of the left side the homomor-
phism of the sheaves is uniquely induced by the diagram

EQN' P *Vee(-1) —s FON' PV ®O(-1)

! |

EQPtk(p+k) —— F @ Q(p)
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where we use A"V ~ A" V'V Finally, if we choose bases of the
vector spaces, a homomorphism

A" QQPK(p 4+ k) — £" @ Q7 (p)

is considered as an m x n-matrix (a;;) of elements a;; € A*V in
such a way that £ — £™ ® \¥ V' is described by (cy, ..., cm) —
(€15 ..., ¢cm) - (a;j). It is sometimes convenient, to consider £ ®
A VYV = £n instead.

As a special case we mention:

0.2. LEMMA. Let B C #" ®V and let #" @ Q'(1) % BV @&

be the homomorphism induced by #™ @ V¥ — BV. Then b is an
epimorphism iff (" @v)NB =0 forany vevl.

Proof. Consider B as a matrix £? — £#™ ® V. Then b is an
epimorphism iff 5V is a subbundle, i.e. £? @ x 5 A" QV AX 1S

injective for any x € V. Since Ao BAXx =0 is equivalent to Ao B =
c® x for some c € £™, the lemma follows.

0.3. Incidence transformation. From now on dimV =4, P; =PV,
and G=GV CP /\2 V. We consider the flag manifold F C P3 xG of
pairs (x, 1) with x € 1 and let P; — F i G denote the projections,

p
which is a P, (resp. P;) bundle. Since p* is exact, the functor R’ =
R’q.p. 1s a cohomology functor. Some of the standard direct images
are:

R% =d;, R'Q'=g;, R'Q(1)=QY,

2
R'G (-m—-2)=8"S@ \S=5"S®0(-1),

where S, Q denote the universal sub-, quotient bundles on G, and
S™ denotes the symmetric power, m > 0.

0.4. Conics in G and reguli. We denote by C(G) the Hilbert scheme
of conics in G. This is a smooth variety of dimension 9, see 3.8. Each
conic § C G defines a plane P C IE"/\2 V,suchthat ScGnP. If
P is not contained in G (as an a-plane, i.e. a plane consisting of all
lines through a point in P3, or as a f-plane, i.e. a plane consisting of
all lines in a plane in P3) then S = GN P. The system of lines in P;
parametrised by a given conic S C G can be visualised as a “complete”
regulus. This is a quadric Q C P; with pg~!(S) as its underlying set
together with the system of lines on it given by S. We give below a
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list of all types of complete reguli in P53, which arise in this way from
conics in G. The complete reguli obtained by the configuration of the
dual lines in P} are also given and denoted by QV.

O] N K

S=GNP

@

ScbPcG
P=a-plane

O] &

ScPcG
P=B-plane

£

(B)

><

ScPcE
P=o-plane

> X

ScpPcG
P=B-plane

s
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Note that in the last case (G) the double regulus cannot remember the
plane P of the conic S. In other words, while the reduced line S can
be recovered from the configuration of this regulus in P3, the double
structure on the line is not determined by it, see 3.9. If S=GNP is
a regular conic section the quadric Q spanned by the lines is regular
and has two systems of lines. The conic S is isomorphic to any line
of the second system.

Since Q ~P; x P; we can identify S with the first factor, s.t.
I'os(3) =Tp(3, 0).

The second factor parametrises a second (the conjugate) conic SO
G which is the intersection S° = G N P%, where P? is the plane
orthogonal to P with respect to the quadratic form of G.

We denote by C%(G) the open part of the Hilbert scheme of regular
plane sections.

1. Conics and kernel bundles.

1.1. Standard resolution of @p(3, 0). Let dp(3, 0) be defined by
the conic S € C%(G). We can choose a basis ¢, ... , e3 € V with dual
basis zg, ..., z3 € V'V, s.t. Q has the equation zyz3 —z;z; =0 and
is the image of the standard Segre imbedding zo = soty, 21 = Soty,
zy = 81y, z3 = s1t;. Then &p(3, 0) is generated by the liftings of
s3> $§s1, o057, 5; €I (3). It is then straightforward to verify that
the sequence

0—£2R0(-2) ?/6@@(—1) 7/4@9@—»@(3, 0) — 0

with
) Zo
—Z 20
—'23 Zl 22 —Zo “22 ZO
B: 3 A—_-
—Z3 % Z  TZ —Z3 Z
—Z3 Zy
—Z3 2

is a resolution in P;3.
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We also have the exact sequence
0042 — 220V — £°—0
N* B

where N* is the matrix

€ e

N*
€ €3

REMARK. det N* = ¢ype3 — eje; is the equation of the dual quadric
QY Cc PVV as can be easily verified.

1.2. If % denotes the kernel of BY(—1) we obtain the exact dia-
gram
0 0

0 —— 4 _— £Q0 —L/{2®ﬁ(l)—>0

(1) 0 —— £200Q/(1) —— £20VVQ0 —— £200(1) —— 0

By 0.2 NV is an epimorphism and thus .% is locally free. Of course
by the resolution above we also have the exact sequence

(2) 0-2V(-1)->TV®& —dy(3,0)— 0,
where IV =T¢,(3, 0), and we obtain dually
(2v) 0-T®Q¥4) -7 (1) - d(-1,2)—0,

since Ext,(@p(a, b), @) = Fp(2 —a, 2 — b), which follows since the
dualizing sheaf wgp = Gp(-2, —2). We are going to investigate the
sections of .7 (1). By the first column of (1) we are given the diagram

0 — r%“(l) — £2eIQ'(22) — A£?eI(l) — 0

ll |

r®/\4VV /{2®/\2VV ,{2®VV
| !l Ul
0 — r — ANV — ANV — 0

AN
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A direct calculation shows that dimI" = 4 and that I" is presented by
the matrix I'*: £4 —» £20 A2V

E 0
r=|® ¢
n w
0 7

with £ = eyAe;, w=eyNe3s—e; Aey, n = e Aey. In particular
H'%(1)=0.

1.3. LEMMA. (1) The conic S is parametrised by s*¢ + stw + t*1.
(2) If the zero scheme Z(y) of a section y € I’ ~ I'Z (1) is not
empty, itis aline | € S and

(3)  y=(s, 1)@ (¥ +stw+12n) = (s>, s*t, st?, ) o T,

Proof. (1) is immediate from 1.1 by looking at the embedding of
the first factor of P; x P; .
(2) If » € T then y vanishes in (x) iff y Ax = 0, see 0.1. If
y=(ag, ..., az)oI'* this means that
al A X +aiwAX+anAx =0,
al AX+arwAXx+asnAx =0.

However by the definition of &, w, 5 the vectors £ Ax, n Ax are
linearly independent, and there is at most one relation of the vectors,

i.e.
rank[a0 o1 az] =1.
ap ay a3
But it is well known that then

(ao,...,a3)=(s3,s2t,st2,t3)

which proves (3), and thus Z(y) = s2¢ + stw' + ?n € S.

1.3.1. CoROLLARY. The correspondence % «— S is 1:1 between
the kernels % of regular N’s (with four independent entries) and the
regular conics S € CO(G).

1.3.2. COROLLARY. If % is defined by a regular N, we have the
exact sequence

0-T(Z(1)®F - Z(1) = Gp(-1, 2) — 0.
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Proof. Clearly % is defined by S € C%G). By the lemma con-
versely S is defined by # . Given an arbitrary regular N and %,
a conic S is defined by s2¢ + stw + t2n which gives .%# . Then the
corollary follows from (2V) or the lemma.

1.4. REMARK. Let G‘Z’(,{ 2® V) denote the open set of the Grass-
mannian of all 2-dimensional subspaces N C #2® V which are pre-
sented by matrices with 4 independent vectors. The map N— S is a
morphism

GY£2 V) — C°G)

onto C%G). It is invariant under the action of SL(2) given by
(g, N)— (f®id)(N), and thus factorizes into an isomorphism

G(#?®V)/SL(2) ~ C°(G).

The transposition map (7} v) — (%)) induces the involution § —
SO,

We finally state two further beautiful geometric properties of a bun-
dle 7.

1.5. PROPOSITION. Let Z be defined as above and let S resp. Q
be the associated conic resp. quadric. Then

(i) the dual quadric QV C PY is the set of jumping planes of % , i.e.
of all planes P C P3 with h%(%|P) # 0.

(i) R\.Z = @w(1), where R' is the first incidence transform, 0.3.

Proof. (i) Let H = {f = 0} with f € VV. There is a splitting of
0— fedy — QI (1)|H - QL(1) =0

which is induced from the Koszul-complex. Therefore we obtain the
exact sequence

0 — IF|H) — £2TQ()H) — LTy
il |
£2Q f — £2
NuV
Hence hO(%|H) # 0 iff det = f(eg)f(e3) — f(e1)f(e2) = 0, ie. iff
feQv.
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(ii) If we apply R! to (2V) we obtain R.%Z = R!@p(-2, 1). Since
S is the first factor, we find H'@p(-2, 1)®, = 0 except for [ € S°.
Now R!@y(-2, 1) being supported on S°, we can obtain it as the
simple direct image under Q — S°, which is the second projection.
Therefore R'@p(-2, 1) = Fp(1).

2. Review of M (0, 2). The bundles & € M(0, 2) can be con-
structed in two different ways: from a linear system on a conic S C G
as mentioned in the introduction and from monads, see [Ha2]. We
summarize both in the following

2.1. THEOREM. A rank-2 bundle & on P3 belongs to M(0, 2)
if and only if it is a member of one of the following exact diagrams
(displays). These can be derived from each other.

0 0

L®E —— Gp(3,0) —— 0

(D1) 0 —— ZV(~1) —— IV®EF —— Gp(3,0) —— 0
MVRO —/—— MV QC&
0 0
0 0

0 —— LV®Q@4) — &(I) — Gp(-1,2) — 0

DY) 0 —— IeQ@d) —— F(1) — Gp(-1,2) —— 0

MR QYN4) ——= M Q4
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0 0

0 M3 — I — & ——0

N

D) 00— MQ3) — £20Q'(1) —— MH ——0

NYQ®COC ———=N'Q0CO

0 0

Explanation of (D;). Q is the regulus of a regular conic section
SCG,st I'gg(3)=TFp(3,0)=T" and L c TV isa 2-dimensional
subspace without base points. L ®¢& — &p(3,0) and IV® & —
p(3, 0) are the induced epimorphisms, see 1.2.

Explanation of (DY). This is obtained by applying Z=(-, @) to
(D;), where we use @V = Q3(4) by formal reasons and

gxth(@pla, b),?) ~0y(2—a,2-b).
The latter follows by using the dualizing sheaf wg = gp(-2, -2).

Explanation of (Dy). M C #2®@ N’V and N C #2@ V are 2-
dimensional subspaces such that M is contained in the kernel of the
composed operator £2Q A2V - NV@V@A*V - N @ A*V. By
0.1 we obtain a complex

M ®Q3(3) 7%@91(1) TNVQM,

and we suppose that u is a subbundle and v an epimorphism. Such
a complex is called monad and the display (D,) is called the display
of the monad.

2

Proof. (1) If & is defined by (D,), it must be a rank-2 bundle since
ZV(—1) islocally free by 1.2 and & = &V(—1)V(~1). Furthermore its
Chern classes must be ¢; =0, ¢; =2, and h%& =0 since h°.% =0.
Hence it is stable and a member of M (0, 2). The same can be proved
if & is defined by (D).
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(2) It was shown in [Ha2] that A!&(-2) =0 forany & € M(0, 2).
Then the Beilinson spectral sequence, see [OSS], of & degenerates,
and its E, level yields the monad in (D,):

H*(&(-3))0Q’(3) —» H'(&(-1))®Q'(1) » H'(&) o

so that M = H?&(-3), #? = H'&(-1), H'& = NV. Then auto-
matically 4 and v are sub- resp. quotient bundles.

(3) Clearly the displays (D;) and (DY) are dual to each other.
If (D;) is given we get (D;) from the results of 1.2, for there it
was shown that .# is a kernel as in the column in the middle of
(D). We also can derive (DY) from (D,) as follows. By 0.2, v
is an epimorphism iff (/2@ v)NN = 0 for any v € V. Let now
£2® VYV — NV be given by the matrix N*: £2 — £2Q@ V. Itis
elementary to derive that the condition for N is satisfied iff N* is

one of the matrices
e e ey e
0 €1 or 0 €1
€ €3 € €

where ¢y, ..., e3 € V is a basis. In the first case .Z is an extension
as in (DY) by 1.2, and hence (DY) follows from (DY). We show
now that the second case cannot occur: As in 1.2 we find that the
kernel T of £2@ A\*V — £2® A2V is generated by the matrix

(eij = ei Nej)

€01 0
I = €21 €01
€0 €]
O €20

Since M C T, the matrix M*: £2 — £2® /\2 V representing M must
be a product M* = AoI'™* with a usual 2 x4 matrix 4. It follows that
the entries a;; of M* are contained in the span of ey Ae;, ey A ey,
ey Aey. Therefore forany ze€ V

aijj\Nz= a,-j(z)eo NeyNey+ Z36~l,'j

where «;; are linear in the coordinates zp, z;, z; only and &;; €
-/\3 V. Hence, if z3 =0,

M*Az= (a,-jA z) = (a,-j(z)eo/\el Aer)

and we see that this matrix is degenerate on the conic zy = 0,
det(a;;j(z)) = 0. This shows that £2 ® Q3(3) - £2® Ql(1) is

not a subbundle along this conic.
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2.1.1. REMARK. Assume that v is regular in (D;) and u injective
but not necessarily a subbundle. Then L = (I'/M)V c TV is base
point free iff x4 is a subbundle.

Proof. We still obtain diagram (DY), butin (D;) there might occur
the cokernel Ext!(£(1), @) in the top row and left column. Now both
conditions are satisfied iff Ext!(£(1), #) =0.

2.1.2. REMARK. If v is regular in D,, i.e. coming from a conic
S € C%G), and u injective, the sheaf & is still stable, of rank 2,
h°% =0, ¢; =0, c; =2, c3 =0. These sheaves occur as kernels in
sequences

0-&—-8& —-o1(1)—0
where & € M (0, 1) and / C P; is a line, see 9.1.

2.1.3. REMARK. The monad in (D) is determined by & up to
equivalence. This means that if & and &’ are given by (M, N) and
(M’', N') then & ~ &' iff there exists g € GL(2, #) s.t.

Mc£2o NV £2QVDON
l lg@id and Tg"@idT
Mc£2 NV £2Q VON'

The proof follows easily from the identifications of M, k%, NV with
H2Z(-3), H'&(-1), H'& respectively.

2.2. Sections of &(1). If A€ LV ~T&(1) is a section of &(1) we
obtain the exact diagram

gV(-1) — L®e —— Ep(3,0) —— 0

T I

(Hhee =~ e

T

n
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where Z denotes the zero scheme of the section, and f spans the
kernel. Then f as an element of I'V = I'@5(3) has three zeros on S
with the sequence

0—05—53)—0,—0.
If Q — S is the projection to the first factor, n* yields the right-hand

column and thus Z = n~!(y) consists of three lines of the system S'.

Note that we have an isomorphism PLY ~ PL since L is 2-
dimensional.

2.2.1. LEMMA. Let y e T ~T.% (1) and 4 € LV ~T&(1) be two
sections with @ # Z(y) C Z(A). Then y maps into (A) C LV under
r—LV.

Proof. Let A’ be the image of y. Obviously also Z(y) c Z(4). If
f', f are the polynomials in L C IV = I'dg(3) corresponding to A’,
A they must have a common zero. If A, 4 were independent, also
f', f would be independent, contradicting the assumption that LV
is base point free.

2.3. Jumping lines of & . Let (M, N) be a monad defining a bundle
& € M(0, 2). Using the isomorphism A?V ~ A? V'V we can consider
a representing matrix M* of M as a matrix of linear formson A?V .
If £€ AV we write

2 4
M*(&): £% — £2 V — £2 V ~ 42
Q: a2 A2 \V — 40 [\

or M*(&) = M* AN¢. The equation det M*(¢) = 0 is then uniquely
determined by & up to a scalar. If we apply the incidence trans-
formation R! to the monad (D,) we obtain R!&(—1) = RL#Z(-1)
and
0—-£2@05(-1) R—ln€2®ﬁ@, —R&(-1)—0
u

such that Ry is induced by the matrix M*(¢). Similarly if we apply
®¢;(—1) to the monad we get

£2H'Q2) 00 £foH'Q' 0 H' #),(-1) —— 0
l 1 1

£2 £2

M*(D)
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and we obtain, that for a line /

(4) g, ~a(-i)oa (i) iff kM ()=2-i

As a consequence, if J = {det M* = 0} is the hypersurface in
P /\2 V', the hypersurface

J=JNG=SuppR'&(-1)

is the set of jumping lines of &. If W' C /\2 V' is the orthogonal
of W = (£, w, n), we have {|WL = w|WL = y|W+ =0 and thus
M* =0 on PW+. Since SO =GN PW-L we find that J is singular
along S°. We even have

SO = Sing J,

since M* # 0 away from W+ . By (4) this is the set of jumping lines
of order 2. _

Let finally C = JNPW be the conic cut out by PW . Since ~IP’Wl N
PW # @ and PW is exactly the singular locus of detM*, J is the
cone over C with vertex PW+ . Note that C must be smooth, since
otherwise M* could be given the form (§9) with a € G, and then

1 would be degenerate in «.

g R

W

2.4. The associated Poncelet pair. Let & € M(0, 2) and let S, C
be the conics assoc1ated with &, see 2.2, 2.3. These are conics in the
same plane P C IP/\ V with S=PNG, C=PnJ.

vl

2.4.1. ProrosITION (Hartshorne [Ha2]). The conic C is Poncelet
related to S with respect to the pencil PL C |@s(3)|, i.e. the tangents
to S in the points of any divisor of the pencil meet on C.
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Proof. L c TV =T&s(3) and let ' ¢ £2® A’V be presented
by a matrix I'*: #4 — £2@ A’V as in 1.2, see also display (D).
Then S is the conic parametrised by s + stw + t2n, and P = PW,
W = (¢, w,n). By Lemma 1.3 a section y € I' ~ "% (1) with the
zero line [ = s%¢ + stw + 2y is given by

y=(s3, 52,582, ) o =(s,1) 1.

