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If R c T is an integral extension of domains and R is Noether-
ian, then T satisfies (the conclusion of the) generalized principal
ideal theorem (or GPIT for short). An example is given of a two-
dimensional quasilocal domain R satisfying GPIT such that the in-
tegral closure of R is finite over R but does not satisfy GPIT. If a
commutative ring R satisfies GPIT and an ideal / of R is generated
by an i?-sequence, then R/I satisfies GPIT. If R is a Noetherian
domain and G is a torsionfree abelian group, then R[G] satisfies
GPIT. An example is given of a three-dimensional quasilocal KruU
domain that does not satisfy GPIT because its maximal ideal is the
radical of a 2-generated ideal.

1. Introduction. All rings considered in this paper are commutative
with identity. Let R be a ring. As in [4], we say that R satisfies
PIT (for "principal ideal theorem") if ht(P) < 1 for each prime ideal
P of R which is minimal over a principal ideal of R. According
to KrulΓs Hauptidealsatz, which has been called "the most impor-
tant single theorem in the theory of Noetherian rings" by Kaplansky
[12, p. 104], each Noetherian ring satisfies PIT. So does each KruU
domain. A generalization of this fact has been noted by Davis [5,
p. 182]. Additional examples of rings satisfying PIT were obtained in
[4] (see especially [4, Corollary 3.5, Theorem 3.10, Corollary 3.11 and
Theorem 6.5]). Much of [4] addressed the stability of "satisfies PIT"
under various ring-theoretic passages. The purpose of this paper is to
study similar questions concerning GPIT (for "generalized principal
ideal theorem"). By definition, a ring R satisfies GPIT if ht(P) < n
for each prime ideal P of R which is minimal over an ^-generated
ideal of R.

According to KrulΓs generalized principal ideal theorem [12, Theo-
rem 152] (also known as KrulΓs altitude theorem [13, Theorem 9.3]),
each Noetherian ring satisfies GPIT. However, not every KruU domain
satisfies GPIT. The first example of this phenomenon seems to be the
one discovered by Eakin and Heinzer in 1969 after further analysis
of their work in [6] concerning a construction of Rees [14]. Later
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examples of this phenomenon have appeared in the literature (cf. [7]).
For instance, Anderson and Mulay were stimulated to develop [1] in
the summer of 1987 after being shown the details of the Eakin-Heinzer
example. That example, now nearly twenty years old, is developed in
Example 5.1. This work gives as a bonus (see Example 5.2) an example
of an (integral) domain R satisfying PIT such that R/P does not sat-
isfy PIT for some principal prime ideal P of R. Example 5.2 relates
to the theme of §3, namely the behavior of GPIT under homomorphic
images. The most noteworthy result in this section, Theorem 3.3, es-
tablishes that R/I satisfies GPIT if R satisfies GPIT and / is an
ideal of R which is generated by an i?-sequence.

Section 2 concerns the behavior of GPIT under integral extensions.
A positive result, Corollary 2.3, is available in the Noetherian case:
if R c T is an integral extension of domains and R is Noetherian,
then T satisfies GPIT. This result is of interest for several reasons
discussed in §2. For instance, an example of Nagata [13] shows that
such T need not be Noetherian even if T is an overring of R and
dim(i?) = 2. On the other hand, Example 2.4 shows, in the absence of
the Noetherian hypothesis, that the conclusion of Corollary 2.3 fails,
even if T is finite over R and dim(i?) = 2. One moral is that GPIT
does not satisfy the Noetherian-like stability typified by the Hubert
Basis Theorem.

Section 4 concerns monoid domains. Its principal application,
Corollary 4.3, includes the following assertion. If R is a Noethe-
rian domain and G a torsionfree abelian group, then R[G] satisfies
GPIT. As Example 4.5 shows, the results are qualitatively different if
G is replaced by an arbitrary abelian monoid.

It will be convenient to follow [12, p. 40], denoting the lying-over,
going-up, going-down and incomparability properties by LO, GU, GD
and INC, respectively. The radical of an ideal / of a ring R will
be denoted by rad/^/) , or rad(/) if no confusion can result. The
integral closure of a ring R will be denoted by R!. Other notation
will be standard, as in [12], [13].

