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OPERATOR-VALUED FEYNMAN INTEGRALS
VIA CONDITIONAL FEYNMAN INTEGRALS

DoNG MYUNG CHUNG, CHULL PARK, AND DAVID SKOUG

In this paper we use the concept of the conditional Feynman inte-
gral to obtain the analytic operator-valued Feynman integral of various
functions.

1. Introduction. In [1] Cameron and Storvick introduced a very
general analytic operator-valued function space “Feynman integral”,
JZ"(F), which mapped an L;(R”) function y into an L;(R”) func-

tion (JZ"(F)y)(§). Further work involving the L, — L, theory
includes [2, 3, 16-18]. In [4, 19] the existence of the Feynman inte-
gral as an operator from L;(R) to L. (R) was studied. Finally in [20],
an L, — L, theory, 1/p+1/p' =1, was developed for 1 <p < 2.
Related stability results were established in [10, 25].

In [15], Chung and Skoug introduced the concept of a conditional
Feynman integral. In this paper we further develop this concept and
proceed to express operator-valued Feynman integrals in terms of
conditional Feynman integrals. In particular we show that various
operator-valued Feynman integrals can be obtained using the formula

(L) (J™F)Ww)E) = /R E™ (FIX)(E)(7) [27zqiT]y/2

exp { 1 - €17} v i

where E®".(F|X) is the conditional analytic Feynman integral of F
given X . Thus J}"(F) can be interpreted as an integral operator with
kernel

[r] " exe { £ - €12} =S ELOE) (.

In [5], Cameron and Storvick introduced a Banach algebra S(v)
of functions on Wiener space which are a kind of stochastic Fourier
transform of Borel measures on L5[0, T]. In §3 of this paper we
show that for all F in S(v), JZ"(F) is given by (1.1) and can be
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22 DONG MYUNG CHUNG, CHULL PARK, AND DAVID SKOUG

interpreted as a bounded linear operator from L;(R”) to Ly (R"). In
this setting we also obtain some stability results.

A very important class of functions in Quantum Mechanics are
functions on Wiener space Cy[0, T] of the form

T
(1.2) F(X) = exp {/O 0(s, %(s)) ds}

where 0: [0, T] x RV — C. In §§4 and 5, using a useful series expan-
sion formula, we show that for appropriate 6, J2"(F) exists as an
operator from L; to Ly and is given by (1.1).

2. Definitions and preliminaries. Let v be a positive integer. Let
C?[0, T] denote the space of R”-valued continuous functions on
[0, T] and let C{[0, T] denote v-dimensional Wiener space; that

is the set of all functions x(¢) in C¥[0, T] such that x(0)=0. Let
# denote the class of all Wiener measurable subsets of Cj[0, 7] and
let m denote v-dimensional Wiener measure. (Cy[0, T], #, m) is
a complete measure space and we denote the Wiener integral of a
Wiener measurable function F by

F(x)m(dx)
G
whenever the integral exists.

A set E € # is said to be scale-invariant measurable [11, 21] pro-
vided pE € # for each p > 0 and a scale-invariant measurable set
N is said to be scale-invariant null provided m(pN) = 0 for each
p > 0. A property which holds except on a scale-invariant null set is
said to hold scale-invariant almost everywhere (s-a.e.).

Next we give Yeh’s definition of the conditional Wiener integral
[29].

DEerFINITION 1. Let X be an R”-valued Wiener measurable func-
tion on C¥[0, T] and let F be a complex-valued Wiener integral on
Cy[0, T]. Let Px be the probability distribution of X, i.e., for all
B € &Y, the Borel sets in R”, Pyx(B) = m(X~!(B)). The conditional
Wiener integral of F given X is by definition the equivalence class
of Borel measurable and Py-integrable functions ¢ on R”, modulo
null functions on (R”, ", Pyx), such that for all B € &,

[ FGm@ = [ (1P
X7 (B) B
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By the Radon-Nikodym Theorem such a function ¢ exists and is
determined up to a null function on (R”, %#Y, Px). We let E(F|X)
denote a representative of the equivalence class and so forall B € &V,

(2.1) /  FX)m(dx) = / E(F|X)(7)Py(d7).
X '(B) B

REMARK. In [27], Park and Skoug showed that if F' is Borel mea-
surable and Wiener integrable and if X (35) = }(T) , then the con-
ditional Wiener integral E(F|X) can be expressed in terms of an
ordinary Wiener integral by the formula

22)  EFIX)() = /

C

0

F (36(-) - = X(T) + T?i) m(dx).