Let now A € LY and f € L c TV the corresponding polynomial
having Z(A) as its zeros, 2.2. If

I; = s}¢ + sitiw +
are two zerosof f, i =0, 1,let y; = (s;, t;)®/; be the corresponding
sections of .#(1). By Lemma 2.2.1 both yy and y; map into (i) C LY

under I' ~ T'# (1) - T'&(1) ~ LY. Therefore M, y;, y, arein a
3-dimensional subspace of I'. If M is given by M* = 4oI™*: £? -

£4 - £2® \*V there must be a nontrivial relation
bA + ao(s8 , S()?'lo, S()t(% , tg) + a,(sf, cees l%) =0

(with b # 0 since the two rows are independent).

Now it is elementary to verify that the equations of the tangents to
S in /; in the plane PW are

s?E(p) + sitio(p) + t1n(p) = 0.
If (p) € PW is the intersection point, we therefore find
(s?, sti, sit?, ) oT*(p) =0

by the shape of I'*. But then the above relation implies b o M*(p) =
boAoI*(p)=0,i.e detM*(p)=0.
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2.4.2. COROLLARY. There is a bijection [&] « (S, C) between
M(0, 2) and the set of Poncelet pairs with S € C°(G) and C smooth.

Proof. If (S, C) is given, the conic C determines a pencil on S,
since by Poncelet’s closure theorem of [Gr], [Gr-Ha], through any
point of C there is a triangle tangent to S. By (D;), S and the
pencil determine a bundle in M(0, 2).

2.5. REMARKS. (1) This corollary has been generalized to arbitrary
instanton bundles with A°&(1) = 2 in [B6-Tr], where C becomes a
curve of deg=c,.

(2) The pair (C, S) of conics reflects the two components of the
monad (M, N). The Poncelet relation between .S, C is the geomet-
ric expression for the monad to form a complex.

2.6. Summarizing the results of 1.5, 2.2, 2.3, 2.4, we have: If & €
M(0, 2) there is a conic S € C%(G) with quadric Q and conjugate
conic S?, and a smooth Poncelet conic C in the plane P of S, s.t.

(1) The pencil describing the Poncelet relation is the pencil of zero
lines of sections of &(1).

(2) The conic SO is the set of jumping lines of & of order 2 and
S0 =SuppR!& (=SuppRL%).

(3) If J is the cone over C with vertex P- then J = J NG is
the hypersurface of all jumping lines of & and J = SuppR!&(-1)
(= SuppR'.Z(-1)).

(4) S9=SingJ.

(5) The dual quadric QV is the set of all jumping planes of &, i.e.
of all planes H with HY(Z|H) #0.

3. Quadric bundles of Poncelet conics.

3.1. Given two conics S and C in the projective plane P, one
can try to inscribe a triangle in C which is circumscribed about S.
Poncelet’s theorem states that, if there is one such triangle, one can
start from any point on C to construct such a triangle, see also [Gr-
Ha], [Gr]. If CV is the polar dual of C in the dual plane with respect
to S, the Poncelet condition simply says that there are three points
on S, such that the dual triangle in P} has its vertices on C"V. This
condition is now symmetric in .S, CV. If it is satisfied we also call S,
CV a Poncelet pair of conics and CV a Poncelet conic with respect
to S. For a given regular S the set of all regular Poncelet conics CV
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with respect to S is open in a quadric in the Ps of all conics with
Py . We need an explicit description of this quadric, which doesn’t
seem to exist in the literature. There is a formula for S, C to be a
Poncelet pair, first derived by Cayley, see [Sa], p. 342, and [Gr-Ha].
This however is not symmetric in S, C and one has to transform it
for a pair S, CV. In 3.2 we give both a functorial and an explicit
description of it.

& [

3.2. Let W be a 3-dimensional vectorspace and the conic S ¢ PW
be given by ¢ € (S2W)V, i.e. by a symmetric bilinear form W x W —

k or W — WV. To o we associate the two canonical forms:
sta: sPw — STWY — (S2W)Y
-0 — (S2W)V.
The first is the functorial map S?¢ followed by the canonical isomor-
phism, the second is defined by
xX-ym—a(x,y)a.
Now we define
Qo =S% —1g-a.
Thus Qo: S?W — (S?W)V is a symmetric bilinear form on S2W
and defines a quadric in PS2W . We can define Qo as well by
Qa(xy, x'y') = 3lo(x, x)a(y, )
+o(x, Yoy, x') —o(x, y)o(x', y')].

3.3. The matrix representation of Qo . Let ey, e;, e, be a basis of
W and zg, z;, z, the dual basis of WV . The given form ¢ will be

expressed by
2500 201 So2
(o(ei, €)= 1| so1 2811 812

So2  S12 282
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such that the conic S is given by the equation 3, ;si;z;z; = 0. Then
the symmetric matrix Q(o) = (Qo(e;e;, exe;)) is

00 01 02 11 12 22
00 2530 So0So1 | So0S02 531 = 2500511 | So1%02 = So0S12 | So1502 ~ 00522
01 2500911 1 500512 S01511 S02511 S02512 = S01522
Q(o)= 02 2500522 | So1512 = So2511 So01522 S02522
11 25121 S11512 5;1)'2 — 25,59
12 251159, S12522
2 253,

When the conic CV is given by the equation dicjcijeie; =0 in
Py and c denotes the column of the coefficients ordered as above, we
get

Qa(c,c)=c"oQ(s)oc=:20(s, ¢).
Explicitly we have for Q(s, ¢) the expression
580¢80 + S00501C00C01 + S00502€00C02 + (521 — 2500511)S00511
+ (S01502 — S00512)C00C12 + (582 — 2500522)C00C22
+ S00511C3; + -
REMARK. When ordered by the products s;;s;; the coefficients as
functions in the ¢;; are the same as in the s;;. This proves that

Q(s, c) = Q(c, s) and that the condition Q(s, ¢) = 0 is symmetric
in s and c.

3.4. PrOPOSITION. Let S C PW and CV C PWV be the regular
conics with the equations

Y sijzizj=0 resp. Y cijeie; =0.

i<j 1<

Then (S, CV) is a Poncelet pair if and only if Q(s, c)=0.

Proof. Let A, B be two 3 x 3 matrices, not necessarily symmetri¢
and define (A4, B), 0'(A, B) by .

det(A4+ B) = 23 det 4+ 1%6(A, B) + A6'(A4, B) + det B.
Then for any matrix M we have §(MoA, MoB) =det(M)-6(A, B).
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The formula of Cayley, [Sa], says that if S, T are symmetric ma-
trices representing two conics S, 7 C PU then S, T is a Poncelet
pair (with § as the “inner” conic) if and only if

0(S, T)? = 4det(S)6(T, S).
Now let

2500 So1  So2 2c00 Co1  Co2
S=1| so1 2s11 s12 |, resp.C=| con 2cn1 ci2 |,
S02  S122 S22 o2 Ci2 20

be the matrices of the given conics. The polar dual C of CV with
respect to .S then has the matrix 7 = SoCoS. Applying the formula
of Cayley we get

6(S,SoCoS)*=4det(S)0(SoCoS,S),
which is equivalent to
O(I, CoS)>=46(CoS,I).

Now by a rather lengthy calculation this condition is equivalent to
Q(s,c)=0.

3.5. The quadratic form Q(s, c¢) determines a quadric bundle Q C
PS2WVY x PS?W over PS2WV with fibres

05 = {{c) e BS*W|Q(s, ¢) = 0}.

By using the homogeneous coordinates sqyg, ..., S22 and ¢y, ...,
cy; we can easily determine the singular locus of Q. If the conic
S C PW given by (s) € PS?WV is non-degenerate, then obviously
Qs is smooth, and therefore Q is smooth over the open set of regular
conics in PSZWV .

3.6. Singularities of Q over PS*WV . Since Sing(Q) is contained in
the inverse image of the discriminant locus of PS2WV of degenerate
conics, it is enough to describe Qs N Sing(Q) for s degenerate. We
consider the two cases, where S is a pair of distinct lines or a double
line.

Case 1. If the conic S given by s consists of a pair of distinct
lines, we can choose a basis of W in such a way that S is given by
z1zp=0,1e. 55 =0 for (i, j)# (1, 2). Then Q(s, ¢) = cj1¢22 and
Q; is a pair of distinct 4-planes in PS?W .
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Calculating in addition all the partial derivatives
00 o0

in (s, c¢), we find that

Qs N Sing(Q) = {{c) € PS*W|cyy = 22 = 0, co1¢02 — Cooc12 = O}
This is a regular quadric in the 3-dimensional intersection ¢;; = ¢y =
0 of the two components of Q;. In order to illustrate the points of
Qs N Sing(Q) as conics in PWV let as before CV denote the conic
EiSj cijeiej = 0. The condition ¢;; = ¢;3 = 0 means that CV is a
conic through both z;, z € PWV . The possible cases of CV are:

c is a c is a c is a c is a c is a
regular regular singular singular singular
point point point point point.

These cases can be checked easily by the above description of Qs N
Sing(Q) . Note that in the second case CV is singular whereas (s, ¢)
is a regular point of Q.

If ¢;; =0 but ¢ # 0 the pair (s, ¢) is in one component of the
fibre Qs which consists of all conics CV passing through z; but not
through z:

T2 )

Z1 Z1

In each of these cases (s, c) is a regular point.

Case 2. If the conic S given by s consists of a double line, we can
choose a basis of W in such a way that S is given by z% =0, i.e.
sij = 0 for (i, j) # (2, 2). In this case Q(s, ¢) =3, and Qs is a-
double 4-plane. Again by looking at the partial derivatives we find
that

Qs N Sing(Q) = {(c) € PS*Wcyy = coy = ¢12 = 0},
which is a 2-plane in the 4-plane Q;.
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The condition ¢; = 0 means that any CV € Q; passes through z,.
The additional conditions cg; = ¢;» = 0 say that CV is a conic
coo€d + corepe; + cjief = 0.

Any such is degenerate with vertex z, and conversely. Thus the list
of possible conics CV in the fibre Q; is:

Z2 2
c is a c is a c is a c is a
regular regular singular singular
point point point point.

3.7. Associated quadric bundles. The functor Q of 3.2 can be ap-
plied to any scheme of quadrics. In our case we need it only for
schemes of conics. Let E — T be a rank 3 vectorbundle over a
scheme together with a quadratic form ¢ as a morphism Ex E — L

ag
to a line bundle over 7. Then ¢ defines the scheme of zeros C C PE
in the projectified bundle, which we call a scheme of conics:

ExXxE—L C CPE

\ S N/
T T

It is constructed in such a way that for geometric points t € T we
have a conic C; C PE;. We need this only in the case where 7 is a
reduced variety.

REMARK. In [Na-Ra] Narasimhan-Ramanan give a more abstract
definition and prove that any conic bundle is of the above form.

Now we can apply the functor Q to obtain the quadric bundle QC
as the zero scheme of Qo :

S2E x S2E 2512 QC CPS’E
N S NS
T T

We call QC the Poncelet quadric bundle associated to C. We shall
need this construction only in the case of the universal conic over the
Hilbert scheme of conics contained in the Grassmannian G C PA? V.
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3.8. The Hilbert scheme of conics in G C PA*V . Let C(G), resp.
C(PA?V), denote the Hilbert schemes of conics in G, resp. PA? V.
There is a natural embedding C(G) ¢ C(PA?V) as the subscheme
of conics S ¢ PA?V contained in G schematically. Any conic S €
C(G) defines a plane P c PA? V such that S C GNP as a subscheme.
If P¢Z G then S = GNP is a plane section. We distinguish the
following exceptional sets of C(G):

Xy = set of singular conics in C(G),
X. = set of conics contained in an a-plane P C G,
X = set of conics contained in a f-plane P C G.

Then C%G) = C(G)\ZgUZ, U Zp is the open part of regular plane
conic sections.

3.8.1. ProposITION. C(G) is a smooth, irreducible variety of di-
mension 9 and Xy, X,, Zg are irreducible divisors in this manifold.

For the proof we will make use of the following lemma, see SGA,
VII, Prop. 1.7.

LEMMA. Let X, C X, C X3 be schemes with X,, X3 smooth and
X, alocally complete intersection. Then there is an exact sequence (on
X1)

0— Ny, x,— Nx, x,— Nx,x|X1 —0

where Ny X, denotes the normal bundle of X; in X;.

Proof. (1) Using the differential criterion for the smoothness for
Hilbert schemes, the smoothness of C(G) and its dimension will fol-
low if we have proved A'(S, N5 ¢) = 0, h%(S, N5 ¢) = 9 for any
conic SCG.

(2)If Sc P c Ps =PA*V is a conic in a plane P in Ps it is
immediate to see that A!(S, Ng p) =0, h9(S, N5 p) =5, and using
the lemma, that also 4!(S, Ngp) = 0, h%(S, N5 p) = 14, where
one can use that NP’ps = 30p(1).

(3) Let PC G. Then h!(P, Np g) =0, h'(P, Np ¢(-2)) =1 and
hO(P, Np (—2)) = h*(P, Np ¢(-2)) = 0, whereas h°(P, Np ¢) =
3. This can be proved by applying the lemma to P C G C Ps, so that
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we have the exact sequence
0— Np,g— 30p(1) = p(2) - 0,

since NG,]ps = ¢;(2) . Dualizing this and then tensoring by @p(1) we
obtain
0—-6@p(-1)— 3C0p — NI\'/,G ®ap(1) — 0.

But Np ¢ is of rank 2 and its determinant bundle is @p(1), so that
N ¢ ®p(1) = Np . Thus we have the exact sequence

0— &p(1) = 30p — Np ¢ — 0,

and the statements in (3) follow immediately.
(4) To prove (1) we distinguish case 1: PCG andcase?2: PZG.
In case 1 we have an exact sequence for S C P

0— Ns,p— Ns,g— Npg|S—0.
From the exact sequence
0— Np,g(=2) = Np,g = Np,g|S — 0
we see, using (3), that
h'(S, Np glS) =0 and K(S, Np ¢|S) = 4.

Using (2) we now conclude that indeed A4!(S, N5 ¢) = O and
hO(S, Ns g) = 9. In case 2 the conic S is the (schematic) inter-
section S =GN P. Let us consider the diagram

0 —— Ngg —— Nsp —— Nop|S — 0

5

NS

Np p s
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We claim that the vertical sequence is split; in fact the natural map
Ns,p — Ng,p|S is an isomorphism. This follows from the fact that
the line bundle on P determined by the ideal sheaf of S in P is the
pull back of the line bundle determined by the ideal sheaf of G in
Ps, by the inclusion P — Ps. Since the vertical sequence is split, the
map

H'(S, Ns.¢) — H'(S, Ns.s,)

is an injection while H'(S, Ns,p) =0 by (2). Thus H'(S, N5, ¢) =
0. We also have

h°(S, Ns,g) = h9(S, Nsp,) = h™(S, Ne,|S) = 14 =5 =9.

This completes the proof of the smoothness.

(5) By their definition Xy, Z,, g are subvarieties of C(G). Clear-
ly X is 1-codimensional and X,, Xg are Ps-bundles over a P3 (as
space of all a- resp. S-planes) and hence also 1-codimensional. Being
bundles X,, Xz are already irreducible. So we are left to show that
also X, is irreducible. To do this let Q C Xy be the open set of
conics consisting of two different lines and which are notin £, UZXg.
It suffices to show that Q is irreducible (in fact dim(Zy\ Q) < 8 since
dimZyNZ,, dimXZyNXZs =7 and the subvariety X C Xy of double
lines is of dimension 6, see 3.9.1). Now PGL(V) acts transitively on
Q) as can be seen from the configuration (D) in 0.4: A conic S € Q
corresponds to a peir of planes and two points in their intersection
in PV and thus is determined by a pair (p, py), (¢, q1) of pairs
of points in P; such that the four points are independent. It is now
immediate that, given two such configurations in P;, one can be taken
into another by a linear transformation in PGL(V).

3

(6) Finally to prove the irreducibility of C(G), it is sufficient to
prove that the open dense subset C%(G) = C(G) \ o U X, U Xp is
irreducible. But this is isomorphic to the open set Gg /\2 V in the
Grassmannian of 2-planes in PA?V cutting G in a regular conic,
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see the morphism C(G) — G3 A\?>V in 3.10 below. But the latter is
irreducible.

3.9. The double lines in C(G). If | C G is a line in PA?V con-
tained in G, there is a unique a-plane P, and a unique f-plane Pg
with / C P,, Pg. The pencil Pen(/) of planes spanned by these is the
unique pencil such that / = GNP for P €Pen(/), P # P,, Pg. This
can be proved easily by choosing a basis of /\2 V' containing a basis
of /.

If now S € C(G) is a double line, the plane P with S C GNP,
which is determined by S, must be a member of Pen(S,.q), and con-
versely any P € Pen(S,.q) determines a conic structure S on Siq
with § € GN P schematically. Therefore the conics S € C(G) sup-
ported by a line / C G are in 1:1 correspondence with the planes
P € Pen(/). We even have

3.9.1. LEMMA. Let X, C Xy C C(G) be the subvariety of double
lines in C(G). Then X, is a Pi-bundle over the Hilbert scheme Z(G)
of lines in G, and dimZX{ = 6.

Proof. § — Speq is a morphism X, — .Z(G) whose fibres are the
pencils Pen(/). It is left to the reader to verify that this is a P;-bundle.
It follows that dimX{ = 6.

3.10. The modification C(G) — G3\*V . Let Z = G3 \*V be the
Grassmannian of 2-planes in P /\2 V. We denote by W — Z the tau-
tological 3-bundle and by W, its fibre over z. The projective bundle
PS?WY of quadratic forms in the fibres of W can be considered as the
Hilbert scheme of conics in P A V. Therefore we have an embedding

C(G) — PS?wVY

V4
and the composed morphism is a modification of the Grassmannian

Gs /\2 V' with exceptional divisors X,, Xg. Thus the modification
consists in putting in all conics in «a- or S-planes.

3.11. The quadric bundle Q — C(G). The universal conic over
PS?WVY can be constructed as follows. Let n*W be the pull back
of the tautological bundle to PS?W" . There is a universal quadratic
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form o on m*W which has values in the relative hyperplane bundle
& = Opqryv (1) such that we have

T'We w5 & C - P*W
(5) N

PS2WV PS?wWV

The universal conic C over PS*WV is the zero locus of the form
o . Clearly the restriction of the conic bundle C to C(G) C PS?WVY
is the universal conic bundle over the Hilbert scheme C(G).