2. GPIT and integrality. It is easy to verify that "satisfies GPIT" is a
local property. In other words, a domain R satisfies GPIT if and only
if RM satisfies GPIT for each maximal ideal M of R. Studying such
results on the passage of "satisfies GPIT" is our main concern, with
this section focused on integral extensions. We begin with a result
stated in [4, Remark 5.3(a)]. Its proof is an easy adaptation of the
proofs of [4, Proposition 5.1 and Corollary 5.2] and is hence omitted.
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PROPOSITION 2.1. Let Re T be an extension of domains. Then:

(a) Suppose RcT satisfies LO, INC and GD. If T satisfies GPIT,
then R satisfies GPIT.

(b) Suppose RcT satisfies GU and INC. If T satisfies GPIT, then
R satisfies GPIT.

(c) If T is integral over R and T satisfies GPIT, then R satisfies
GPIT.

Notice that a two-dimensional domain satisfies GPIT if (and only
if) it satisfies PIT. Of course, each domain of dimension < 1 satisfies
GPIT. Accordingly, two-dimensional domains receive special atten-
tion below.

It seems natural to ask about the converse of Proposition 2.1(c). In
other words, if R c T is an integral extension of domains and R sat-
isfies GPIT, must T also satisfy this property? Corollary 2.3 gives an
affirmative answer in case R is Noetherian. Thus, (any Krull domain
arising as) the integral closure of a Noetherian domain satisfies GPIT.
Also, by taking integral closure in a suitable infinite-dimensional field
extension, we can find an integrally closed non-Krull domain satisfying
GPIT. Moreover, although a famous example of Nagata [13, Exam-
ple 4, p. 207] shows that an integral overling T of a two-dimensional
Noetherian domain R need not be Noetherian, Corollary 2.3 assures
that any such T must satisfy GPIT. However, as Example 2.4 reveals,
in the absence of the Noetherian hypothesis, "satisfies (G)PIT' fails
to ascend from R to T, even if dim(i?) = 2.

THEOREM 2.2. For a domain Rf the following conditions are equiv-
alent:

(1) If u\, . . . , un are finitely many elements of a domain which
contains R and is integral over R, then R[u\, . . . , un]

f satis-
fies GPIT;

(2) If R is a subring of a domain T which is integral over R, then
T satisfies GPIT

Proof. (2)^>(1) trivially. Suppose that the converse fails. Then
there exists P e Spec(Γ) such that P is minimal over some n-
generated ideal J of T and ht{P) > n. Choose an n-generating
set {u{} for / . We may replace R with R[u\, . . . , un]. We thus
have J = IT, for the π-generated ideal / = ΣRui of R
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Pick a chain P = Po D P\ D D Pn+\ of distinct primes in
T. Consider the ring S = R'T (inside the quotient field of T).
Evidently, S is integral over T. Applying LO and GU, we have a
chain N = No D D Nn+\ of primes in S lying over the given
chain {PJ in T. Moreover, since T c S satisfies INC, we have N
minimal over ΣSui = IS = JS. Put Qt = Ni n R' in Spec(i?').
Since S is integral over R', it follows via INC that {(?/} consists
of n + 2 distinct primes of R', whence ht(Qo) > n. Next, observe
via the classical result of Krull (cf. [13, Theorem 10.13]) that Rf c S
satisfies GD. As TV is minimal over Σ Sui, it now follows via GD
that <2o is minimal over ΣR'ui I*1 particular, R' does not satisfy
GPIT, the desired contradiction to (1). D

The proof of Theorem 2.2 also establishes the following assertion.
Let R c T be an integral extension of domains. If R[u\, . . . , un]

f

satisfies GPIT for each finite subset {ux} of T, then T satisfies GPIT.

COROLLARY 2.3. If Re T is an integral extension of domains and
R is Noetherian, then T satisfies GPIT.

Proof. By Theorem 2.2, it suffices to show that R[u\, . . . , un]' satis-
fies GPIT if U\, . . . , un are integral elements of a domain containing
R. As R[u\, . . . , un] is Noetherian (by the Hubert Basis Theorem),
we may replace R with R[u\, . . . , un]. Thus, our task is reduced to
showing that T = R' satisfies GPIT.

Without loss of generality, R is local. Hence, by [11, Chapitre 0,
Corollaire 23.2.5, p. 218], R has a finitely generated (integral) over-
ring S such that the canonical map Spec(Γ) —• Spec(S) is injective
(in fact, radiciel). Since S is Noetherian and T = Sf, we may replace
R with 5 .