We are now ready to define the conditional analytic Feynman inte-
gral of a function F given X .

DEeFINITION 2. Let C, C, and C7 denote respectively the complex
numbers, the complex numbers with positive real part, and
the nonzero complex numbers with nonnegative real part. Let F':
C?[0, T] — C be such that for each A >0,

/ |[F(A~"2x + E)lm(d?c’) < 00
G

for a.e. £ e R”. Let X: C¥[0, T] — R” be such that for each 4 >0
and ae. & € R, X(A~1/2X + &) is a Wiener measurable function

of X on CY[0, T1; ice., for a.e. & in R, Y(X) = X(A~/2X + &) is

scale-invariant measurable on C}[0, T']. For A >0 and ¢ € R”, let
(&, )= E(FQ~2x + EIX(A2X + &) (n)

denote the conditional Wiener integral of F(A~!/2x + &) given
X(A~V2X + &). If for a.e. § € R, there exists a function Jr(&, 1),
analytic in A on C, such that J,{‘(«f, i) = J;(&, 7) forall A >0, then

J (5 , -) 1s defined to be the conditional Wiener integral of F given
X with parameter A and we write

- -

E™(FIX) (&) () = J7 (&, 1).
If for fixed real g # 0, the limit

Jlim E¥ (FLX) (E)(7)
o,
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exists for a.e. § € R where A — —iq through C,, we will denote
the value of this limit by E*™(F|X)(&)(-) and call it the conditional
analytic Feynman integral of F given X with parameter q .

We finish this section by stating the definition of the analytic opera-
tor-valued Feynman integral as an element of .#(L(R"), Lo(RY)).

DEFINITION 3. Let F: C”[0, T] — C. Given A >0, ¢ in L(RY)
and & in RY, let

—

(I(F [ FOV2X + Ep (- 2R(T) + Em(dx).

If I,(F)y isin L;(R”) as a function of & and if the correspondence
v — L(F)y gives an element of #(L;(R”), L,(R")), the space of
continuous linear operators from L;(R”) to L. (R”), we say that the
operator-valued function space integral I;(F) exists. Next suppose
there exists an .#’-valued function which is analytic in C, and agrees
with I;(F) on (0, co0); then this #-valued function is denoted by
I?"(F) and is called the analytic operator-valued Wiener integral of
F associated with A. Finally, for 1 = —ig € C_, suppose there exists
an operator Ji"(F) in #(L;(C”), Lo(R")) such that for every ¥ in

LI(RU))
1" (F)y — I (F)yllo — 0

as A — —iq through C, ; then J}"(F) is called the analytic operator-
valued Feynman integral of F with parameter q .
Finally we state the following well-known integration formula

@y [ ew{-Gup+ i &} ai

v/2
= [2%[] exp{ Zb’ } Reb >0

which we use several times in this paper.

3. The S(v) theory. In [S] Cameron and Storvick introduced a
Banach algebra S(v) of functions on v-dimensional Wiener space
each of which is a type of a stochastic Fourier transform of bounded
C-valued Borel measures. They showed that the analytic (but scalar-
valued) Feynman integral exists for all elements of S(v). Further
work on S(v) includes [7, 8, 13, 22, 23, 24].
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The Banach algebra S(v) consists of functions on CJ[0, T] ex-
pressible in the form

— . v T ~ —
(3.1) F(x)=/L;[O’T]exp zjgl/o v;(s)dx;(s) ¢ da(v)

for s-ae. x = (xq,..., Xy) in C§[0, T] where o is an element of
M(L4[0, T]), the space of C-valued, countably additive Borel mea-

sures on L5[0, T] and the integrals fOT v;(8) ij(s) are Paley-Wiener-
Zygmund (P.W.Z.) stochastic integrals [23, p. 280].

REMARK. If F is in S(v) then F is scale-invariant measurable
and s-a.e. defined on C{[0, T]. Furthermore there is a natural way
of regarding F as defined on C¥[0, T]: If X in Cg[0, T is such
that F(X) is defined, then by (3.1), F(X +&) = F(X) forall EcR".