Now we apply the Poncelet functor Q to the universal conic bundle
over C(G) C PS?WV. Thus from (5) we obtain the quadric bundle
QC and its restriction Q to C(G):

Q <= QC cC nPS*W
(6) | |
C(G) — PS?WV.
If we consider n*PS2W as a fibre product we have
Q — QC <= PS*WY xz PS?W

(7) \\Z /

Then for any z € Z the fibre
(QC); C PS*W) x PS*W,

is the Poncelet hypersurface of bidegree 2 considered in 3.5. It is at
the same time the quadric bundle over PS?W,Y, or QC|PS*W .

3.12. Singularities of Q. If the conic S € C(G) is regular then the
fibre Qg of Q over S is non-degenerate and therefore Q is smooth
over the open part of regular conics. If S is singular, then QgNSing Q
has the same description as in 3.6. The proof consists in using local
coordinates (derived from C(G) C PS?WV for example) and then in
calculating partial derivative as in 3.6. Thus

(i) If § € C(G) consists of two different lines e, f, the pair
(S, CV) is a singular point iff CV is singular and passes through both

e and f.
>s<
£

il
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(ii) If § € C() is a double line with S,.4 = e, then (S, CV) is a
singular point iff CV is singular and e € SingC"V .

3.12.1. CorOLLARY. The codimension of SingQ is 3.

3.13. ProPosITION. The quadric bundle Q is a normal irreducible
variety.

Proof. Let C(G) — PSWV be the embedding of 3.9. From diagram
J

(6) we obtain the diagram
Q0 < JmPS*W

C(G)
where j*n*SP?W is the bundle of all conics in the dual plane defined
by the universal conic over C(G). The embedding of Q into this bun-
dle is regular, since any fibre of Q consists of the Poncelet quadric in
the corresponding fibre PS2W of j*n*PS?W. Since C(G) is smooth
by 3.8.1, it follows that Q is a local complete intersection, see SGA 6,
VIII, Prop. 1.5. On the other hand, the codimension of the singular
set of Q is > 2 by 3.12.1. It follows from [Hal, Prop. 8.23] that Q
is normal. Since Q is equidimensional of dimension 13, Q|C%(G) is
irreducible and dim(Q \ Q|C%(G)) < 13, Q must also be irreducible.

4. Boundary components of Q and Main Theorem. We define 4
(positive) divisors on Q as follows. Let Qo, Q., Qp be respectively
the inverse images of Xy, Z,, Xz (3.8) by the canonical projection
Q — C(G), and let Q. be the subvariety of pairs (S, CV) with CV
singular.

4.1. PROPOSITION. The divisors Qy, Q., Qp and Q. are irre- :
ducible.

Proof. Since the Poncelet bundle associated to the space of conics
in P, is irreducible, we see that Q, and Qp are irreducible. To show
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that Q. is irreducible, let Q' be the open subset of Q. consisting of
(S, CV) where S is a regular cut of G by a plane in Ps. Then Q' is
irreducible and Q' is dense in Q. and Q. is of pure dimension 12
and dim(Q; — Q') <11.

To prove that Qp is irreducible consider the diagram, see (7) in

3.11,
Q — Q —PS*™WY xz; PS’W— PS?’W

[ ! /
T L CG) LR Z
and the induced map ¢
Qq\—w* J*urPS?(W)
Zo/
Let R C j*u*PS?(W) be the space of smooth conics. Since X, is
irreducible we see that R is irreducible. For C € R, ¢~ !(C) consists

of pairs (S, C) where S is a singular conic in the dual plane one of
whose components touches the dual conic CV.

ON O,

CV

Thus ¢~!(C) is irreducible of dimension 3, being the image of P; xP,
by a finite map. Hence ¢~I(R) is irreducible. Now ¢~!(R) is open
and dense in Qy, since, in the space of conics in P, through a point
in P,, the subspace consisting of smooth conics is dense.

4.2. P,-fibration on the exceptional set Qexc. Recall, 3.12, that the
singular set, SingQ, of Q is contained in Qy N Qp and consists of
pairs (S, CV) where S and CV are both singular having a position
as in (i), (i1), 3.12. Let Zj C Xy be the space of double lines and let

Qexc = SingQ Nz~ (%), =:Q— C(G).

We claim that Qex. has a natural structure of a P;-bundle, a fibre
being the pencil P; of double structures on a line contained in G-
see 3.9.1. Let L(G) be the Hilbert scheme of lines contained in G
and D — L(G) the tautological P;-bundle. Let S?(D) — L(G) be the
P,-bundle which is the relative Hilbert scheme of pairs of points on
the fibres of D — L(G).
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A point of Qe consists of a pair (S, CV) where S is a line with
a double structure in G and CV is a singular conic in the dual plane
having a singularity at the point in the dual plane determined by S'.
Let / be the reduced line associated to S. We may view CV as a pair
of points on /. Thus we obtain a map Qexc — S2(D), whose fibre at
(I,p,q)€S*D), where [ isalinein G and p, q €/, is the pencil
Pen(/) of double structures on / contained in G.

Note that we have the diagram of P;-fibrations

Qexe — SZ(D)

l |
X, —— L(G)

4.3. The component M(0, 2) of the Maruyama scheme containing
M(0,2). Let M(2;0,2,0) be the Maruyama scheme of
all semistable coherent rank 2 sheaves on P3 with Chern classes
¢t =0, o = 2, ¢3 = 0. The moduli space of vector bundles
M(0,2) is a smooth connected open subset of A (2;0,2,0);

we denote by M(0, 2) the (reduced) schematic closure of M(0, 2) in
M(0;0,2,0),and by M(0, 2) — M(0, 2) its normalisation.

4.4. THEOREM. (1) The variety Q (see 3.11) can be blown down
along the Pi-fibration Qexc — S*(D) (defined in 4.2) to a normal
variety Q, i.e. the push-out Q of the diagram

Qexe — Q

|
S*(D)

exists in the category of varieties over £ .
(2) There exists a canonical morphism

Q —»M(0,2)

which induces an isomorphism of the blown down variety Q onto the

———

normalisation M (0, 2) of M(0, 2).
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(3) Let Q° denote Q\ Q. UQ,UQpUQy (see 4.1). The restriction of
¢ to Q° maps QO isomorphically onto M(0, 2). The inverse of this
isomorphism is the map of Corollary 2.4.2 which associates to a bundle
the corresponding Poncelet pair (S, C) of smooth conics. Moreover the
“boundary” M(0, 2)\ M(0, 2) is the union of the four Weil divisors
which are the images by ¢ of Qe, Qo, Qp and Qp.

(4) The normalisation map M (0, 2) - M(0, 2) is bijective and the
smooth points of M (0, 2) correspond precisely to the stable sheaves in

M, 2).

REMARK 1. In the formulation of the theorem in [Na-Tr] the blow
down of the P;-fibration of Q. had been overlooked.

REMARK 2. Under X*%//SL(2) = Q the stable points of X5 under
the SL(2)-action correspond precisely to the smooth points of Q, see
6.7.1.

REMARK 3. The sheaves or their equivalence classes in the 4 bound-
ary components can be characterised geometrically by the Poncelet
pairs (S, CV) by which they are defined. This can be found in §§9,
10.

In particular the generic points of the divisor Q. are the sheaves
& , which are obtained by the elementary transformations

005 =& —-0.(1)—-0,
where &’ is a bundle in M (0, 1) and L is a line in P3, see 9.1.

REMARK 4. The semi-stable but non-stable sheaves in the boundary
are characterised as extensions

0— Ay —F — Ixup — 0,

where L, K are lines and p, g points in P3, 7y, is the ideal
sheaf of the union L U {g} (with a simple multiple structure in g if
g € L), see Theorem 10.5. The blow down of the P;-fibration of Qexc
is explained in terms of the sheaves in 10.6.

REMARK 5. For any [#] € M(0, 2) let SO = SuppRlF, J =
Supp R'.#(~1), where R! is the incidence transformation. These
sets are the generalised sets of jumping lines of order = 2 resp. of all
jumping lines of .% . In the proof of 8.3 it is shown that S° and J
only depend on the equivalence class [#]. However, which is more
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important, we have the

COROLLARY. Any [F]€ M(0, 2) is already determined by the pair
(S°, J).

Proof. By 8.3 (d) the pair (S°, J) determines a quadric hyper-
surface J C PA%V such that J = G N J and J is singular along
SO c SingJ . If [F] ¢ 9(Qexc) then (SO, J) determines the plane
PW or PW- by 8.3 (e), (f). If PWL c PA?V is any splitting of
PA2V =PA?VV - PWV, see 8.3 (b), then C¥V =PWVNJ, 8.3 (d),
and hence 7 is determined by (S°, J) through (S, CV). If how-
ever [#] € ¢(Qexc), then we can choose any plane PW in the pencil
Pen(S,eq) and define CV =PWVNJ. Then (S, CV) determines the
class [#] independently of the choice of PW by (1) of the theorem,
i.e. (S°, J) determines [#] in this case, too.

4.5. Proof of Theorem 4.4. (a) We first prove the existence of the
canonical map ¢ and part (3) of the theorem. In §6 we will construct a
projective variety X with an SL(2)-action such that, if X** is the open
subset of semi-stable points for this action, then the good quotient
Xss//SL(2) is isomorphic to Q. Moreover we construct in §8 a flat
family {#}, x € X, of rank 2 coherent sheaves on P3 with ¢; =
0, cp =2, ¢c3 = 0. It is proved in §§9, 10 that the sheaves %
are semi-stable. Moreover if x and x’ are on the same SL(2)-orbit
then % ~ &, . Hence there is a canonical morphism from X* to
the Maruyama scheme M (2; 0, 2, 0), and this induces a morphism
[0 —;'M_(z; 0,2,0).

(b) We will now prove that ® maps Q onto M(0, 2), so that we
will obtain a morphism Q - M(0, 2). We first show that @ maps

QO isomorphically onto M(0,2) c M(2;0,2,0). Let X° be the
inverse image of Q¥ in X*. Now each sheaf %, x € X, comes
with a monad display (22) in §8. If x € X° this is a monad of a
bundle by 6.8 with %, = Zy (see 7.1.2) and &, = NV ®&. So,
X0 and hence its quotient Q° are mapped into A(0, 2) under ®.
The Poncelet pair (S, CV) of smooth conics associated to x is the
Poncelet pair associated to the bundle in 2.4.2 with CV the polar
dual of C, see 6.8. Now by Corollary 2.4.2 ®|Q° is a bijection
from Q° onto M(0, 2). Since both varieties are smooth ®|Q° is an
isomorphism. Since Q is irreducible by Proposition 3.13 and Q0 is
dense in @, we now see that ® maps Q onto M(0, 2). We thus
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have the canonical morphism Q - M(0, 2). Observe that we have

proved already the first parts of (2) and (3) of the theorem.
(c) We now proceed to prove (1) and (2). It is proved in 8.4 with
preparations in §7 that Q - M(0, 2) is injective on Q \ Qexc, CON-

stant on the fibres of the P;-fibration on Qe and induces an injective
map S%(D) — M(0, 2). Since Q is normal (Proposition 3.13) and ¢

is onto, ¢ lifts to a surjective morphism Q - M(0, 2). Since the fi-

bres of ¢ are connected, the normalization map M (0, 2) —= M0, 2)

is bijective. Using the Stein factorization of ¢ and Zariski’s main the-
orem, we see that

300 = O (0.2)-
If Qexc r S2(D) is the P,-fibration we also have Mg, = s p)> SO
that the map S%(D) — M(0, 2) induced by S2(D) — M(0, 2) is a
morphism. We thus have a commutative diagram of morphisms

Oexe — )

lrr l(ﬁ
S*(D) —— M(0,2)
with §.0p = O7(0,2) - It is easy to verify from this that M (0, 2) is the
required push out. Thus we have proved (1) and (2) of the theorem,
and also that the normalization map v is bijective.
(d) From the above we know that

) \ QOexc — m \ @(Qexc)

is an isomorphism. Under this the divisors Q., Q., Qp, Qo are
mapped to divisors, since Qexc C Qo and dim Qexc = 8 (as a P;-
bundle over X C C(C)). Hence they are also mapped to divisors in
M(0,2) or M(0, 2). This proves the second part of (3).

(e) To complete the proof of (4), observe that Q. is contained in
the singular locus QOsiny, C Qo of Q. Now Qsing \ Qexc is dense in
Osing - In fact by 3.12, a Poncelet pair (S, CV) in Qsiyg corresponds
to a singular conic S with a pair of points one on each component. We
can approximate a double line with a pair of (eventually coincident)
points on it by a singular conic consisting of distinct lines along with
a point on each component. Since ¢ is an isomorphism on Q \ Qexc »
we see that ¢(Qsing) = M(0, 2)sing. On the other hand by Theorem
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10.5, a point in Q corresponds to a stable sheaf precisely when it is
a non-singular point of Q.

5. Geometric invariant parametrisation of C(G). In order to define a
universal family of sheaves we have to construct a suitable parametri-
sation of the quadric bundle Q — C(G), since a universal family does
not even exist over M (0, 2) [Hi-Na]. This will be done in such a way
that we construct a morphism X — Y of projective varieties, acted
on by SL(2, #), which is equivariant, and such that the induced mor-
phism X*%%//SL(2) — Y*//SL(2) on the good quotients is the quadric
bundle.

As a first step we construct Y in this section. Recall that C%(G) =
GY(#2®V)/SL(2), where GI(#2® V) is the open part of the Grass-
mannian consisting of regular subspaces N C £2 ® V' defining the
right parts £2® Q!(1) — NY®¢ of bundle monads, 1.4. The space

G (# 2® V) of semi-stable points of the Grassmannian however does
not parametrise the complete Hilbert-scheme, see Remark 5.9. The
parameter space Y is constructed in such a way that its semi-stable
points form a modification of G5°(# 2@ V). It is essentially the set of

e G4(#2® A’ V) such that

2 3
FcKer(/€2®/\V—+NV®/\V>

for some N € G»(#2®V), and only if N is regular we have an exact
sequence

2 3
(8) 0-T—£2\V->NoA\V -0

It turned out that in the degenerate cases of N the subspaces I" pro-
vide us with the necessary information in the limit cases: They deter-
mine the degenerate conics in C(G) and we have I' ~ "7 (1), where
" 1s the corresponding kernel sheaf, thereby generalizing the results
of §1, whereas the degenerate spaces N do not determine them. The
result is the space Y C G4(#% ® W) constructed in 5.7. In 5.8 we
show that N is determined by I" for semi-stable I". ‘
As a preparation we prove a stability criterion for points in Grass-
mannians, of the above type, which is essential for our constructions.

5.1. Let U, W be finite dimensional vector spaces and let SL(U)
acton Gy(U® W) by L — (g®id)(L). This action is induced from
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the linear action of SL(U) on A?(U® W) via the Pliicker embedding
G,(U® W) cPAY(U®W). Therefore it makes sense to characterize
the stable and semi-stable points of this action in the sense of Mum-
ford, [Mu-Fo], see also [Nel]. The result is

5.1.1. ProrosITION (Stability criterion). Let SL(U) act on the
Grassmannian G4(U @ W) as above. Then a point L € G4(U ® W)
is stable (semi-stable) if and only if

. dim U’ ..
’ D ——
dmLnNn(U' @ W)< TmU dim L
(<)

for any proper subspace 0 £ U' G U .

Proof. Let A be a (non-trivial) 1-parameter subgroup of SL(U). In

a basis (ep, ..., e) of U, 4 is given by the diagonal matrix A(¢f) =
[t%, ..., %], @p2a1 2+ 2 qy, Ekak =0.
Let vg, ..., v, be any basis of W . Consider the basis {¢;®v;} of

U® W . Since the action of SL(U) on UQ W isgivenby g(uQw) =
gu®w for ue U, we W, the action of A on U ® W is given by
the diagonal matrix

[1%, ... 1%, (%, Nt L, 1]

(each t% occurring (n + 1) times), with respect to the basis f; =
@V, ... Jn =€ ®Un; frny1 =€1 @V, ..., frnt1 =€ ®Un;...;

JSins1=€®V0, ..., fisiynss =€ Q@ Vn.
We now use [Mu-Fo, p. 88, (x*x)y or Nel, p. 121] with N =1
to get

(I+1)n+1
WL, A)=—q Tgoyner + D, dm(LN L) (rier —1:)
i=0
where L; is the subspace spanned by (fy, ..., f;). In our case
fo=-=Ih=ay; Int1 = '="p1 =015
Fing1 = - = T4 1)n+l = O 2

Hence
-1

(#) ML, A)=—qay+ Y dm(L N Lyepiyn )ors — 0)-
k=0
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As in [Nel, p. 121] we consider the cases

ag=-=ap=I1l-p; opyy=-=q=—-(p+1) forO0<p</-1
Here u(L,A) =q(p+1)—dim(LNLpi1ynep)({+1). But Ly ypyp =
U, ® W, where U, is the span (in U) of e, ..., €.

Thus u(L, ) =q(p+1)—dim(Ln (U, @ W))( +1).
Thus u(L, A) >0 (resp. > 0) if and only if

: [+1
dim(L N (U, ® W)) < A q (resp. <)
for 0 < p < [. Since every (p + 1)-dimensional subspace of U is
conjugate under SL(U) to U, the result follows. In 6.3 we need

5.1.2. PROPOSITION. Let U = #2, dimW = 3 and let M €
Go(£2 QW) and T € G4(#>@ W) with M cT. Then

(1) The pair (M ,T') € G, x G4 is semi-stable if and only if M and
I' are semi-stable in G, and G4 respectively.

(2) If (M, T) is semi-stable and one of the components is stable,
then (M, 1) is stable.

Proof. (1) Let A(t) = (’00 e ) be a l-parameter subgroup with

ag+a; =0, a; <0. As in the proof of 5.1.1 we have
w(M, ) =a(—dimM +2dim M N (e @ W)),
u, ) =a;(—dimI'+2dimI' N (eg ® W)).
Since the action on the product is linearised via the tensor-product
N(£2e W) e N*(#2® W) we must have
(*) p(M, T, 4) =puM, )+ T, 4).
From this it is clear that (M, I") is semi-stable if both components
are semi-stable. To prove the converse, let (M, I') be semi-stable.
Then we have
dim M N (eg® W)dimI'N(ep ® W) < 3(dim M + dimT) < 3.

If M were not semi-stable, dimMNey @ W =2 or M Cey®@ W . By
the inclusion M c T" also dimI'n(e—0®@ W) > 2, but by the previous
inequality this should be < 1. Similarly if I’ were not semi-stable,
dimI'n(ep ® W) > 3 and then M N (eyp ® W) = 0. However this is
not possible since dimM = 2.