Consider a prime ideal P of T such that P is minimal over a
finitely generated ideal (v\, . . . , υk) of T. Put A = R[v\, . . . , vk].
Since R c A c T and Spec(Γ) -• Spec(i?) is injective, it follows
that Spec(Γ) -> Sρec(v4) is injective. As A c T also satisfies LO
and GU by integrality, it now follows easily that A c T satisfies GD.
Hence, Q = P n A is minimal over Σ ^vi Since A is Noetherian,
A satisfies GPIT by KrulΓs altitude theorem ([12, Theorem 152], [13,
Theorem 9.3]), and so ht{Q) <k. But ht(P) < ht(Q) since AcT,
being integral, satisfies INC. Thus ht(P) < k, whence T satisfies
GPIT. D
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EXAMPLE 2.4. There exists a quasilocal two-dimensional domain R
satisfying GPIT and an element u such that Rf = R[u] and Rf does
not satisfy (G)PIT.

Proof. Let X, Y be algebraically independent indeterminates over
a field k. Put D = k[X, Y\χ-\,γ-\). Then D = k + Mx, where
M\ — (X - 1, Y - \)D is the unique maximal ideal of D. Next,
consider the rank 2 valuation v of k(X, Y) over k, with value
group Z 0 Z lexicographically ordered, determined as follows. Put
υ(X) = (1, 0) and υ(Y) = (0, 1). It follows that the value of υ
at any nonzero polynomial in k[X, Y] is the infimum of the values
of its constituent monomials. The associated valuation ring is V =
k[Y](Y) + Xk[X, Y\x), which can be written as V = k + M2, where
M2 = Y V is the maximal ideal of V. Put / = M\ n M2 and i? =
k + / . We shall show that i? has the asserted properties.

We shall first show Rf = D Π V. (The following proof is inspired
by that of [10, Example 4.3].) Since D and V are each integrally
closed and contain R, it is clear that Rf c D Γ\V. For the reverse
inclusion, it suffices to show that each t e D Π V is integral over R.
(To be sure, one should also observe that DπV is an overring of R
for this, just notice that / is a common nonzero ideal of D Π V and
R.) Now, write t = a\ + ni\ = a2 + mi, with αz G k and ra, e Af/.
Then (t- a\)(t - a2) = mχm2 e M\ Γ\M2 = / c i?, and so / is a root
of the monic polynomial Z 2 + (-a\ - a2)Z + aχa2- m\m2 e R[Z].
It follows that R' = Z) n V.

Next, we claim that i? is quasilocal, with unique maximal ideal J.
To see this, argue as in [13, E2.1, p. 204]: if r e / , then (1+r)" 1 - 1 =
-r{\+r)~x e J and so (1+r)" 1 e 1 + / . Hence / , which is obviously
maximal in R, is contained in the Jacobian radical of R, proving the
claim.

Consider the primes P\ = M\ Π i?; and P2 = M2Γ\ Rf. As each
of these meets R in / , it follows via integrality that Pi and P2 are
maximal in R'. Moreover, they are distinct, since X e P2\P\. We
claim next that i?'P = D and i?'P = F . Now, for any multiplicatively
closed subset S of R', we have Λ^ = D 5 Π F 5 . Hence, with 5/
denoting R'\Pi, the claims will follow if we show that Vs = k{X, Y)
and Ds2 = k(X, Y).

Consider any nonzero # e / c [ X , 7 ] . If v(g) = (/ ,7) , then

v t e i J W ) - 1 ) = ( ^ 7) - ( ί , 0) - (0, 7) = 0, whence g F = XWV.

It follows easily that V[(XY)~ι] = k(X, Y). As XY e R'\Pι = S{,
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we have V$ — k{X, Y). Moreover, for g as above,

h = giXΎή'1 e (V\M2) ΠD = R'\P2 = S2.

Since (XΎJ)'1 e D, we have g~ι = ( X ^ ) - 1 / * " 1 e DSi. It follows
that Ds2 = k(X, Y), and the claims have been established.

Since V is a two-dimensional valuation domain, V does not satisfy
PIT. As R'p =V9 it follows from [4, Proposition 3.1 (a)] that R' does
not satisfy PIT.