First, for F in S(v) and X(y) = y(T), we obtain a formula for
E*N(FI1X)(E)(7) -

THEOREM 3.1. Let F € S(v) be given by (3.1) and let X: C*[0, T]
— RY be given by X(¥) = y(T). Then for all (£, 7f) €R” xRV
E

(3.2) E(F X)) (7)
1 v
- /”[O,T] exp {_jﬁ FZI [T||'Uj||2 _ bjg]

(i€, ﬁ)} do(?)

|~

+

forall A€Cy and
(3.3)  E™N(FIX)(©)(#)

. v
= . 112 = B2

L7[0,1]

for all real q #0 where

B=(b,..., b))

I
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Proof. Using (3.1), (2.2), the Fubini Theorem, (3.4) and a funda-
mental Wiener integration formula involving P.W.Z. integrals, for all
A >0 and all (¢, 7) € RY x R” we obtain the formula

(3:5) E(FQ'P3 +8IX(X +&)(#)
v T
= ] (NI=125 () _ 2-1/25
/Cg[/L;[o,T]exp{lg/o v;($)d[A™x;(s) — A ij(T)

+ "S]:(’U - Cj)]} nga(?})} m(dx)

T ~
/0 v;(s)dx;(s)

, T
_ xJ;T) /0 v;(s) ds]
l~ v

T o -
+ (nj—éj)/o vj(s)ds p m(dx)| da(v)

J=1

B /L;[o,ﬂ P {%(’7— 3 73)}
Lo -] ol mes e

J=1

i >
= exp ] = "—f,B}
/L;[O,T] {Tm )

l- v
= ex —_
/L'Z’[O,T] ’/c0 P { V2 JZz:l

1 < R A 3
- /L”[O . exp {__2,1T Z[TII'UJII — b1+ =(i - &, B)} do (7).
P18 =1
Using the Cauchy-Schwarz inequality we see that

T 2 T T

Thus, since ¢ € M(L}[0, T]), the last expression on the right-hand
side of (3.5) is an analytic function of A throughout C; and is a
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continuous function of A for A € C;. Thus (see Definition 2 in §2
above) equations (3.2) and (3.3) are established.

THEOREM 3.2. Let F and X be as in Theorem 3.1. Then for all real
q # 0, the analytic operator-valued Feynman integral J:"(F) exists as
an element of < (L{(R"), Lo (R")) and for each w € L;(R”) we have

(3.6) (J2(F)y)(E)
= [ EEn@m (5]

iallit — ElI2
.exp{zqunz i }W(ﬁ) dit

for all fe RY .

Proof. Let w € L{(R”) be given. We can assume that ¥ is Borel
measurable since if y is only Lebesgue measurable then there ex-
ists a Borel measurable function y; such that y; = y a.e. on R”.
Moreover y; is unique up to Borel null sets. But F is also Borel
measurable and so using equation (2.2) it is quite easy to see that

—

E(F(A7'2% + )y (=125 (T) + &) X (A% + &))(7)
= w(NEF (A% + | X (A~ '2% + &) (7).

Then by the definition of I;(F)y and equation (2.1) it follows that
(LF)p) &) = / FA™'2X + Ey(A~'2X(T) + E)m(dX)
(&4
- / E(F@A 2% + &y 1PX(T) + HIX 1% + &)(#)
]Rll
A 13 Ao o= B
: [W} exp {—-27 |77 —éllz} i
= [ EFEE + ixE + ) [o7|
R’ 2nT
cexp { =2 - &2V wii ai
2T

for all A > 0. Then, using Theorem 3.1 and Morera’s Theorem, we
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obtain that

(3.7) (IF)y)(©)

= [ @[]

> 22
exp {_AunZTcn } V(i) dif

forall A€ C, andall {€R".
But since E2™i(F|X)(&)(1f
that the right-hand side of (3

(1) is bounded and y € [;(RY), we see
7) 1s continuous in 4 on C7. Thus

Jim (I3(F)w)(€) = / EMN(FIX)(E, ) [aniT]V/z

a7 — El12
exp {zqunz i }W) di

for each & € R”. Thus JZ"(F) exists as an element of
Z(Ly(R"), Loo(R"))

and (3.6) is established.
The following stability results follow quite readily using equations
(3.3) and (3.6).

THEOREM 3.3. Let {0,} be a sequence of elements from
M(L5[0, TY) that converge weakly to o € M(LY[0, T]), let F be
given by (3.1) and for n=1,2, ..., let

F”(;)zfmo,n‘”‘p{ }:/ e }dan( )

for s-a.e. x € Cyl0, T1. Let {gn} be a sequence of real numbers con-
verging to q # 0 and let {y,} be a sequence from L{(R”) converging
in Ly-norm to y € L{(R”). Then as n — oo:

(3.8) E™(F, | X)(E)(H) — E*™N(F|X)(&)(7)
for all (£, ) €R” xR”,
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(3.9) E™u(F|IX)(E)(#) — E™(F|X)(E)(#)
for all (€, ) €R” x R”,

(3.10) JPN(Fn)y — JPM(F)y  in Leo-norm on R”,
(3.11) S (F)y — JJ"(F)y  in Le-norm on R”, and
(3.12) JENF)yn — JZN(F)y  in Loo-norm on R”.