(2) Follows directly from the formula (x).

From now on W will be 3-dimensional and P, = PW .
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5.2. The conic S(T'). Let ' C #2@ W be a 4-dimensional subspace,
dim W = 3. The description of the conic S(I') in 1.3 motivates the
following definition

ST) := {{w) e PW|u®@w €T for some u # 0 in £2}.
For arbitrary I' this set could be the whole plane, for example if
u® W cT for some u.

5.2.1. PROPOSITION. (1) For T € G4(#2 ® W) the following condi-
tions are equivalent:.
(a) T is semi-stable.
(b) ST') is a conic.
(c) S(I') #PW.
(2) T is stable iff the conic S(I') is regular.

Proof. (1) If T is not semi-stable, by 5.1.1 there is some 0 # u € £2
with u® W c T (dim(u® W)NT > 3) and hence S(I') = PW . This
proves (¢) = (a). It remains to prove (a) = (b). We consider the
2-dimensional kernel X in

0—-Z—£2WY =TV —0.

Since G4(£2@W) — G2(£*®@ W) is an SL(2)-equivariant isomor-
phism X is stable (semi-stable) iff I" is stable (semi-stable). By the
criterion 5.1.1 this means dimZN(u®WV) <1 (< 1) forany u #0.
If X is the image of the matrix =* = (7 »): #2 - £2®@ WV, we find
that X is semi-stable iff the determinant zw' — z’w # 0 in S2WV,
and this then defines a conic. To see that this is S(I'), we consider
the diagram on PW

0
0 £e0(l) ——TIVee Z V4
0 —— Yo7 £Fleowleo 'ee 0
9 2
£1e0(1) £2e0(1)
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in which the two cokernels identify. The homomorphism X ® & —
#2®@(1) is injective in the semi-stable case. By the fibre description
of £2® QY (1) - TV®a, see 0.1, we find that supp? = S(I'), and
the left column shows that this is a conic given by detX* =0.

(2) Now it is easy to see that S(I') is regular iff ¥* has no zero
as any entry in any equivalent representation. This is equivalent to
EN(u® WV)=0 forany u #0, i.e. X stable.

5.2.2. REMARK. (1) If S(I') is regular then & ~ &5(3) of degree
3 on S. In the following S(I') shall always be given the structure of
the equation detX* =0.

(2) S(I') is nothing but the determinantal variety of the homomor-
phism of the top row.

5.3. Normal forms. In the following tableau the matrices are X*,
I'* defining X, T’ as images of £2 — £2Q WV, £% - A2 W
respectively, and ey, e;, e € W, zg, 21, zop € WV are dual bases.

s(r) O >< T

4 A Y
x z, -z z, -z z, O 1 z, z, | -0z =Bz
-z z, (e} z LO zo} -2 z, (¢} z,
e, 0 } [e o] 'eo 0 ey o]
- e1 eo e1 [e] e1 (¢] e1 eo
e2 e, el e (o} e, (o} e,
(o} e, - LO e, | LO e2 o e2
(1) (IT') (I1) (II") (IT1)
stable semi-stable cases

case

5.3.1. LemMA. If T € G*(#2@ W) is semi-stable it can be presented
by one of the normal forms in the above tableau.

The proof follows immediately if we choose the bases of WV so
that S(I') is defined by the matrices £* of the form given.

5.4. REMARK. Note that the normal forms of type II', II, II” give
the same conic although they are not on the same orbits under SL(2).
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However the orbit of I" of type II is in the closure of that of type II’
or II” in the tableau. For if we consider the 1-parameter subgroup
(% ,-),its action on the T of type II' is given by

€0 e €0

e a ae e

Im |} —1|=Im Lo =Im| ,!
e e a ae; ale a‘ey e
€ a‘lez %)}

and the latter tends to the direct sum as a — 0.

5.5. An unusual parametrisation of Ps. By the previous results we
have a morphism G4(£2® W)* — PS2WV given by I' — (detXZ*),
where X* is any matrix defining X. This morphism factors through
the good quotient, [Mu-Fo], [Nel], G4(#£% ® W)$//SL(2) — BS?WV
and we have the

5.5.1. PROPOSITION. G4(#2®@W)*//SL(2) ~ PS?WV is an isomor-
phism.

Proof. Indeed this is a bijective morphism, which follows from the
listing of the normal forms above. Since PDS2WV is smooth and the
quotient is irreducible and reduced, it must be an isomorphism by
Zariski’s main theorem.

5.6. In order to obtain a similar parametrisation of the Hilbert
scheme of all conics in Ps = PA?V and later in G = G,V C PA*V
we use the above parametrisation for each plane P C Ps and let the
planes vary in the Grassmannian G3 A>V . So we consider the tauto-
logical bundle

2
w-GA\V=2z

We denote by W =W, C /\2 V' the 3-dimensional subspace given by
z € Z, see 3.10. As in the absolute case there is the induced action
of SL(2) on the Grassmann bundle

G4(£* W) — Z.

This can be linearised as follows. Since W C Z x A’V we get the
embedding

2 4 2
Ga(#2@W) C Z x Gy (;2®/\V> cZxp) (ﬁea/\V)
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as the subvariety of pairs (z, I') satisfying I' C k?2® /\2 V. Since Z is
not affected by the action, it is enough to consider the linear action on
/\4(,€ 2@ /\2 V). Therefore the relative statement on stability reads the
same way as that in 5.1.1, 5.1.2.

5.6.1. PROPOSITION. For (z,T) € G4(#2 @ W) the following condi-
tions are equivalent:
(i) (z,TI) is stable (semi-stable).
(i) dimTN(u@W,)<1(L2) forany 0# uc £2.
(iii) S(T") C PW, is a regular conic (conic).

Also we obtain analogously

5.6.2. PrROPOSITION. The map (z,T) — S(I') induces an isomor-
phism G4(#? @ W)S//SL(2) ~ PS*WV of the good quotient with the
Hilbert scheme C(PN\>V) = PS?WV of conics in PA*V .

5.7. Parametrisation of the Hilbert scheme C(G). Since we are only
interested in conics contained in the Pliicker quadric G = G,V C
PA2V, we have to characterise those (z,T) for which the conic
S(I') € G N PW, scheme-theoretically. Note that by this, the case
where G N PW, is a pair of lines and S(I') is a double line with
S(IN)eq being one of the lines, is excluded. To do this we consider the
quadratic forms:

o(I') =detZ* € S>W, determined up to a scalar,
p(z)k = quadratic form € S2W, of G NPW,.
Note that o(I') = 0 if T" is not semi-stable, and p(z) =0 if PW,; CG.
The condition S(I') ¢ GNPW, is now expressed by p(z)Aa(I) =0,
which is well defined. Next we consider the open subset
G #£reV)

of the Grassmannian of right monads N as in §l1, s.t. the morphism
£2® Ql(1) — NY ® @ is surjective, see 1.2. Recall that then N -
defines a 4-dimensional kernel I" by (8) and a regular conic section
S(T') = GNPW, by 1.3. Therefore we have an equivariant morphism

GIU£2RV) L Gy(£* @ W)'.
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Now we define
Y C G4(£2 QW)

as the closure of the image of ¢, which is an imbedding. Then Y
is 12-dimensional and irreducible. Also Y is invariant under SL(2)
since the image of ¢ is. Therefore we have the induced action and
linearisation and

YS =Y NGi(£2 @ W)S.

Since Y is defined as the closure, the condition o(I')Ap(z) = 0 is sat-
isfied for any (z, I') € Y and therefore the conic S(I') is contained
in GNPW, as a subscheme. Therefore there is the morphism

Y® - C(G) c PS*WY

given by o(I') . This factorizes through the good quotient Y$//SL(2).

5.7.1. PropPoOsITION. Y3//SL(2) — C(G) is an isomorphism.

Proof. Clearly the morphism is surjective, since its image contains
that of G9(#? ® V), which is dense, and since the quotient is pro-
jective. It is also injective: PW, is determined by S(I') and also the
equivalence class of I' ¢ £2® W, by the normal forms, see 5.4. Since
the quotient is also integral, [Mu-Fo], and C(G) is smooth, it must
be an isomorphism by Zariski’s main theorem.

5.7.2. REMARK. One can even show that YSS is smooth, whereas
Y is singular. To do this, consider the subvariety Y’ C G4(£% ® W)
defined by a(I') A p(z) = 0. Wehave Y C Y’ and Y C Y'ss, Y/
being also invariant. Now one can show that dim 7,,Y’* = 12 for any
p € Y'$. One has to consider the different types of points, choose ap-
propriate bases of I and the bundle W, and to use local coordinates
of the Grassmannian G3 A>V . It turns out that the Jacobian ma-
trix of the equations of Y’ always has rank 5 in the 17-dimensional
manifold G4(#? ® W)*. Therefore for any p € Y'* 2

12 = dim, Y < dim, Y'* < dim 7, Y’ = 12.

Hence Y is smooth and defines a component of Y’. However we
don’t need this result.
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5.8. The morphism Y — G$(#2@ V). If T € Gy(#2@ \* V) we
can consider the induced homomorphism

/f2®/\2VV —>/f2®/\2VV®VV—> Ve vV
(10) !l !l

£2QV e > I'Ve® /\3 vV

5.8.1. LEMMA. If (z,T) € Y* then N = Kerh(I') is 2-dimensional
and semi-stable.

By this we obtain a morphism Y - G (# 2® V). It is now easy

to see that the morphism & of 5.7 is a section of v over GY(£2®V),
since for regular N the space I' defined through (8) is stable with
N c Kerh(I') and thus N = Kerh(T').

Proof of the Lemma. (a) If the conic S(I') is regular, then I' is
presented by a matrix

such that each vector s2¢ + stw + t2n € A\*V is decomposable, since
S(') ¢ G. This is equivalent to EAE =0, nAn =0, {Aw =0,
nAw=0and wAw+2An=0.

If S(I') = GNPW, is a regular conic section, there is nothing to
prove, because then N must be given as in 1.2. If PW, C G is an
a-plane, then there is a vector x € V' with E = x A X', n=xAYp,
w = x ANy for some x',y,y" € V. These vectors must form a
basis, since £, w, n are independent. Now we see that N must be
presented by

L p——— Y 7
x 0
0 x

which is semi-stable.
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(b) If PW, C G is a B-plane, we must have &, w, n € /\2H,
H cV,s.t. also w Aw =0 and hence all products are zero. Since &,
w, n are independent, we find a basis x, x', y of H s.t. £ =xAX',
w=-x'"Ay, n=yAXx. In this case the kernel is represented by

X Yy
x' x
which is stable in this case.
(c) If S(I') = GNPW, is a pair of lines, I' must be presented in
normal form, see 5.3,

£ £V

E 0
w 0
n |’
0 7

where the lines in G are parametrised by (s + tw) and (sw + 7).
Then E=xAX', w=xAYy", n=y Ay for some vectors x, y, ),
which are independent. Then the kernel is represented by

L — N 4
[x 0
y )y

which again is semi-stable.
(d) All other cases are treated analogously.

5.9. REMARK. One can consider Y* — G55(#2® V) as a Schubert-
type blow up by filling in the 4-dimensional subspaces

2 3
FCKer(£2®/\V—>NV®/\V).

If we go to the quotients we get a modification

Y$s//SL(2) —— G$(#2® V)//SL(2)

c(G) — R

P

It is not difficult to see that R is a ramified cover of the space PS?V
of all quadrics in PVV by looking at [N] — (det N*). Away from
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the singular quadrics this is the 2-sheeted cover of regular reguli by
distinguishing a system of lines in a quadric, see Remark 1.4. The

transposition
x x Xy
y y - x ¥y

of the parametrising matrices defines the decktransformation. The
space R is the minimal completion of this covering. By the above
modification C(G) — R it is possible to extend the quadric bundle of
Poncelet conics.

6. Geometric invariant parametrisation of the quadric bundle Q —
C(G).

6.1. As in 5.6 the Grassmann bundle G,(#2 @ W) — Z =
G3\*V can be described as the flag variety of pairs (z, M) €
Z x Go(£2 @ N V) with M C #2 ® W,. Analogously the induced
group action of SL(2) can be linearised through the Pliicker embed-
ding by the action of A?(£#2@A? V). Since Z is not affected, (z, M)
is (semi-)stable iff M € G,(#2 ® A*V) is (semi-)stable. To each
M we can also associate a quadratic form detM* € S2W, where
M*: £2 — £ @ W, represents M . As in 4.6 we obtain the

6.1.1. PROPOSITION. (1) For each (z, M) € Gy(£#*>®W) the follow-
ing are equivalent:

(i) (z, M) is semi-stable (stable).
(i) dmMNue@W;)<1 (=0) forany u#0.
(iii) detM* #0 in S2W, (det M* =0 is the equation of a regular
conic).

6.2. By this result we obtain a morphism (z, M) — (det M*)
GS$(#* @ W)// SL(2) — BS*W.
This morphism is bijective and hence an isomorphism.

6.3. Let now X C G2(£% ® W) xz G4(#% @ W) be the flag subva-
riety of the product bundle, defined as the set of all (z, M, T’) with
(z,T)eY and MCT. If ¥ — G4(#2 ® N\*V) is the canonical

composition

2 2
Y — G4(£2 @ W) — Z x G4 (£2®/\V) — Gy (ﬁ@/\V) ,
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and if T is the tautological subbundle on the Grassmannian G4, we
obviously have X = G,y*T. Thus X — Y is a Grassmann bundle,
dim X = 16. The induced SL(2)-action on the product bundle leaves
X invariant, and the action is again linearised via the embeddings

X C Gy (£? @ W) xz G4(£* @ W)
2 2
CZxG, <,€2®/\V) x Gy (z%/\v)
2 2 4 2
cZxp/ (£2®/\V) x]P’/\(,{Z@/\V)
2 2 4 2
chP(/\ (ﬁ@/\V)@/\(fz@/\V)).

Thus (z, M,T) € X is (semi-)stable iff (M, T) € Gy(£? ® W;) x
G4(£2® W) is (semi-)stable. Fortunately we have the

6.3.1. LEMMA. (1) (z, M,T) € X is semi-stable iff each component
is semi-stable in Gy(£%* ® W,), G4(£* ® W) respectively.

(2) (z, M,T) e X is stable if one of the components is stable.

(3) There are stable pairs (z, M ,T') € X° without M and I" being
stable, see Remark 6.7.2.

Proof. (1) and (2) had been proved in 5.1.2. In this proof it is
possible that u(M, A) or u(I", ') are zero for different 1’s but never
simultaneously. In such a case (M, I") is stable but not M and T.
An example is provided by the pair M C I', defined as the images of
the matrices

€ 0
e+er el 2 et 0], o4 2
[ 0 ez]'j £°QW, er e A AW
0 (%)
respectively. Then (M, I) is stable but neither M nor T'. .

6.4. By the above lemma the projection X — Y maps X5 — YS$

and X Cc n71(Y*). Since X** is open and n~!(Y™) is irreducible
as a bundle over YSS, also X®% is irreducible and smooth.
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6.5. PROPOSITION. If (z,M ,T') € X is semi-stable, the pair ({(a(I')),
(det M*)) € PS?W,Y x PS?W, is a Poncelet pair and determines a pair
of Poncelet conics S(T') C PW,, CV(M) C PW).

Proof. For the proof we use the normal forms of the spaces I' C
£2® W, given in 5.3. Let ¢y, e;, e, € W, and zg, z1, zo € W, be
dual bases, as in 5.3.

Case 1. S(T) is regular and its form is o(I') = zoz, — z2. Then
with the notations of 3.3 the Poncelet quadric

Qo (r) = {C00C22 — Co1€12 + Cozc11 + ¢}y = 0} C PS2W.

We have to verify that det M* =3, jCijeie; satisfies this condition.
As M cT isa 2-dim. subspace, we have

€o 0
M= |G G2 a3 Q4 € €

B B B3 Biller e’

0 ()
where we use the normal form of I'*. When a;; = o;8; —a;; we get
Coo = ay2, €01 = A13, Co2 = A14—A23, €11 = A3, C12 = A4, €22 = A34.
Inserted into the formula:
2 2
C00C22 — C01C12 +€C02C11 + €T = Q1234 — A13A24 + (A14 — A23)aA23 +a53 = 0

this expression vanishes because of the Pliicker relation of the a;; .

Case 2. S(I') is a pair of lines, zyz; = 0, and the matrix I'* has
the form (II') say. Now by 3.3

Qs = {Cooc22 = 0} C BS*W,
and from

€o
* ap a3 a3 a4 |€
M* =
Bi B2 B3 Ba]|er e
€
we obtain cop = 0. This shows that again (detM*) € Qyy. If T*
has the form (II") we would get ¢;; =0.
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Case 3. S(T') is a double line; this can be treated as case 2.

6.6. By the last proposition the morphism
X5 — PS?WY xz PS*W,
(z, M, T)— ({(a(I), (det M™))
has its image contained in the Poncelet quadric bundle
Q0 CPS*WY x; PS?W

!
C(G)

such that for the fibres over a point z we have the Poncelet bundle
Q. C PS’W,) x PS’W,
of the plane PW,, see 3.3. Again we have

6.6.1. PROPOSITION. The induced morphism ¢

Xs//SL2) —— ©

| I

Y$//SL(2) —— C(G)

is an isomorphism.

Proof. Clearly the morphism factorizes through the good quotient.
The surjectivity can be shown directly by constructing M C I" for a
pair of conics using the normal forms, or simply by remarking that it
must have a dense image and that X5//SL(2) is projective, whereas
Q is irreducible.

The morphism is also injective. Since we know this already for
Ys//SL(2) — C(G), we have to show injectivity in the fibres for fixed
o). If My, M, CT and (det M) = (det M3), we can assume

M ; = Al/ o r* 3

with the same I'™*. When a}/j are the Pliicker coordinates of 4, and
c;’j the coefficients of det M}, the formulas of the proof of 6.5 show
that a,?j = Aaj; in the different cases of S(I'). But this proves that
the matrices 4;, 4, span the same subspaces, i.e. M; = M,.
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Finally as in the previous cases X//SL(2) — Q must be an iso-
morphism, since the quotient is integral and Q is normal.