4. A useful series expansion. In this section for F given by (1.2)
with minimal conditions on 6 and X(y) = y(T) we obtain a useful
series expansion for E(F(A~1/2x + &)|X(A~1/2x + &)(#).

THEOREM 4.1. Let F(x) be given by (1.2) where 0 is Borel mea-
surable and where for each A > 0

./c" |F(A~12% + &)|m(dx) < oo
for a.e. EERY. Then foreach 2. >0
1/272 2 1722 2\ o A v/2
@ BER - OXGE + ) 5]
AL =
exp {5l €1P
0 qn+l v/2
- nE=O/A,.(T) [(Zﬂ)”+‘sl(82 —51) - (sn —Sn—l)(T"sn)]

/ [He(s,-,@j)}
R™ =1

~exp{ Zz(s o )Ilw; w1

2(T )”wn ’1” }dwl dwnds
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where An(T) = {s—(sl,...,s,,):0<s1<sz<---<s,,<T},
so=0 and wy=E¢.

Proof. For notational purposes let G,l(f , 1) denote

—

E(F (2% + )X (A~ 12X + &) (#).

Gy(€, 1) = [ [/ 0(s, A~1%x s)+€)ds}|

3
=E(3 / H0(s] -12x >+é’>d?|¥(T>=\/I<ﬁ—“>]

/Z/A sj, A7V (s) + &

0 n=0

— LT + & + L) dsm(dx)

—Z:/Aur)/yl_[‘9 AT () +E

0 j=1
- LOTPET) + 6 +

= Z/ [2r)"* sy (sy — 51) -+ (T = sp)17*/2

07T

+1
Lo "Znu,—u, 2
RV 2(31—5'1 1)
n

16 (s, 27120+ &= L2 + &) + i)

J=1

— — —
cduy---duyds
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with 5o =0 and uo= 0. Next let wg=¢&,

w; ="+ & - T( Uy +€-q) forj=1,...,n

and let Wy = A-24U,,, +&. Then

&= Z/ T[zﬂ ”“Sl(szl—rl:) (T —Sn)]y/2

| [ oo { = e = 7. 0 = &) = 3 = P
— — S — - 2 —
- m—) l Wpyy — Wy — Tn(wnﬂ - 71)" }d’wnH]
dw;---dw,ds.

Next carrying out the integration with respect to w n+1 1N the above
expression, simplifying, and multiplying both sides of the resulting

expression by
A 12 As 2o
57| exo{-gpli-éi)

we obtain equation (4.1) which concludes the proof of Theorem 4.1.
Recall that in equation (3.3), for F € S(z/) we expressed the con-
ditional Feynman integral E*™(F|X)(&)(7) in terms of an integral
over the infinite dimensional space L5[0, T]. In our next theorem,
as an application of Theorem 4.1, we obtain a series expansion of
E®(F|X) in terms of integrals over finite dimensional spaces.

THEOREM 4.2. Let F(x) = exp{fOT 6(s, x(s))ds} with

(42) 0. ) = [ expdi(i, 1)} dus(®)
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where {us: 0 < s < T} is a family from M(RY) such that |us| €

L,[0, T] and for each Borel set B from R”, ug(B) is Borel measur-
able in s. Then for all real q #0,

(4.3) E™(F|1X)(E)(#)

2

where J;; is the Kronecker delta.

Proof. We first note that F (}') is Borel measurable [24, Corollary
3.2] and belongs to S(v) [24, Remark 3.3]. Next using (4.1) and (4.2)
we see that for

A>0 E(F(AV2% + XA 12X + E)(#)
2rT1Y/? AL =
= [nT] exp{ﬁlln—éllz}

An+l

x v/2
’,,Zzo/A,,(T) [(2”)”“51@2 _Sl)"'(T_Sn)]
/R [/R CXP{IZ(U’J’ } dus,(v1) - d,uS”({;n)}

exp{ Zz(s oy = P

PO O
_—2(T—s,,)”w”_'7“ }d’wl"-dw,,ds.
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Then using the Fubini Theorem and the formula (see equation

(2.3))