6.7. By the general theory of good quotients there are open sets
Q° Cc Q and C(G)* ¢ C(G) such that their inverse images in the
parameter spaces are X° and YS respectively. (However X° is not
mapped necessarily into Y5, nor Q° into C(G)°.) But we know
from Lemma 6.3.1 that Q|C(G)* C QF, since the stable conics are the
regular ones in C(G). Therefore the semi-stable but non-stable points
can only lie over C(G) \ C(G)*, i.e. in the fibres over the degenerate
conics in G . It turns out that we even have:

6.7.1. THEOREM. The non-stable points of Q are exactly the singu-
lar points of Q.

The proof follows easily from the description of the singular points
(S, CV) € Q in 3.12 on the one hand, and from the characterisation
of the semi-stable points (z, M, I') € X in 6.3.1 on the other hand.
However one has to take special care of those points (z, M, I') which
are stable without A/, I' being stable.

6.7.2. REMARK. The stable points (z, M, I') for which neither M
nor I' are stable correspond exactly to those pairs (S, CV) which are
smooth points of Q but with both conics S and CV singular. The
corresponding sheaves in M (0, 2) are stable and will be treated in
10.4, 10.7, see also 10.5.

6.8. Points in X% parametrising bundle monads. The projective
variety X has been constructed in such a way that it completes the
space of monads (D;) of bundles in 2 and simultaneously serves as
a parameter space of Q. We are going to identify the part of X*¢
which consists of monads for bundles. Let Q° be the complement of
the 4 Weil divisors Q., Qu, Qp, Qo in Q as defined in §4. Then
QY consists entirely of pairs of regular conics and maps onto C%(G).
Let X0 c X5 resp. Y% C Y* be the inverse images of Q° resp. C%(G)
in X resp. Y. We then have the diagram of SL(2)-quotients

XO N QO

! I

Y0 —— C%G)

ik
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6.8.1. LEMMA. (i) The open and dense set X° c X% is the set of
monads of bundles in M(0, 2).

(ii) The open and dense set YO C Y is the set of right arrows of
such monads, and is isomorphic to GY(#?® V), see Remark 1.4.

Proof. If (M, N) denotes a monad (D,) for a bundle, we have
NeG)#2®V) and M cT =Ker(#2@ N>V — NV®A\*V). The
pair of conics (S, C) associated to the bundle and thus to (M, N)
had been described in 2.4, see also 1.3, as S = S(I') = GNPW and
C = {detM* =0} NnPW , where PW = PW, is the plane of S. Then
x =(z,M,T) is a point of X belonging to X°, since S and the
polar dual CV of C form by this description exactly the pair (S, CV)
associated to x. If on the other hand x = (z, M, T) € X° is given,
then y = (z,T) € YO defines a regular plane conic section S(I') =
GNPW; . By the proof of 5.8.1 we find that there isan N € G9(#°®V)
defining T as its kernel. (In fact Y© is the image of the imbedding
¢ of 5.7.) Now the pair (M, N) is a bundle monad (D;) by 2.4.2,
since both conics S(I'), CV(M) are regular.

7. The universal kernel sheaf over Y. By the construction of Y
we have got the following diagram of morphisms

YS o GSAZQW) —Z xGE(£2N V)

) / N /

Gss £l V Gss 22 /\2

Let N resp. T denote the tautological subbundles on the Grassman-
nians respectively. Let furthermore p and ¢ denote the first and
second projection of P3 x T for any second space 7. We define the
sheaves .7, & and % as kernel, image and cokernel of the composed
homomorphism

£20p* Q1) = £V @Fp  yx — ¢"V'NY
which is derived from the imbedding Q!(1) c V'V ®%, and the canori-

ical epimorphism £2@ V'V ® g, — NY. Therefore we have the exact
sequence

(12) 0—0 - £20p*Ql(1) <5 ¢*v*NY - & — 0.



PONCELET PAIRS OF CONICS 305

We can transform this sequence into the equivalent sequence (12') by
the same construction as in 5.2 (9), where A is the universal quotient
on G,(£2@V),
(12" 0= =g v*AY - £2@p*% (1) > € — 0.
If y € Y, we denote by

My Sy, G

the sheaves induced on the fibre P; x {y} ~ P; and call them the fibres
of the sheaves respectively.

7.1. PROPOSITION. (i) The sheaves &/ and /v are flat over Y*5.

() g7 (1) = y*T @ N*VV is locally free, and for a point y =
(z, 1)€Y we have T N* VY =Tz(1).

(iii) Supp# is finite over the exceptional set E C Y*, where E =
v=U(Ey), Eg=G$(£2@V)\G5(£2®V).

7.1.1. REMARK. One could do the same construction of .#* and
& over G$(#? ® V). However in this case .#* would not be flat.
The modification YSS — G5 is necessary to obtain a flat sheaf, and
indeed our .#* can be considered the flattening of the corresponding
sheaf over G5°. On the other hand the modification v was necessary
in order to extend the quadric bundle of Poncelet conics across the
boundary of the completion R, see 5.9.

Proof. (a) First we are going to show (iii). If N = v(y) we have an
exact sequence
0—n—£0Q (1) > N ®@&%, — By —0
with &y = %, and the

7.1.2. LEMMA. (a) N is stable iff &y = 0.
(B) If N € Ey then %y is a skyscraper sheaf £x or £x @ £, or an
extension 0 — £, — &y — £x — 0 where £y = @ |»(X) on P3.

Proof. (o) It follows from the stability criterion 5.1.1 that N is
stable iff NN(E® V) =0 for any & € #2. On the other hand &y =0
iff Nn(#2®z) =0 for any z € V, see proof of Theorem 2.1 and
0.2. It is immediate to see that these two conditions are equivalent.

(B) If N is only semi-stable it must be represented by a matrix
N*: #2 - £2QV of the form

X0 o X9
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up to equivalence, with y ¢ Span(x, y’). Now it is easy to verify
that the cokernel of

(13) /€2®QI(I)W,{2®@’—>%N—>O
is £x or £;® #£,, or an extension of £, by itself, by using the equiv-
alent presentation
(13) £500 — £2002(1) - & — 0,
A.v
where 4*V can be determined as the kernel of N*V: £2Q V'V — £2.
Now (iii) follows directly from this lemma.
(b) To prove (ii) we first remark that ¢,p*Q!(2) = A2 VV®@&y~ and
2:(p*%,(1) ® ¢*v*NY) = q.p* G (1) @ V*NY = VY @ v*N"

by the projection formula. Therefore we obtain the exact sequence

2
0— gt (1) > £20 \VY@Fys » V¥V v N,

On the other hand by the definition of v we have
2 3
I € Ker <,Z2®/\V—>NV®/\V) if N=v(z,T),

and therefore, using \' VY =~ A*'V,

4
T \AVY Car(l).

The quotient sheaf # = ¢,/ (1)/y*T® A\*VV is supported on E,
since for N ¢ E; the space I is the kernel. But % is also a subsheaf
of the quotient bundle £2@ A2 VY ® @ys/y*TO A*VV. Since Y is
irreducible, #Z = 0.

(REMARK. If we knew flatness already then the base change homo-
morphism T'® A* VYV — I'#,(1) would be an isomorphism already.
We are going to prove this directly, which then implies flatness.)

(c) LEMMA. For any point y € YsS, HY(P3 x U, »(y)# (1)) =0 for
sufficiently small neighborhoods U(y) C Y (for the proof see (¢)).
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Using this lemma we find that I ® A* V'V — I'#;(1) is onto by the
diagram

U, gr(1) —— TH(1) — 0

H T

U, TN VY) — TOA VY —— 0

On the other hand from
4
eryTONVY — q'qr(1) - #(1)

we get the diagram

@y TOA V), —  4(1)

| [

FreA*VVes — £20Q1(2)

which induces the diagram on sections

/F//y(l)
Fro A\ VY
° ” \,€2®ILQI(2)

I \ ﬁ@”/\ZV.

This proves that T@ A* V'V — I'#;(1) is an isomorphism.

(d) Proof of the flatness. We put Ioi(F ,y) = Jai(F , O/ m(Y))
for any & xy-module. From (12) we get the exact sequences, N =
v (y ) ,on P3

0—For(%,y)—%(1) =N ®o(l) - & — 0,
0 — For((1),y) — H(1) = £20Q1(2) — (1) — 0.

By the previous diagram I'#;(1) — £2QT'Q!(2) is injective, and hence
I (# (1), y) has no sections. But since %y is a sky-scraper sheaf,
also Jori(&(1), y) is a sky-scraper and hence must be zero. This
proves that &/ is flat over Y. Now also .#* must be flat over Y
since p*Q!(1) is a bundle.
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(e) Proof of Lemma (c). Since Supp% — Y** is finite we have
Hi(P3; x U, %) =0 for i >0, and the same is true for any coherent
sheaf ¥ with Supp.¥ Cc Supp% . If E — F is a homomorphism of
vector bundles there is the Eagon-Northcott complex

f+3 f+2 f+1 f f
= N\ E®S*’FY > \ EeFY - N E—~EQ\F - F®/\F -0

which is exact wherever £ — F is onto. We consider this complex in
the case q*v*AY(=1) = £2® &, y», see (12), which has .#/(~1) as
kernel.

Putting g (d) = #9®p*&,(d) for the moment, the Eagon-Northcott
complex is locally over Y of the form

= 30(—4) =5 O (=3) =2 60(—1) =5 20 — & — 0.

Let 2 = Kera;, % =Ima;y, & = 2;/%;, and let us write H/.%
for H/(P; x U, % ). Since the complex is exact away from Supp#,
we have Supp % C Supp% and H/% =0 for j > 0.
Since H* =0 forany . and H3@(-3) = 0, we get the following
chain of vanishings.
H'%(2) = H'%(2) =0, H'%(2)=H'%(2)=0,
H'#(2)=0, H'/(1)=H'2(2)=0.

By the same method we even get
HP3;x U, #(d)=0 ford>2-1i, i>0.
To get the vanishing of the lemma we consider a local resolution
B, B, B,
mzﬁy —_— mlé’y —_— moé’y — m(y) — 0
of the maximal ideal on U C Y* and put % = Ker ;. We obtain
the exact sequence

0— M — ~()@A(1) = ~(y)# (1) =0
0—-M—=ZN(1) — met (1) = ~(y)@#(1) =0
0—-Mm—-2RN(1) =>mAs(1) > ZHeN (1) =0,

where the % are I (/' (1), %_1). Since ./ is locally free outside
Supp%, Supp.#; C Supp#% and again H’.%; = 0. As in the previous
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part we get from H.#'(1) = 0 the desired vanishing
H'(P3x U, »(y)# (1)) =0.

This completes the proof of the proposition. By the same calculation
we even get

Hi(]IJ’3 xU, »(y)V(d)=0 fori>0, e>3-1i.
Hence we have the

7.2. COROLLARY. For any y € Y, H'#4(d) = 0 for i > 0,
d>2-1i.

Proof. We have
H'(P3 x U, #(d)) » H' Ay (d) —» H* (B3 x U, »(»)4'(d)).

7.3. Evaluation map and the sheaf ¥ . The isomorphism y*I" ®
A*VY = g,.#(1) induces the homomorphism (called evaluation map)

4
0—-g T A\VV—>r(1)—-2(1)—-0
with cokernel £(1).

7.3.1. LEMMA. The evaluation map is injective and % is flat over
Yss.

Proof. If y € YO ~ G(#2 ® V') = set of regular bundle epimor-
phism, then .#; is a bundle and &, is a line bundle on a quadric in
P3. This proves that rank%, = 0. Since rankI’ = 4 = rank./", the
kernel must have rank = 0 and thus is 0. To show that & is flat we
consider the sequence

0—=Tor(%,y) =TOANVV®F —4(1) = Z(1) =0
14
£20Q1(2),

where we have put J»(%2,y) = 9»(Z, G,/m(y)), as in 7.1.2, (d).
Since ¢ is injective, the sheaf 7 or; = 0. This proves flatness.
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7.4. The display of #,. If y € Y* we write ., = Jor (%, ).
Clearly Supp.9;, C Supp %, . From the defining sequence (12) we ob-
tain the exact diagram for the fibre sheaves on P;:

0
0 Iy
0 A » £20QY(1) —— &, —— 0
(14) ”
0 Fn £ Q1) N @O @ 0
0 0

By the flatness of &/, x4 (m) = 2y&(m) is constant and we obtain
h%F;, = h°%, . In particular the skyscraper 7, # 0 iff %, #0.

1.5. Zero sets of section of #,(1). We are now able to generalise
the results for kernels of bundle monads in Lemma 1.3 to any of the
sheaves .7, .

7.5.1. PrROPOSITION. (1) Let y € Y* and s € T.#,(1). If the zero
scheme Z(s) is neither empty nor a point, it is a line belonging to the
conic S(I').

(2) The conic S(I') is exactly the set of all zero lines of sections of
#(1).

Proof. Since supports of #,, & are O-dimensional we find
&xtl(s4,0) = 0. It follows that s € I.#(1) has the same zero
scheme as a section of .#;(1) and as a section of £2 ® Q!(2), since
£20 Q1(1)Y — #(1)V isonto. Letnow y e T c £2 NV, y =
(&, 1), correspond to s. A point (z) € PV is a zero of s iff (A z,
nAz)=0.If now Z(s) is not 0-dimensional, then ¢ and n must
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be linearly dependent and by the definition of the conic S(I') in 4.2
define a point of S(I'). Conversely any point of S(I') comes from
some y € I' with a line as zero locus.

7.6. Conjugate conic S° and R'.v. If S € C(G) is a conic we
define the “conjugate” conic S° € C(G) as follows. If S = GNPW
we let SO = GNPWL where W is the orthogonal of W with respect
to the quadratic form of G. Then S is regular iff SO is regular. If S
is a double line then also S° is a double line with the same reduced
line but with a different plane. If however S ¢ PW C G we define
SO = §. It can be shown that this map S — S° is an involutive
morphism of C(G).

ReMARK. I' — I'0 can be defined by continuity.

We are now going to generalise Proposition 1.5, (ii) to any kernel
sheaf of our construction:

7.6.1. PROPOSITION. Let y € Y and S = S(I'). Then S° =
Supp R'.#%;, = Supp R'E, as reduced schemes.

Proof. Since it seems complicated to show that the family R;.%
and their supports form a flat family, we proceed to calculate R!S,
in the different cases of S(I'), which also gives a beautiful insight into
the structure of those sheaves.

Case 1. y € YO and defines a regular conic S(I') € C°(G) was
treated in 1.5.

Case 2. y defines a regular conic S(I') C PW,G in a B-plane. Since
the entries of I" are decomposed we can choose a basis ¢g, e;, e; € W,
s.t. I' is represented by the matrix

€01
= |2 e ’ NV*=[ e el]’
€02 €12 —€ €
€02

where e;; = e;Ae;j, and then NV is represented by the matrix NV* in
the above form, see (10) in 5.8. By 0.3 the homomorphism induced
is surjective, i.e. &, =0 and we have the exact sequence

0—»/1@——»%2®Ql(1)—N;—+,€2®é’——>0.
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If we apply R we get, see 0.4,
#20QY —— #2060 — R\ — 0.
NV*

We can now calculate this homomorphism as follows. Let p;; be
dual to ¢;;, i.e. the homogeneous Pliicker-coordinates of P /\2 V,and
let G;j = {p;j # 0}. If x =3 x;e; defines the homomorphism QV -
O and if QV|G;; ~ #? ® & is trivialised, this homomorphism can
be expressed by the matrix

P; P;
Xy — #Xj + %xi
! ! . 2@@ ad ﬁ(;.
X — -&l + —Jlx,’
P’ " Py

This follows immediately if we choose a basis of (V/U)V, the fibre
of Qv at U € G;;, where p,, are the Pliicker coordinates of U, and
k, | are complementary to i, j. If we choose for example Gy, we
get the homomorphism

Z2®/{2®@’G——n€2®ﬁ@—+Rl/1§—>0,

The Fitting ideal of R!.%;|Gy; therefore is generated by p;3, pos,
p}, —po> which is the ideal of the conic S(I') parametrised by s2ep; +
steyy + t2ey . Since S = SO here, this settles Case 2.

Case 3. y defines a regular conic S(I') C PW, C G in an a-plane.
Again upon choosing a basis of ¥ we can assume that I', NV are
represented by the matrices

€01
[+ = |3 €|  pve_ [6’0 } .
€02 €02 €o
€03

Ol

In this case %y = £2 ® Z where Z is the kernel in

(15) 0-—»2’—»91(1)—‘?—»@’——*/{%—»0
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and .7} is the kernel in

(16) 0=t = £*RF — £2® 4, —0
where we use that here , = £2® £, .

To proceed further we have to digress into computations for the
sheaf Z . If we write x for ¢y and apply the same transformation as
in 5.2 (9), we find that Z is the first syzygy of ~(x)(1), i.e. we have
exact sequences

0-2Z > V/x)Vee —.#(1) -0,
(17) 3 2
0 AV/x)V®@(-2) > \(V/x)" ®@(~1) = Z — 0.

From (17) we get T2 (1) = A>(V/x)V and that

2
Hom(Z , £¢) = \(V/x).

Hence if & € /\2(V/x) induces Z ? £y , the same element gives the
induced homomorphism I"Z'(1) —? # . Moreover, if we apply R° we
get

Rz R, Rog,

II ll

N /x)V eos(-1) —— @p >

l /
N(V/x) ®op
where P, = P(V/x) is the a-plane of x and ¢ is identified with an
element of (V/x)V = A2 (V/x).
Now we are able to calculate R'.#%, in Case 3. First we determine

the homomorphism in (16) by the induced sequence

0 —— TIu() —— #£20Tz(1) e 0

O——>{4®A4VVTKZ®A2(V/X)V A%Z — 0
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It follows that A4 is the matrix

e e
4= [ 12 13] '
— €23 €12

Passing now to R0.Z we get the diagram

£2® R0z __’/{2®R0/{e0 —»Rl/lﬁ, — 0

l | IP

’{2®@Peo(‘1) — ‘2‘8’@1@ —— Rl —— 0

Now under A%(V/ey) ~ (V/ey)V we have ejp « ey, e;3 & —ej,
e23 < e and hence
det4 =ey? —e)ej.

But this is exactly the equation of the conic S(I') in the a-plane
P, =P(V/ey) = Pleor , €o3, eoz) Which is given by seq; +steg3 +teq; .
Since here also S = 89, this proves Case 3.

Case 4. y defines a pair of lines S(I'). We assume that S(I') is a
plane section as in (D), 0.4, since the other situations are only special
cases of this. If S is the union of the two lines e, f which define
the pencil of lines in E through p, F through g respectively, then
SO consists of the lines ey, f; which describe the pencil of lines in
E through g, F through p, respectively.

o
e
%< S\
£
P
q
E

£ o

F

o)
3]

T

Let &, be the quotient of % s.t. Supp%, = EUF and R\ =
R'%, . It will be shown in 10.2 that &, is an extension

0—~e(@)(-1) =& — ~p(p)(-1) =0
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where ~p(p) C @F is the ideal sheaf of p in the plane F . Choosing
two generating sections of .~y (p) we obtain the resolution

(18) 0 —r(-3) W;Z@,@(_z) — »r(p)(=1) — 0.

Since R!Z(-m —2) = S2S ® A\>S, where S is the tautological
subbundle on G, it is easy to derive that R'@p(—m — 2) is the re-
striction of R!@(—m — 2) to the B-plane Pr of all lines in F, and
that the homomorphism @r(—3) — @r(—2) becomes contraction with
a: S ® \?>S|Pr — \*S|Pr. Hence from (18) we get the sequence

(19) 0= S@ap(-1) — £2®@p (=1) > R (=p(x)(—1)) = 0.

This shows that the support of R!zp(p)(—1) is the line f© and that
the homomorphism (a, b) must be injective. Indeed R'p(p)(—1) =
Oro, since S|Pp =~ Q},F(l) and (19) can be transformed into

0— &p,(=1) — &, = Rlmp(p)(=1) = 0

as in 5.2 (9), where a is the equation of 0 C Pr.

Similarly we obtain R'2zg(q)(—1) =&,

Now we consider the resolution of ¥ which can be constructed
from the resolution of the ends.

0 0 0

0

Op(=3) —— Op(=3) ® O (=3)

Op(=3) —— 0

0

£ 0 0,(-2) £200,(-2) @ £* @ (-2) #2906 (-2) —— 0

0 —— #2gl@)(=1) —— g — zpp)(=1) —— 0

0 0 0
If we apply R! we find that the sequence
0— R'zp(g)(-1) = R'E, — Rlzp(p)(-1) - 0

is exact because the left-hand side of (19) is injective. This proves
that R!%, is an extension of @0 by O, , and that Supp R'.%;, = SO.
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8. The universal sheaf ¥ over X% . Recall that in 6.3 we have
defined X to be the flag subvariety

2 2
X CZxG, (/2®/\V) x Gy (£2®AV)

of all triples (z, M, I') satisfying (z, ) €Y and M cT C £2QW,.
Let

X SN Y
/ \ lyy
Gr(£2@ N2 V) Ga(£2@ \* V)

be the projections in M, T the tautological subbundles respectively.
By the definition of X we get the exact sequence

O-uM—-»T—-B—0

on X where B is defined as the quotient bundle. As before we denote
by p, resp. q, the first and second projection of P; x X%, and we
denote (id xm)*.#" again by ./, so that we have ./; = ./7(x) by abuse
of notation and similarly for & . Since we had the inclusion ¢*y;T —
(1) we obtain the exact diagram (up to the factor ® A* V'V in the
top row)

0 — ¢*#'M —— ¢*y'T —— ¢*B —— 0

0 — ¢*uy'M — 7 (1) — F(1) — 0,
Z(1) —— 2(1)
0 0

in which & is defined as cokernel. Since B is a bundle and & is
flat we conclude that also . is flat over X*. Thus for any point
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x=(z, M,T) we have the diagram (up to @ A* V)
0 0

0 — M0 — I'®l0 —— T/M)®06 —— 0

21) 0 — MRF —— #4(1)

|

FH(1) ——0

(1) == 5(1)

0 0
on P3. We also recall that we have a monad display generalising (D)
of §2:

0 0
| |
0 — MeQ33) — A Fx » 0
| | |
(22) 0 — MeQ3(3) — £20Ql(1) My, 0
| |
% =
| |
0 0

where .#; is defined as the cokernel and %, comes with the definition
of .4, see 7.4.

8.1. ProPOSITION. For any x € X% the sheaf %, is semi-stable of
rank 2 with Chern classes ¢; =0, c; =2, ¢;=0 on P3.
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Therefore the family ¥ defines a morphism of X into the Maru-
yama scheme which will be discussed in 8.3.

Proof. We only prove here that % is torsionfree with the Chern
classes indicated. Semi-stability will follow from the geometric de-
scription of the sheaves in §§9 and 10.

It is enough to prove that .Z,, is torsionfree by diagram (22). Since
depth .Z,, > 2 everywhere, it is enough to show that .Z is locally
free outside a curve, see f.e. [Si-Tr]. If M* is a matrix representing
M , and the homomorphism of the fibre over (x) € PV,

. 2

£2® (x) —M/\—Xntfz@)/\V/\x
is degenerate, i.e. has rank < 2, then for any y € V' also the matrix
M*AxAy has determinant zero and therefore vanishes on the a-plane
Py . If now M* is degenerate on a surface, its det M* would be
identically zero on the Grassmannian, which contradicts semi-stability
of M , see Proposition 6.1.1. This proves that % is torsionfree. The
calculation of rank and Chern classes follows immediately from the
diagrams.

8.2, Cohomology of %.. The cohomology dimensions hiy(d),
h'%.(d) can be summarised in the following tables.

d A A S d R R S

>2 * >2 *

1 4 2

0 2 0 2

-1 2 -1 2

-2 t t -2 t t

-3 t t -3 t t+2

<-4 t t * <-4 t * *
for /l/y for 7,

Here ¢ = 17, = h0%, <2, see 7.1.2.

Proof. We fix x and y and omit the index. It was shown in Corol-
lary 7.2 that A’/ (d) =0 for i >0 and d > 2 —i.
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Since H'/'(d) = H'F(d) for i > 0 and d > -2, the same is
true for # . Next we show that also 0 = A3/ (d) = h3F(d) for
d = -2, -3, which settles the case 4#3: From the display (14) of
Ny = in 7.4 we obtain easily 0 = H2.«/ (d) = H3.»'(d) for these
d.

Next we state that A2 (d) = t for d < —2, which also follows
from the same display by #°% = hlw (d) = h2»' (d).

The case #2#(—1) = 0 is more subtle. To obtain this we note that
h2¥(=1) = h2% (-1) and that for .# we can replace the row of .%
in (14), 7.4 by the row

O—-»%—nﬁ@ﬁ?,fz@@(l)—»%—»m

where the matrix R is the kernel of

0 £ £20VV — #2550,
N‘-V

see (9) in the case of a plane. Now it is easy to see that in the few cases
of degenerate N*V the induced homomorphism £2@T# — I'&(-1)
is onto which implies H2% (—1) = H'Im(R)(—1) = 0. By this the
case h2/(d) is settled for all 4.

For d > —2 we also have H2# (d) = H2%(d), and for d = -3
the exact sequence

0— H>/(=3) - H*(-3) - M@ H¢(-3) — 0,

and hence h27 (-3)=2+1.

Finally A'7(=1) = h'F(=1) = 2 and hlr = hlF = 2 follows
from Riemann-Roch and #%# = h%% = 0. Of course %7 (1) = 4
and A% (1) = 2 by our earlier result.

8.3. Morphism Q - M(0,2). Let M(2;0,2,0) be the Maru-

yama scheme of all semi-stable coherent rank 2 sheaves on P; with
Chern classes ¢; = 0, ¢; = 2, ¢3 = 0 which contains M(0, 2) as
an open part. Let M (0, 2) be its closure. The family %, x € X%,
provides us with a morphism X — AM(2;0, 2, 0). Since by our
construction % = %, if O(x) = O(x'), this morphism is SL(2)-
equivariant and factors through the good quotient Q = X%//SL(2).
By the description of M(0, 2) in 2.4.2 the open set Q \ Qo U Q, U
Qp U Qe , see 4, maps isomorphically onto M (0, 2). Therefore we

have a surjective birational morphism Q - M(0, 2). We are going

to investigate how far it is from being an isomorphism.
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Let Q -5 C(G) be the projection of the quadric bundle and let

2y C Zg € C(G) be the subvarieties of all double lines, resp. of all
singular conics. We write

Qexc = ﬂ-1(26) N Sing Q.

By 4.2 this is 2-dimensional over X, and indeed a P,-bundle.

8.4. PROPOSITION. (1) Q\ Qexc - M(0, 2) is injective.

(2) The fibres of Qexc > M(0, 2) are in the P,’s of double struc-

tures of the conics in Xj,.

Proof. (a) The injectivity on Q\ Qexc Will follow when we prove that
the pair (S, CV) of conics given by x € X is determined by the class
[%] through Supp R'% and Supp R (—1). Since R'.%;, = R\%
the reduced conic S is already determined by S° = Supp R'.%; , see
7.6.

O Ifx=(z,M,T)e X% denote W =W,, ¥F =%, S=ST),
and CV = CY(M). We consider the diagram

0 — Wt — ANV w 0
1 | Il
0 — (A2V/W) —— A2V wv 0

where the vertical arrow in the middle is the quadratic form of the
Grassmannian, which identifies the orthogonal W+ with (A2 V/W)V,
and provides an isomorphism of the cokernel W’ with WV. If we
take any splitting of the first sequence we get a projection

2 2
PAV\PWL —pWtcrPAV.
(c) From diagram (22) we get the exact sequence

0—RM(-1) = £200:(-1) M 200, — R'#(~1) =0,

3

where M* is a matrix representing A , which also is a homomorphism
on the Grassmannian by £2@ A*VV @ A\2U — £2 for U € GV,
and which we also denote by A*. It follows that R%.#(—1) =0 and

Supp RL#(-1) = {det M* = 0}.
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Moreover from the display (14) we obtain that R0/ (—1) = R0,
R'%7(—1) = R, and from (22) the exact sequence

0— R — R'¥(-1)— R'.#(-1) - R'% — 0.

Since Supp.9 = Supp @, also Supp R%°7 = Supp R°%, and the se-
quences show that

J =SuppR.F (—1) = Supp RL.#Z(-1) = {det M* = 0}.

REMARK. M*is determined by R'.#(—1)through £#2 — £2QI¢;(1)
up to equivalence.

(d) LEMMA. There is a unique quadric hypersurface J c PA*V
such that J =GN J and J is singular along S° c J .

Proof. Let f be the equation of any quadric hypersurface J with
J =GnNJ and let g be the equation of G. Since S° is contained
in the singular locus Sing(J) (because S° c PWL NG C J and M*
vanishes on PW+), for any p € SO there is a unique A(p) € # such

that of 5
_ q
a5 (p) = A(p) a0, (p)

for all derivatives with respect to the Pliicker coordinates of PA2 V.
Because G is regular, 4 is a regular function on SO and hence con-
stant. Then J = {f — A4g = 0} is the unique hypersurface of the
lemma.

Since however {det M* = 0} has the properties of J in the lemma,
J = {det M* = 0}. On the other hand the conic CV(M) in PWV has
exactly the same equation, see 6.5. If PWV c PA* V' by some splitting
in the diagram of (b), we obtain

cV=pWVnlJ.

Therefore the injectivity of ¢ on Q\ Qexc Will be proved if the plane
PW or PW+ can be determined by 7 .

(e) If we consider Q \ n~!(Xf) clearly PW is determined by S° =
Supp R'.% , since each S and S© is a pair of distinct lines. In this case
the injectivity follows if we show that Supp R'.¥ and SuppR'.F (-1)

are invariants of the class [#] € M(0, 2). If % is stable, there
is nothing to prove. If .# is semi-stable and non-stable then the pair
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(S, CV) is semi-stable, see 3.12, 10.5 with .S and CV both degenerate.
It is shown in 10.5 that in this case .# is an extension of the type

O_"]Luq—)y—"fKU‘D—)Oa

where 77,4, Jkup are ideal sheaves of a line and a point as indicated
in the figure, which is determined by (S, CV).

(If ¢ € L then .77, is the ideal sheaf of the line L with a multiple
structure in g with tangent vector in the plane E, similarly for KUp .)
It follows first from 7.6.1, Case 4, that, if we consider the sheaf ./,
Supp R17 is independent of the extension class; hence the same is
true for R = R\.» . Second we have 7 ,(—1) C A(-1) Cc@(-1)
and hence R0.7,(—1) = 0. Therefore from the extension sequence
of % we also obtain the short exact sequence
0 — R'SFe(—1) = RIF(~1) > R'Fyp(—1) = 0,

which shows that the support of R'.(—~1) is independent of the ex-
tension. This proves injectivity of ¢|Q\ 7~ !(Z).

(f) Let us now consider the regular points over X, i.e.
7:“‘(26) \ Qexc- Because these correspond to stable points x € X5
with %, stable, see 1, the supports of R1.F,, RI.F(~1) are deter-
mined by [%]. But here we have to show that % determines the
plane PW or PWL.

Now in the case of stable pairs (S, CV) with S a double line we
only have two cases of CV as indicated in the picture, see 3.12.

— | O, <E
W ! b b3

case 1 case 2

In Case | PW. = SingJ since PW+. C SingJ and the latter is*
2-dimensional. Therefore the plane is determined by % in this case.

In Case 2, J has an equation a-b = 0 such that one factor, a say,
isnotin S°=Sc W c A’V asa 2-space. This implies

St ¢ atnbt =SingJ.
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Because here S and SingJ both are 3-dimensional and contain
PW
PW' =St NSingJ.
This again proves that PW+L is determined by % , since S =.S° and
J are determined by & .
(g) Finally we consider the restriction ¢|Qexc. If (S, CV) € Qexc
the conics are of the type

=] =l B4

PwW EcTp

3

with the singular point of CV being the point S € PWV and CV
determining two points L, K € S. The triple (S, L, K) determines a
pair of lines in P3 with a plane F and a point p € E. The sheaf & =
F coming from a point x defining (S, CV) again is an extension

O*tﬁUp‘*y_’«fKUp_’os

see (¢), and [F] = [FLup ® Fkup]l In M(0, 2), where the double
structure of p in one of the lines shows in the direction of the plane
E . But now the class [#] cannot remember the plane (whereas the
extension class of & can, as can be shown easily). Thus (S, CV) -

[#] forgets the plane PW , but [#] determines the triple (S, L, K).
This shows that ¢|Qexc blows down the P;’s of double structures of
the conics S € X, see 4.2, 3.9.

8.5. REMARK. An “Orbit-Lemma” is true for Q\ Qexc: Let x, x' €
X with g(x), g(x') ¢ Qexc. Then F =7 iff O(x) = O(X').

9. Sheaves in the boundary with regular conic S'. In this section we
start with the detailed geometric description of the sheaves represent-
ing boundary points of the moduli space. Since we fix a semi-stable
parameter point x = (z, M, T) in each case with y = (z,I') and
associated space N, we drop the indices and write

?=‘7X7 ‘/V=*/I/}:'a ?:%, %=%N: gnga ‘7=‘7y-

and also
S=85I), C'=C'(M), W=W,.

In this section we assume that S is a regular conic, which could be
a regular plane section, or contained in a 8- or a-plane, see 9.1, 9.2,
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9.3 respectively. It is convenient in this case to consider the Poncelet
conic C in the same plane PW of S, which is the polar dual of CV
w.r.t. S. Since the Poncelet condition for degenerate C just means
that one of the lines of C must be tangent to .S, we have to consider
the following cases:

@) | | A [ [T

case 1 case 2 case 3 case 4 case 5

9.1. The sheaves in Q. \ Q.U Qp U Qp. The pairs (S, C) in this
set are characterised by S to be a regular plane section and C to be
singular. In such a case the homomorphism defined by N is a regular
epimorphism as in 1.1, 1.2, and we have /' =%, € =9 =0, and
¥ =0y(-2, 1), where Q here denotes the quadric defined by S'.

9.1.1. PROPOSITION. The sheaves # in Case 2/3 are exactly those
which can be obtained by an “elementary transformation”

0—&7—»3'?@(1)%0,

Prw

where &' € M(0, 1) is an instanton bundle with ;&' =1 (i.e. a
null-correlation bundle), | is a line in Py and = is an epimorphism.
The data (£',1, n) are in 1:1 correspondence with the pairs (S, C) €
Q. \ Q. UQpU Q. as follows

(i) &' is the bundle in M(0,1) = PA*V \ G,V determined by
the pole a of the component C, of C in the plane PW ,

(ii) [ is the tangent point of the component Cy,

(iii) the epimorphism m corresponds (in a way described in the proof) .
to the plane PW through a, | and intersecting G regularly in S. )
Cases 2 and 3 can be distinguished by &'\l ~ 20, and &'|| ~

g(-1)eag(1).

COROLLARY 1. Each such & is u-stable, since &' is u-stable.
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COROLLARY 2. Let B — G x M(0, 1) be the projective bundle of
homomorphisms &' — @(1) mod scalars for (I,&') € G x M(0, 1)
and let B® be the open part of epimorphisms. Then the elementary
transformation gives us an isomorphism

B% — 0,|C°(G)

onto the open part of the boundary component Q. defined by 9.1, Cases
2 and 3.

Proof. (a) Let # be given. Since S is regular we can choose a basis
e; of V' such that the space N can be presented by the matrix

N* = € €
e e3)’
see 1.1, 1.2, and such that / = ey; = ¢y A e; . Moreover since C¥(M)
is a pair of lines, the matrix representing A must have the shape

. (1o
w=lp )

such that M* AN*' = 0. By our convention A’V ~ A% V'V, the conic
C has the equation /oa =0 in PW ~ PWV (duality given by G or
S). By this form of M* we obtain the exact diagram

0 0 0
| |
0— O3 —= o . 7 0
| | |
23) 0 — £2®Q3(3) — £22 Q1) M 0
ba
| I I
0 — Q@) — Q1) & 0
| I I
0 0 0

with cokernels &, .# , & respectively. On the other hand the monad
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(22) of ¥ in 8. gives the mid row of the exact diagram

0 0
F = 7
(24) 0 F V4 o0 —— 0.
|
0 F &' Zoker ——— 0
0 0

In this the composite ¥’ — £% ® & is still injective, which follows
from the upper right-hand square of (23) and from

£22Q1(1) — #

€ € ] s
€ 6

£2e0

since / = ey . This shows that (24) is exact. Since a is indecompos-
able, &' is a typical bundle of M(0,1) = PA’V \ G, see [Ha2]. It
remains to identify the cokernel. By the definition of ' — £2 Q&
we get the diagram

0
0 Q'3 —— o' F — 0
|
Q1) —— £reo A 0,
(ep-e1) s
% oker
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which shows that Zoker = &;(1). (In particular we have obtained the
two equivalent descriptions of ¥’ which is a sheaf of the boundary
of M(0,1).)