% w. =72
exp { =5 6 — 17}

_T-—sn”/z/e i T
- 27[1 R’ Xp n r’

we obtain

ZZ||2} du

E(F(A'23 + &)X (A~11%x + &) (#)
v/2
(o] oo {07 }
Z/ [ (2m)"s, 82—51) “(Sn ‘_Sn—l)]
'/RW,.)V‘/Rn»eXp{iZ(E)j’EJ)

22 5 =5, ”wj wjy||* + i(u, wn — 7)

T_Sn - 2
——2—/1—”’1” }

dWy,---dwydudps (v,) - dus (V) ds.

v/2

Next we carry out the integration with respect to W, 17),,_1 Y eens
w; using the formula

Yy —— €X _  w;—-—w;_
[2”(5j—sj—1)] /m" P 2(sj—sj_1)” J =1l

-—exp{ (w, L, U+ Un +’u)
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successively for j=n,n—-1,--- , 1 to obtain

E(F(A~'2% + &)X (412X + &) (#)

L) e { -2
= | 2m Pl

n s — S — — —_ —_
—Z(—S’Ti"l—)llu+vn+---+vj||2} du}

A, (V1) - dps (Va)d's

24

ife o))

~dps, (V1) dps (V) d5s .

n
Si—8§j— — —
- Mllvn+~-~+vjll2}

'\'
A
o
>
el
P———
|
o
LI~
=
)
=
b
c
v
>->|v—-
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Hence

—

(4.4) E(FA'2X +OIXA2X + &) ()
(

o0 n
=3 e
—o /A (T) JR™ i

i:z_if;ﬁ|,5vn+...+{,’j”2

Il
—

: dﬂs,(_ﬁl) o 'd.usn({;n) ds.

Since F € S(v), we know by Theorem 3.1 that the left-hand side
of (4.4) has an analytic extension to C; and is continuous on C7 .
We will show that the same is true for the right-hand side of (4.4).
We first show that the series converges absolutely for all g, 7 in RY
and all A € C} . This follows from the fact that

n [ n
D) BERENICINTIES ) pricy
j=1

=1 j=1

2
>0

since

oo
nZ:O /A"(T) /IR""

=1 j=1

1 n [ . /. n_’
exp{—ﬂ Z(Z—dj,)sj(vj,v,)+z<é,2vj>
=1

j . n . 1 n .
_T_<é—r],§:5‘j1}j>+m ZS]"UJ‘
j=1 =1

: dﬂsl(zl) o 'dﬂsn({;n) ds
(continues)
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(continued)
00 1 1 n [
< / /exp ——R[] (2= 3;)s5(v;, v})
nz=o A (T) JR™ 2 1=1j§1 J1JPJ\NY ] /
1 1 < ’
RG[I] Zsﬁ;j
j=1
“dps, (V1) dps () d's
< v)-dus (vn)ds
_z:j/w) dps,(31) - dpss, ()

= o [HllﬂsllJ 5=3 [/ II#sIIdS]n

n=0
=exp{ /0 nusnds}<oo

Thus using Morea’s Theorem and the Dominated Convergence Theo-
rem we obtain that the right-hand side of (4.4) is an analytic function
of A throughout C, and is continuous in A on C;. Thus (4.3) is
established which completes the proof of Theorem 4.2.

The following corollary is immediate using Theorem 4.2 in conjunc-
tion with Theorem 3.2.

COROLLARY 4.1. Let F be as in Theorem 4.2. Then the conclu-
sions of Theorem 3.2 hold and for y € L{(R"), JZ"(F)y is given by

(3.6) (and (1.1)) with E*™(F|X) given by (4.3).

5. The L, — Ly theory. In this section, as in [4, 10, 19] we
restrict our attention to the case v = 1 since [20, section 6] Johnson
and Skoug gave counterexamples showing that the L;(R”) — Ly (R")
theory doesn’t hold for v > 1. In[4,19] an .#(L(R), Lo (R)) theory
of the operator-valued Feynman integral J2"(F) was developed for
functions of the form

T
(5.1 F(x)=-exp {/0 O(s, x(s)) a’s}

with appropriate assumptions on 6 ; the most general being as follows:
Let r € (2, 00] and let 6: [0, T] x R — C be a Borel measurable
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function such that for a.e. s in [0, T], 6(s, ) isin L;(R) with L;-
norm ||0(s, -)||; in L,[0, T]. In this section we will show that for
such F, J?(F) is given by the formula

(5.2) (J"(F)w)(©)

- [ @ [sag]

Xp {%('7 —5)2} w(n)dn

for yw € Li(R).

REMARK. Note that F of the form (5.1) may be unbounded and
thus not in S(1) and hence Theorem 3.2 and Corollary 4.1 do not
apply to F given by (5.1) with 6 as above.

THEOREM 5.1. Let F be given by (5.1) with 6 as above and let
X(y)=y(T) for ye C[0, T]. Then for all real q # 0,

53 EEDOOM [5hr] e { 350 - 27

~ Z [ ](n+l)/2

/ [51(52 = 51) - (S = $p_1)(T = s)]7 /2
A (T)

./” [H G(Sj, wj)]
R =1

exp{z2 G =51 -_wj_l)Z

—l.q —_ 2 o oee <
+2(T—s,,)(w" n) }dw1 dw,ds

where An(T) = {?: (S1, - ,8):0<s1 << <85, <T},s50=
0 and wo = &. Furthermore E*™(F|X)(-)(:) is in Lo(R%) and
(5.4) E™(FIX)()()lloo

g i TP = py2)oore [T o, )l ds]”
: nzzolf%l ()T + (1 - p/2THP

where T denotes the gamma function and p is such that 1/p+1/r=1.
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Proof. Using equation (4.1) with » = 1 we see that for each 1 >0,

PRRSVZ
(5:5) EEG2x+ QXG5+ 0)n) | 327

'exp{ 2/1:r('7 C)z}
© 7 10D/
-2l

n

For notational purposes let H;(¢, n) denote the right-hand side of
(5.5). Then for all (4,¢, n) € CY xR x R we see that

(n+1)/2

& )l < i:f["']

)[Sl $3—=51) (Sn = Snm1 (T = 50)]71/2

/H (s;, w))|dw, ---dw,ds

\

n+1)/2
n |2—M— ] ./A,.(T)[Sl(sz_sl)"'(sn = Sp-1)(T = s,)]71/2
[H 16Gs; ||1}

Jj=1
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oo |'1| (n+1)/2
<D |3y
n=0
1/p
A(T)
1/r
{/ IT16cs;. >||1d?}
A(T) 55

But

n
’ d —_/ / 0 N d ...dn
/A(T I;[ (85, )l ds H” (s> i dsy s

= [ [ e ->n;ds]

and as was shown in [19, p. 652],

/ [s1(52 = 81) - (Sn — Sy (T = su)17P/%d’s
A,(T)

B T—p/ZTn(Z—p)/Z[r(l —p/2)]”+1
B I[(n+ 1)(1 - p/2)]

Thus forall (4,¢, ) €Cy xRxXR,
(5.6) |Hy(&, n)

i[w]nﬂ

TC-PI28(1 - p/2) 07 [T |6(s )5 ds)] ™
' ()7 {TT(n + 1)(1 - p/2)] }l/le/2

But since for large positive w ,

1 2e“’\/—
) V2rww’

it is not hard to see that the series on the right-hand side of (5.6)
converges for each A € C7; in fact uniformly on compact subsets of
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C4 . Thus the right-hand side of (5.5) is an analytic function of A
on C; and continuous on C} which establishes (5.3). The inequality
(5.4) follows easily from (5.6) and (5.3).

THEOREM 5.2. Let F and X be as in Theorem 5.1. Then for all
real g # 0, the analytic operator-valued Feynman integral J2"(F)
exists as an element of #(L(R), Lo(R)) and for each y € L|(R) is
given by (5.2).

Proof. By [19] we know that J2"(F) exists as an element of
Z(Li(R), Lo(R)) (actually as an element of & (L{(R), Co(R)). We
need to establish equation (5.2) with E®.(F|X)(&)(n) given by (5.3).
But, proceeding as in the beginning of the proof of Theorem 3.2, we
see that for all A >0

LEWIE = [ Z E(F(A™2x + &)X (A 2x + &) (nw(n)

: [E?T] " exp {—-;—T(n - 6)2} dn

where E(F(A™'\2x+&)|X(A~1/2x+&))(n) is given by (4.1) with v = 1.
But, as was shown in Theorem 5.1, E(F(A~'2x +&)|X(A~1/2x+&))(n)
is an analytic function of A throughout C, and so

(5.7) (I (F)w)(@)
*® anw A 1/2
- [~ e 57

- exp {‘EAT(" - 6)2} w(n)dn

for all A € C, . Taking the limit of both sides of (5.7) as A — —ig, A€
C. , establishes (5.2).
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