(b) It is also easy to verify that the subspace W C /\2 V' is isomor-
phic under /\2 V ~ /\2 V'V to the kernel of the composed map

/\Vv rQl2) - rg'(1) —» re(l),

using the above matrices. This shows that the plane PW is determined
by n. Conversely we had just constructed # from /, a and the plane.
Thus we have established (i), (ii), (iii) if & is given.

(c) Let now an elementary transformation be given. We can find
a monad for & by going backwards in the diagrams (23) and (24).
First we can determine /, a and the plane PW by n as in (b). Let
' be defined as the kernel of £2®¢@ — &)(1), and define .# as the
pullback in diagram (24). Since %’ and &’ have the resolutions as in
(23), we get the resolution of .# by adding up. Then 0 » % — # —
#2® @ and the resolution of .# give us a monad. To see that this
defines a pair (S, C) of the above type, we consider the composed
homomorphism

£22Ql(1) £2®0 —0,

v=(%4)
which must have the entries ey, e; in its first row because of / = ¢y
and M* A N*V =0, and which must be an epimorphism. By 0.2 we
must have dim(ey, e;, v, w) =4 or = 3 in a special configuration.
If dim = 3 it would follow that the entries /, a, b of M* are con-
tained in a B-plane, see 7.6, Case 2, and a would be decomposable.
Therefore N* defines a regular conic § and M*, by its shape, a
degenerate conic C as in Cases 2 or 3.

Case 4. If the conic C consists of two tangents we get a degenerate
case of the elementary transformation by replacing &’ by a sheaf of
the type ¥’ considered above. Thus a sheaf % in 9.1, Case 4, is
given as the kernel of an epimorphism =n

0—-5-20 504 (1)eg(l)—0,
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where 7 corresponds to the plane PW through the axis /;, /,. The
proof is a special case of the one just made. Note that by this we
extend the morphism of elementary transformation to AM (0, 1). If
we compactify this along the direction of the epimorphisms we would

leave the set of regular conics S .

1 rw

Note that also in this case # is stable, since it is easy to show
that any sheaf &' as above is stable (but not u-stable any more): If
& C ' is a sub-sheaf of rank 1 with ¥’/ torsionfree, we can
assume ¢% =0 and hence % C ¢ an ideal sheaf. The diagram

0 0 0

shows that Supp(Zoker) is at most O-dimensional if Z # &, and
that then x.%'(m) < $xF'(m) for large m.

Case 5. Again this is a degeneration of Case 3 or Case 4. We obtain
here an exact sequence

0-F =205 % -0,
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where VY = 2# as in the previous case and where % is supported
on L as an #-module extension

0—o(1)—%—g(1)—0.

Here both the extension and the epimorphism depend on the plane
PW , but we omit further details. Again % is stable.

- £
o)

9.2. The sheaves in Qg \ Qo. These are the sheaves corresponding
to a pair (S, CV) where S is a regular conic in a f-plane. Since
PW is a B-plane, we have W = /\2 U where PU C PV is a plane,
which can be considered now the dual of PW by /\2 UV ~ U. The
dual conic SV C PU can now be considered as the base conic for the

Poncelet property and we can also consider CV(M) as a conic in PU
given by the equation

PW

detM*=0 inPU,
where the entries of M* are elements of W = A> U ~ UV . Moreover
we choose a basis e; of V' such that
U=(e0,e1,e2), UeB(e3)=V,
and such that the matrices I'*, N* representing the spaces I', N are
given by

€01 0
= €12 €1 N* = [ €0 81]
€02 €12 —€ &
0 e
as in Case 2 of 7.6.
S
PWec G

-

P=1PU cIP

3
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9.2.1. PROPOSITION. (1) The sheaves F in Qp\ Qo are elementary
transformations of the type

0-F - £200 - (1) -0

where % is supported by the conic CV C P C P3 and is the cokernel
of M*:

0—»{2®§2§,(2)7;2®@p~@-+0,

where M* is the matrix of M with entries in W = N*U (&% is a
Cohen-Macaulay module on CV).

(2) The sheaf Z is a stable rank-2 bundle on P with ¢,Z(1) =0,
2% (1) =2 and is the kernel of N*V,

0-% - £20041) X0 200 — 0
(with entries of N* in U). Its jumping lines are the points of S, which

at the same time are the zero loci of sections of /#'(1).

ReMARK. These sheaves are well understood, see [Ba].
(3) The Poncelet relation of SV with CV in P has its expression
in the exact sequence

0-2(-1)— (T/M)®Q*P(2) - % — 0

obtained in (25) of the proof.
(4) The restriction of ¥ to P splits into

FIP=F0%.
(5) Each such % is stable.
Proof. (a) We first remark that the homomorphism Q3(3) — Ql(1)
defined by a € AU c A’V splits into =

Q(2) — @ 0 (1)

when restricted to the plane P = PU, see 0.1.
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(b) Let us consider now the diagram

0 — £A4Q33) — N _ £ — 0

ll

0——»;4®Q3(3)—P—»z2®91(1)——> £ —0,
va
£1Q0 —— 420
0 0

which is defined by I'™*. From this it can be proved first that z;3% =
0, i.e. & is an &p-module (zp, ..., z3 € V'V are the dual coordi-
nates). If we restrict this diagram to P we obtain the splitting as
indicated in the diagram, where we identify 9 or (¢, @p) = Z(-1) =
Tov\ ('? ’ ﬁp) ’

0

l

NP

— QRée—— o

-~
-~
0 1 P
g
4 2 2 2 lk &
0 Z(-1) £7®Qp(2) £° R, @£ ®Qp(1) Z\P 0
roN b ~|
£1e0, £ 00,

0 0

It follows that

Np=£*Q0p %,
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and that we obtain two different presentations of the sheaf & which
are equivalent by using a transformation based on QL(1) c UY ® &p

as in (9) of 5.2.
(c) Let now the sheaf # be defined as the cokernel of M* as
homomorphism on P and as in the proposition. Then we obtain the

exact diagram

(25)
4
0 — M2Q2) £ 00, z 0
|
e Z(-1) —— TeQ2) Aleﬁp 0
(T/M) ® Q3(2) ——— (/M) ® Q}(2)
# 0

and in particular the sequence (3) of the proposition.
(d) If we restrict display (22) of ¥ to P we obtain

0 0

|

0 —— M®Q2) £’R0pr % — Flp —— 0

| | ]

00— MRQQ) —— £20G, 0 £2@Qh(1) —— Mp —— 0

\ /.v z

£rQ Op — £’Q0

l

0 0
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thereby obtaining the splitting
Flp=Z®Z.

(e) Finally we consider the diagram

0 0

l l

0 —— I/MeQ(2) -—+/9'(—1) —— &) —— 0

23 o« s z3 |
/ 10
7 Y

0 -———»F/M®Q3(3)*—» F — % —0

N

0 —— Z(-1) —— I/M @ Q3}(2) oG —— ¥ ——0

l |

0 0

Since z3%(—1) = 0 the multiplication by z; lifts to «, and by the
splitting of the bottom row we obtain the exact diagram

0 0

0 — IT/MQQ2) — F(-1) —— Z(-1) ——0

” *

0 —— I/MeQQ2) —— I'/M Q3 (3) I/M®Q:(2) —— 0

B

g% prss— %
0 0
Altogether this proves (1), ..., (4) of the proposition. For the proof

of stability we can take a subsheaf &' C ¥ with /%' torsionfree,
with ¢;.%' = 0, rank%' = 1, since 2¢ is u-semi-stable. Now a
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diagram analogous to the one of 9.1, Case 4, shows that the Zx£.- is
0-dimensional and thus x&'(m) < $x% (m) for large m.

REMARK 1. The sequence (3) of the proposition describes the Pon-
celet situation in terms of bundles in the plane P, see [Ba] and also
[Tr2]. Since &xt1(&,#) =2V(1), &V =2(2), and &xt3(%#,0O) =
#V(2) (dual of # on its support), we also obtain the exact sequence

0 T/M)Y®@0p —Z(2) > %V(1) >0,

where I'V = I'#(2). This shows that we get all Poncelet curves if we
vary the 2-dimensional subspaces of 'Z(2).

REMARK 2. We can also investigate the epimorphisms £2 @ & —

T
Z(1) — 0 for a given conic CV in P asin 9.1. The result is that the
pencils C PI'#(1) = P3 describe the 4-dimensional family of regular
conics SV C P to which CV is Poncelet related. Thus also in Case 9.2
the epimorphisms 7 correspond to the regular conics. Moreover the
elementary transformations investigated here also extend the ones of
9.1 to the case of S-planes.
Now we can describe the different situations of the conic CV.

Case 1: in which CV is regular. Then %Z = g.v(1) is the line
bundle of degree 1 on CV.

Cases 2, 3: in which CV is a pair of lines. In this case the matrix
M* cannot be split and defines .%# as a nontrivial extension

0—-0r—>F— 0Ok —0,

where L, K are the two lines of CV in the plane P.

Case 4: in which CV consists of a pair of tangents. Here % is the
direct sum &y @ Gk .

Case 5: in which CV is a double tangent. Now % can be a non-
trivial extension again depending on M*, 0 - &, —- £ — ¢ — 0.
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9.3. The sheaves in Q,\Qy. These are the sheaves corresponding to
a pair (S, CV) where S is regular in an a-plane and thus determines
acone Q C P;. Any plane P = PU in P; not passing through the
vertex ey serves as a base of the cone which is isomorphic to the
a-plane PW , and we assume

The conic QNP can be identified with the given conic S. Now we

can choose a basis ¢, ..., e; such that
€01 0
ep3 e
U= (e1 , €2, 6’3) and I'* = 03 *01 ,
€02 €03
0 €02

see 7.6, Case 3. Then the equation of S in P is z% —z1z3 =0, where
the z; denote the dual coordinates, and the matrix N* is necessarily

a direct product
N*= ["0 ] :
€o

As shown in 7.6, Case 3, we have in this case € =9 = £2® Ky =
2 times the skyscraper sheaf k., = &/~(ep), and

F=£'0F,
where Z is the first syzygy of the ideal sheaf ~(ey)(1), or equivalently

0—-»2’—-»91(1)—;»@’—»,{30—>0.

0
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We first investigate the sheaf &, which of course by §7 is determined
by the cone Q alone. Let £ be the cokernel in:

0 0
0 — I'eQ3(3) V4 7 0
|
0 — '@ Q3(3) X — 0
T = T
0 0

9.3.0. PROPOSITION. & is the ideal sheaf H,9 C G of any line

of the cone and & = »(ey)S o (5? is a reflexive Cohen-Macaulay
module of the singularity ep).

Note that in this case, we have only £(2) C £(2) ~ &£xtL(, ).

Proof. We have T.7 (1) = £2@W C £#2® A\’ V and thus the diagram
0 0

Ir'ec —I'®e

|
N
L

0 — £2@0(-1) —— £2WR0e

0 — £200(-1) — 2o — Z(1) — 0
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in which ¢ becomes the matrix (3 ) by the entries of I and
the canonical resolution of .# as #2® Z. But such a ¢ is exactly
the resolution of an ideal .5 y with [ = {z; = z3 = 0}, say. It
follows that & /m(éo)% has dimension 2 and hence is isomorphic to
T . Therefore & 2/7&(80).% .

The different situations of C or CV (we also identify C with a
conic in the plane P ~ PW) can now be interpreted by the struc-
ture of the bidual sheaf .#VV. The situation is similar to that in 9.1
except that all sheaves are singular in the vertex and for elementary
transformations we have to consider lines on the cone.

9.3.1. ProPoSITION. Let F correspond to a Poncelet pair (S, CV)
with S a regular a-conic. Then for 0 - F — FV - % — 0, we
have,

(1) FVV is locally free outside the vertex ey and ¢,V = 0.
() FYV = i.a*(FVV|P), where P3 «— P3\ {ey} — P, and thus
]
FVV is determined by the 2-bundle VY|P with Chern classes c; =0,
0<c<2.
(iid)
2 if C is regular,
;YW ={ 1 ifC is a tangent and a secant,
0 if C is a pair of tangents.

(iv) & is stable in each of the different cases of C, which will be
described below.

Proof. (a) The sheaf .Z is also the kernel of (V/eg)V Q& — ~(e)(1)
and Z|P = QL(1). It follows immediately that

Ln*(Z|P)=Z.
Moreover, the homomorphism
2V — (1) = L (Qp(2) = Fp(1))
can be described by
Ve e LLeaNVeec NVees

z , (1)
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and the dual of any homomorphism Q3(3) — Z c Q1) is of
this form. . '
(b) Let now # denote the cokernel of
0—-£20033) — £2Z - F —0
M* n
£20Q(1),
where as before M * represents M. Then from 0 —- ¥ — F -

I — 0 we get 5" = V. In our case moreover M* = ey A A for
some £2 - #2® U and thus we have the diagram

e Vieoe LU 2eNves

(26) l l ;

0 — FV —— £?20FV —  £20(1)

which, after restriction to P, gives the exact sequence
26p) 0—FY|P = £20QL2) 25 £2@0p(1) — @ — O.

(c) This proves the proposition: Since #V|P is reflexive on P, it
is locally free. We must have

it (FV|P) =5V

by (a) and diagram (26). Hence %V is locally free on P;3\{eg}.
Taking the dual of this identity yields (i), (ii). From (26p) we get
c(FV|P) = 0, c3(FV|P) = 2 — h%D, where we note that ® must
have 0-dimensional support. This proves (iii), since it is shown below
that A0 =0, 1, 2 in the different cases of C.

We are going now to describe #VV — % in the different cases
of C. Note first that the conic CV Cc PUY ~ PWV has the equa-
tion det4 = 0, where as above M* = ey A A with entries in U,
This follows from our convention A2V ~ A2VV and AW ~ WV
W=eAU.

Case 1: in which CV is regular. In this case the entries of M* or
A span the space W or U and the sheaf .# in display (22) must be
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locally free except at ey. Since Supp% = {ep}, it follows from the
same display that also % is locally free on P3\{ep}. Moreover, if we
consider (26p) in this case, we see by the form of the matrix 4 that
® = 0 and hence ¥ VY|P and F|P are bundles with Chern-classes
¢; =0, ¢, =2. Its jumping lines are exactly the points of CV as can
be calculated from its representing matrix 4. Since CV is the polar
dual of C w.r.t. S, the jumping lines are the polars of points of C

w.r.t. S.
c
s

There is a unique subspace LV C I'(#|P)(1) s.t.

(27) 0—LV®op(l) = F|P—ds(—1)— 0,

the cokernel of the evaluating homomorphism is &5(—1), and this
sequence is nothing but the restriction of the sequence

O-T/M)®e(-1)-F -2 —0.
If we start with (27) and apply i.n* we obtain the diagram

0 0

0 — LV®O(-1) — F Z » 0

Q2

0 — LV®O(=1) — FW . 0,
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in which & is the pullback of & c £. Therefore # =  in this
case.

REMARK. If we pursue the point of view of elementary transforma-
tions VvV — 7 , the sheaves #VV and . can be defined by C Cc P

and ¢p, and then the epimorphism / corresponds to a conic S which
is regular and in Poncelet relation with C or CV.

Stability. In Case 1 the sheaf #VV has no non-zero section and thus
u-stable, hence also % is u-stable.

Cases 2/3: in which C is a pair of lines, a tangent and a secant of
S. Let L be the line joining the tangent point with the vertex and K
be the line joining the pole of the secant with the vertex. In this case
the sheaf # can be described as follows:

(a) # is the structure sheaf

F = ﬁQ/,? = ﬁQ//n(eo)._fL,Q

of the line L with a multiple point in e¢; and we have the exact
sequence

09 -F -0 —0.

o

/*a

9 A
’7‘ iil \‘
/'S_ /

c £ P

E]

(b) The restriction #VV|P is the unique 2-bundle on P with
c(FVV|P) =1 such that its jumping lines are the lines in P through
the pole a. (Such bundles are never stable, since h°(FVV|P) = 1, see
[Ba].)
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(c) There is a unique subspace LV C I'(#VV(1)|P) s.t. the evalua-
tion map yields the sequence

0—LY®0p(-1) - FVV|P — g5 — 0.

Pulling this up via i,n* we get the pullback diagram

0 0

0 — LV®o(-1) — & » & — &
| |

0 — LV®a(-1) —— FVW » 0o — 0.
F — x
0 0

(d) & is stable (although #VV is not semi-stable).

Proof. We first investigate the sheaf & which was introduced as
the cokernel of M ® Q3(3) — #2® .2 . Since now M* = ey A A with

(up to equivalence)
/0
4=[b 2]

and since we get the exact sequences
0-Q3) —Z - A% —0,
80/\41

0—>Q3(3)—-—1+2'—-uf1,—->0,

€N
the sheaf .7 must be an extension of the kind
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Taking the bidual gives us a diagram

0 0
0 I F Sk 0
(28) 0 & y GV y I - 0,
J J
43 a1
J |
0 0

as can be easily checked. Restricting the evaluating sequence
T/M)®e(l) - F — Z to P we obtain the diagram

0 0

0 —— T/M)QO(-1) —— F|P —— ZIP —— 0

(29) 0 —— O/MYROp(-1) —— FVIP — ¥ ——0
@)L@ﬁp :ﬁL®ﬁp
0 0

where .# is defined as cokernel. Now ¥ is supportedon S=Q0NP
and an @s-module, since Z|P = ds(—1) and & ® @p = #£;. Since
by the middle row its depth is = 1, it is a line bundle on S. But
W2 =1, indeed h9(FVV|P) = 1. Therefore .¥ = &5. Now the
proposition can be derived:

It is clear that ¢;(FVV|P) = 0, c(FVY|P) = 1 by (29) and that
h%(FVV|P) = 0..The jumping lines are exactly those through a, which
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follows from 0 - @ — FVV — % — 0 by restricting to P and by
investigating the result of ®7;, for aline L' C P. Finally (c) follows
by pulling back the middle row of (29), which also gives the definition
of # . Since 4} = @’Q/? we get (a).

To prove the stability of ¥ we remark that for any nonzero section
of #VV the composed homomorphism must be onto % :

g — O
I
FW — R

If now #' C # is arank-1 subsheaf with & /%' = " torsionfree,
we can assume that ¢;.%’ = 0. Then we get a diagram

0 0 0
O g, @’ ﬁz’ 0
\
0 F FVV K74 0,
0 F"— z" 0
[
0 0 0

which is exact, because ¢” is nonzero and injective, and because "
is torsionfree. Since ¥ must be surjective, we conclude that " =0
and ¥" = S .

Now

xF'(m) = x&(m) — x#(m) = x&(m) — xg.(m) -2,
xF"(m) = x&(m) — xGx(m).

This shows that xF'(m) < x5 (m).
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Case 4: in which C is a pair of tangents. In this case the bidual
FVV = 2@, too, and we have the diagram

0 0
F g ——0

(30) 20 Z1) —— 0
R = X

in which % is defined by the right-hand column, and thus determined
by the cone. It fits into the diagram

0 0
0 g & — g —0
H
(B 0 T g1) — % —0,
oL ®0, —— 0L, &L,
0 0

which is derived in the proof. Also in this case ¥ is stable.

Proof. Because C consists of two tangents we can choose the basis
of U sothat [, =e,, [, = e;. By the shape of the matrix I'"* above
we find that the only possibility of A* = ey A A is the direct sum

_lé 0
A_|:0 62]'
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It follows from the previous proof that F = S, @, and therefore
FVV = FY = 2@ . Furthermore the diagram (29) now becomes

0 0

I l

0 — 20p(-1) — F|P —— ZP — 0

| l I

29) 0 — 20p(-1) —— 26p —— ¥ —— 0,

! !

/gll @/{]2 ——— /gll EBflz
0 0
and we conclude that ¥ = &g(1) as in Cases 2/3. Since

Z|P = ds(—1), the right-hand column becomes the top row of the
next diagram
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where z; is the equation of the line o C P through e;, e;. The
homomorphism ¢ can be given (up to equivalence) by

Z3 — 23
o<z 2],
—Z] Z3

s.t. detg = z§ — z1z, is the equation of the conic S (see definition
of ). From this we see that

_ 0 —2Z)
9ly = [_21 0 ] .
If we apply i.7* to the last diagram (32) we obtain
0 0 0

33) 0 —— 20(-1) —— 2 — 20 —— 0,

0 — 20(-2) — 20(—1) —— 20g(-1) —— 0

0 0 0
where now E is the plane z3; = 0, spanned by the two lines L; U
L, = QN E. The top row of (33) gives us the diagram (31) with
the definition of #. Diagram (30) follows from diagram (29') by
pulling back via i.n* again, which first gives the corresponding dia-
gram with F =im n*(¥|P) and Z, and then imbedding the sequence
0—-20(-1) > % — % — 0 into its first row.

E
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The proof of stability of % is reduced to that of Cases 2 and 3 as
follows: We have the two diagrams

0 0
0 Z > O ——  OL — 0
|
0 g g(1) — o, 00, —— 0
@;2 j—— @’Lz
|
0 0
0 0
|
0 z @Q g] 0
| |
0 14 + Z2(1) K74 0
6 ——
0 0

where we use in the first one, that & = AL,.0> and where %] in
the second is the sheaf # of the Case 2/3 with L = L;. From the
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right-hand column of the second we obtain the diagram

0
0 F 91 R 0
| | |
0 F 20 —— A 0
|
o, =—— &,
|
0 0

in which # is the pullback and must be isomorphic to #&.7,, . Now
we can use the top row to proceed as in Cases 2/3 to prove stability
of .7, because any non-zero section of % factorises through & :

Case 4 and we obtain by the same method that #VV = 2¢ and the
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diagrams

0 0

0 g g T 0

|

0 Z (1) ~ R 0
@’5; f— @:;{7
0 0
0 0
| |

0O— 20(-1) — & — & —— 0

| | |

0 —— 20(-1) — 20

ﬁgz
e

0 0

where now ¢@; denotes the double structure of L in Q. Again by the
same method the stability of # can be proved.

10. Sheaves in the boundary with singular S. If the conic § is
degenerate the sheaves ./ and % are of completely different nature.
The sheaf .7 is always semi-stable and S only determines the stable
gradation of .#". We are going to describe this gradation first. As in
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§9 we drop the indices of the sheaves and conics for a given point
x=(z, M, NeXs, y=(z,T).

If & is any coherent sheaf on PV we write as usual P#(¥)(d) =
xF(d)/tkF . If & is semi-stable there is a filtration 0 = % C
H C - CF =F by coherent subsheaves, such that F/F_; is
stable for 1 < i < n and (%) = L(¥), [Ma2]. The direct sum
Gr(¥) = @ /% -1 is unique up to isomorphisms and called the sta-
ble gradation. In order to describe the stable gradation of the .#"’s for
singular conic S, we consider the following rank-2 sheaves associated
to planes in P3 together with an ordered pair of points in the plane.

10.1. Let E C P; beaplane and p, g € E. The sheaf Z(p, E, q)
= # 1is defined by the exact diagram as follows:

0

In this diagram ~(p)(1) is the ideal sheaf of p in twist 1, 2 its first
syzygy and © the epimorphism defined by the plane E by the

10.1.1. LEMMA. There is a 1 : 1 correspondence between
PHom(Z , #;) and the set of planes E through p, q (if p = q the
line p, q is replaced by a tangent direction in p).

Proof. The Koszul resolution of 2 and an epimorphism give rise
to a diagram

0 — o&(-

E

— Z 0

il 1

0 —— »(g)(~1) — &(- £, 0
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with a = (z,, 2z, z3) consisting of a basis of (V/x)V, and with the
linear form e vanishing in p = (x) and ¢g. Conversely any such
e factorises through o and ~(g)(—1), thereby defining a non-zero
homomorphism Z — 4.

10.1.2. ProposITION. The sheaf # (p, E, q) has the following prop-

erties:
(i) tk# =2 and P#(d) = &5(d +2)(d +3)(2d - 1).

(ii) # has Chern polynomial 1 —h + h* — h3.

(i) & is u-stable.

(iv) The sections of .# (1) are in one to one correspondence with the
lines in E through p, so that a line is the zero locus of the section.

(v) hO#(1) =2 and # has the evaluation sequence

0—-20 —#(1) - ~g(q)(1) — 0,

where ~g(q) C O denotes the ideal sheaf of q in E.
(vi) hl#(d)=0 for d > 1.

Proof. (i) and (ii) follow directly from the defining diagram. Since
Z is reflexive with ¢;.2 = —1 and h%Z = 0, this sheaf is u-stable
and then also .# . That h%#(1) =2 and A'.#(d) =0 for d > 1 also
follow easily from the definition and properties of 2. To prove (v)
we consider the diagram

0 0
| |
0 — 20(-1) 4 % 0
|
0 — &(-2) — 3@(-1) Z 5 0
TN |
0 — =(q)(-1) —— &(-1) #q » 0

I l

~E(q)(—1) 0 0
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used already in the proof of the lemma. The cokernel of ¢’ is
~g(q)(—1) and this is isomorphic to % . From this we also see that
any section of .#(1) must have its zero locus in E. Finally to prove
(iv) we note that any section of .2°(1) vanishes exactly onaline L > p
and gives rise to a diagram

where B consists of two independent linear forms with cokernel the
ideal of the line they define. Therefore a section of .Z (1) must vanish
on aline L in E through p, and gives rise to the diagram

0 0
O(-1) —— &(-1)
Oo— 7/ — Z £y 0,
| ||
0 — Sy —@8 A £y 0 .
{
0 0

in which either ¢ ¢ L or %7, is the ideal sheaf of L with a multiple
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structure in g. Conversely given any such line, we can define the
section by the last two diagrams.

10.1.3. CoROLLARY. For any line L with p € L C E there is a
diagram

0 —— O(-1) —— FAug —— »e(q)(-1) —— 0

For later use we also need the

10.1.4. LEMMA. Any non-trivial extension of ~g(q)(—1) by @(-1)
is of the above form 1, for some line L as above.

Its proof can be derived from the equalities
Exty(nE(q), @) = Exty(@r , @) = Tog(1)

and will be left to the reader.
10.2. The sheaf v for singular conic S. We consider first the
generic case in which S is the intersection of G with a plane and

consists of two different lines e, f. Then S defines a regulus in P3
supported by two planes £ U F .

=

]



354 M. S. NARASIMHAN AND G. TRAUTMANN
By the construction in 10.1 this configuration defines the sheaves

Ne=Mp,E,q) and #' =4#(q,F,Dp).

10.2.1. PrRoOPOSITION. Let # = ¥, be defined by y = (z,I') with
S =S(I') as above. Then

(i) #e@/ is the stable gradation of ¥ .
(ii) Let T" be presented by one of the normal forms

§ 0 ¢ 4
(a) "‘1’ 2) ®) | ¢ ol © @ f) see 5.3.
0 7 n n

Then in these different cases . is an extension:
(@) 0= =) =0 (non-trivial),
(b) S =s0N;,
() 04 = — e —0 (non-trivial).
(iii) The different cases of ¥ are distinguished by the singularities
on N
(a) Sings" ={p}, (b) Sing.#" ={p, q}, (c) Sing/" = {q}.

10.2.2. REMARK. At the first glimpse it is a surprise that each of
the sheaves .#¢, .#/ has two singular points whereas .#* has only
one in cases (a) and (c), but this is in accordance with the depths of
the sheaves in these points.

Proof. By 5.3, T has only three normal forms in (ii). Let N be the
space associated to I by 5.8. Then NV is presented by a matrix of

the type
x 0 x 0 x x
y y)’ 0y )’ 0 )

in the three different cases respectively, where p = (x), ¢ = ()'). Inp
the direct sum case (b), we then have N

and the display diagram (14) gives us # = Z? & 29, where 27
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denotes the syzygy of ~(p)(1). In the situation (a) we get the diagram

0 0
0 e V4 Z4 £ 0
H H
0 Zv b4 Z4 kA, 0
by —— T
0 0

in which the middle row follows from the shape of (% ) and a cor-
responding extension diagram. Here % = £, too. In case (c) we get
the analogous diagram with p, ¢ interchanged, and in the direct sum

case (b) the diagram specialises to

0 0 0
0 W€ N N —— 0
0 ZP N4 F4 0
0 £, T £, —— 0
0 0 0

From these diagrams we easily derive (i), (i1), and also (iii) by looking
at the local cohomology groups H;,.#", Hi, 7 etc.
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From the extensions in (ii) we can determine also the sheaf & by
the diagram (in case (a) for example)

0 0 0

\ |
0 — MFe3) — FreQ3(3) — M Q33) —— 0
0 — e  — /1/ —_ f —0,
0 — #e(q)(-1) — & — wF(l;;(—l) — 0

0 0 0

where I” and I"” are defined by the shape of I', by which we have
an exact sequence

0O - I' — r — I 0.
N n N
0 - W, - £eoW, —> W, —0.

10.3. LEMMA. Let x = (z, M,I") € X% be a semi-stable point
with T as in (a) or (b). With the previous notation the following are
equivalent:

(i) x is stable,
(i) MnI" =0,
(iii) the pair (S, CV(M)) is not singular, i.e. C¥(M) is not a pair
of lines passing through the two points e, f € PWVY of S, see 3.12,
(1)
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Proof. For example in case (a) we have: M NI" # 0 if and only if
M is presented by a matrix of the form

at+bw 0
* co+dn )’

and such M are exactly those which define singular conics CV passing
through both points e, f. The cases (b), (c) are proved similarly.

10.4. PROPOSITION. Let x = (z, M, T’) be a stable point with T
of type (a) or (b). Then the sheaf & = % is stable and fits into a
diagram

0 0
| |
MeQ¥3) =  2033)

!

0O —— #C —— _— 2 —_ 0

|
N
| | |
0 —— 4 —— g — »r(P)(-1) —— 0
|
0

l

0

A similar statement holds in case (c) with e, f interchanged.

Proof. The diagram follows immediately from 10.3 because M N
I'7¢(1) = 0, and from (v) of the proposition in 10.1. To prove
stability, let ¥’ C & be any rank 1 subsheaf with torsionfree quo-
tient " =9 /%'. We can assume ;%' = 0, otherwise P(¥')(d) <
$P(F)(d) would be trivially satisfied. If /" = #¢NF"', we obtain
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an exact diagram

0 0 0

N
0 Va F' — &’ — 0
0 NE F — /zzF(p)(-l) — 0.
0 o F 2 0

1 L 1

0 0 0

By definition we have x~r(p)(d — 1) = (%) — 1 and x%'(d) =

(441 =1 - I(d) with [(d) = x%"(d). We have to consider

d+3
3

_ (d : 2) +1(d) - x2'(d).

Since tk.#’ = 1 we have /"VV = @(c) and by the definition of .#¢
there is a diagram

ad) = 25 d) - 5@ = (“37) @+ 2 - 1(@) - 2E@)

0 —— o(c) — % —— 0
N N N s
0 > ./1/‘8 Z >/{q 0

s.t. x/'(d)=xf(d+c)—¢e with ¢=0, 1.
Now .#¢ is u-stable with ¢; = —1 and therefore ¢ = ¢;/’ < —1.

If ¢ < -2, we get immediately

Ad) = (d-;2>_<d+§+3

If however ¢ = —1, we only have
Ald)=¢e+1(d)>0 ford>O0.

)+e+l(d)>l(d)20 for d > 0.
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This proves that % is semi-stable, and that it is even stable if the case
e =0, " =0 does not occur. But in this case .#’' = #(-1), and by
Corollary 10.1.3

L
3,7—// =./V" :LYLUq /

p !

for some line L in E through p and finally

F' = o "
K

by Lemma 10.1.4 for some line K in F through ¢. Therefore we
have proved that if % is not stable under the assumptions of the
proposition, it must be an extension of the form

(34) 0 — Fkup — F — Fug — 0.
Now the proof will follow from Lemma 10.3 and from

F

10.4.1. LEMMA. If F is an extension as in (34) then CV C PWV
is a singular conic through e and f.

Proof We use the incidence transform to show that Supp RL7 (—1)

=GnJ is gwen by a union J = Hk U HL of two hyperplanes in
P /\2 V and s.t. JNPW’' = CV passes through e and f (for notation
see 8.4, (b)). This contradicts the assumption of the proposition by
10.3.

First we note that R%.%,,(—1) = 0 since R%7(—1) =0, and there-
fore we obtain the exact sequence

0 — R' A p(—=1) = R*F (1) - R'.A,(-1) — 0.
Therefore it is enough to determine the supports of the ends of this
sequence. Since we have the sequence

O—NﬁUq — I — 44— 0,
we obtain the exact sequence
0 — RY%, —— R'74(-1) — R'A(-1) —— 0

| H >

Op RO, (-1)

q
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where P, is the a-plane of ¢ in G. Further from 0 — 4 (1) —
&y — £, — 0 with some a € L we get

0 —— R%;(-1) —— R%9;, —— R%, —— 0

U | ll

0—— Sy — O — O —0

where H; C G is the cone of all lines in P3; meeting L. It is a
hyperplane section 5
H; =GN H.
Therefore Supp R!.# (—1) = H; and hence
Supp R' A ,(—1) = HL U P,.

Similarly
Supp R! %y = Hx U P,.
But since p € L and g € K we have P, C Hx and P, C H; and

thus
Supp R'.# (—1) = H; U Hg.
Finally it is easy to show that the unique hyperplanes Hy, ﬁK inter-

secting G in Hy , Hg pass through the points e resp. f if we choose
an embedding of PWV as in 8.4 (b). This proves the lemma.

Now we can prove the

10.5. THEOREM. Let x = (z, M, T) € X with S = S(I') singular,
and let F = % be the corresponding sheaf. Then & is always semi-
stable and the following conditions are equivalent:

(i) (S, CV) is a singular point of Q.

(ii) x is not stable.

(ili) & is not stable.

(iv) & is an extension of the type

O—"fKUp "’y_"jLUq _’Oa
which also defines the stable filtration of & .

Proof. We restrict ourselves to the generic situation of a singular
S, the proof in the other cases is the same. By the previous proof we
obtain (iii) = (ii). Since (iv) = (iii) is obvious and (i) < (ii) by
10.3, we only have to show that (ii) = (iv). It is sufficient to consider
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only the case (a). By 10.3 we have M NnI'.#7¢(1) # 0 if x is not
stable, and the dimension of this intersection cannot be 2. Therefore
we obtain a diagram

0 0 0
0 —— M ®‘Q3(3) M@ 3) —— M"@Q3) 0
00— S — N — AN ——0
00— Ay —— F — Fyp —0

0 0 0

where M' = M NITré(1), M” is the image of M under '/ (1) —
v /(1), and where the cokernels must be of the form %, by 10.1.

The other cases of (S, CV) with singular S are treated similarly;
one only has to interpret LUgq in case q¢ € L as aline L with a double
structure in the point g, the tangent plane of which determines the
plane E, in which L is contained.

10.6. REMARK. If S is a double line the non-stable pairs (S, CV)
are given by two points L, K € S or two lines in a plane in Pj.

S L
//K/ P
L K
W E

I
o]

The corresponding sheaf is now an extension
0""JZLUp —’y""*fKUp — 0.
The class [F] = [ALup ® Fkup] cannot remember the plane PW be-

longing to the P;-fibration of Qex., Which is blown down. If L = K
we obtain the most degenerate element [ 7, ® Ayp] in M(0, 2).
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<] 7] =

W

S=GNIPW

10.7. We close with some remarks on the embedding & — FVV
for a generic stable pair (S, CV) € Qp.

We have shown in 10.4 that in such a case the sheaf % is stable
and an extension of ~g(p)(—1) by .#¢. Now we can show that for
smooth CV through one of the points, say f, there is a diagram

35 00— 22 — FVW — ~p)(-1) — 0,
£y —/——= 44
1
0 0

and that moreover % is locally free outside g. This implies that
c3.F VYV =2, whereas ¢37 VY =4 in 9.2 for sheaves in Q,.

Proof. The first column is the definition of .#¢ . Next we prove that
& is locally free outside of ¢ in this case and that the cokernel of
F C FVV is £, . For this we consider the display diagram (22). One
can show that .# is locally free outside g if CV is regular as in the
picture above, and that .# is reflexive. Moreover € = 9 = £, in
that case, so that also ./ is locally free outside ¢ and therefore .,
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too. Finally we have the diagram

0
0 £,
0 F M 7 0
(36) q || |
0 — FVW > M > 20

I

0

from which it follows that % = #,. Going back to (35) the induced
homomorphism £, — #; must be nonzero and hence an isomor-
phism, for otherwise #, would inject into ~r(p)(—1), which is not
possible. This proves the diagram (35).

If in the previous example however CV is a smooth conic through
both of the points ¢ and f, we see by the analogue of diagram (36)
that now the kernel and cokernel of &/ — 2# is k, @ k,; and equals
% . Thus in this case .# and "V are singular at p and ¢ and
C3e7 W =4,
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