Notice that R Φ R! since X e R'\R. Moreover, X satisfies a
quadratic integrality equation over R, as X(X -l)eM\ΠM2 = Jc
R. We claim that R[X] = R'. (In other words, u = X satisfies the
assertion.) To see this, first note that the equality Rf

P = D leads to

canonical isomorphisms k ^ D/M\ -^ R!/P\, whence Rf = k + P\.

Similarly, R'P = V leads to k ^ V/M2 -^ R'/P2, whence Rf = k+P2 .

Since XPλ c'xMi c Mx and XΛ c Λr2K = M2, we have XΛ c / ,

so that

XR! = X(k + Pι) = Xk + XPιcXR + Jc R[X].

As X - 1 G 1?' Π Mi = Px and

P\ Pi c Λ n P2 = Mx n M 2 n R! = J n R1 = J,

we also have

(X-l)P2c R[X] + PλP2 = R[X].

Hence, Rf c Xi?' + ( X - l)i?' c i?[X] that is, i?[X] = Rf, as claimed.
Since i?' is integral over R, any maximal ideal M of iί' meets i?

in J = MXΓ\M2 = PXΓ\P2. It follows that M contains (and hence
equals) one of P\ 9 P2. Thus, P\ and P2 are all the maximal ideals
of R!, and so

dim(i?') = sup{dim(i?'F), dim(i?'p)} = sup{dim(£>), dim(F)} = 2.

By integrality, dim(i?) = dim(i?;) = 2.
It remains only to show that R satisfies GPIT. As dim(i?) = 2, we

need only show that R satisfies PIT, namely that / is not minimal
over any nonzero principal ideal Rs. Consider s e /\{0}. In the
(Noetherian) ring Z>, the prime P\D has height 2 and contains s,
but cannot be minimal over Ds (by KrulΓs altitude theorem). Hence
Ds c QD § P\D for some prime Q of R1 properly contained in P i .
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By INC, we have QnR^P{nR = J. As s eQDnR = QnR, J
is not minimal over Rs. π

To close the section, we record some additional results on the pas-
sage of "satisfies GPIT" that are analogous to results in [4].

PROPOSITION 2.5. (a) Let R and T be subrings of a field K such
that Spec(jR) = Spec(Γ) as sets. Then R satisfies GPIT if and only if
T satisfies GPIT

(b) Let T be a quasilocal domain with nonzero maximal ideal M
and residue field k = T/M, let π: T -> k denote the canonical sur-
jection, and let D be a subring of k. Then n~x(D) satisfies GPIT if
and only if D is a field and T satisfies GPIT.

Proof. The proof of (a) follows that of [4, Corollary 3.2(b)] pro-
vided that R c T. One reduces to this case (assuming, without loss
of generality, that R is not a field) by considering the unique small-
est subring of R Π T that has the same spectrum as R and T. (Cf.
[3, Proposition 2.3].) As for (b), argue as in the proof of [4, Corol-
lary 3.2(c)], with (a) now playing the role of [4, Corollary 3.2(b)]. D

3. GPIT and homomorphic images. We begin this section with a
simple sufficient condition for a ring to satisfy GPIT (cf. [12, Exercise
6, p. 114]).

PROPOSITION 3.1. If R is a ring such that R/P satisfies GPIT for
each minimal prime ideal P of Rf then R satisfies GPIT

Proof. Suppose the assertion fails. Then there exists Q G Spec(i?)
such that Q is minimal over some ^-generated ideal / of R and
ht(Q) > n . Pick a chain

Q = P0DPιD ' DPn+l=P

of distinct primes in R. Without loss of generality, P is a minimal
prime. Since the ring R/P satisfies GPIT and its prime Q = Q/P is
minimal over the n-generated ideal (I+P)/P, it follows that ht(Q) <
n . However, the chain {Pi/P} of distinct primes reveals that ht(Q) >
n, the desired contradiction. D

It is natural to ask whether a variation of the converse of Proposi-
tion 3.1 is valid. In this regard, it was claimed in [4, Remark 5.3(a)]
that if R satisfies GPIT, then so does R/I for each finitely generated
ideal / of R. The authors of [4] now view this claim as suspect, and
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hereby retract it. A weaker positive result will be obtained in Theo-
rem 3.3. Before this, we give an easy variant of Proposition 3.1.

PROPOSITION 3.2. A ring R satisfies GPIT if and only if RTQά satis-
fies GPIT.

Proof. The proof follows from the next three observations. The
chains of distinct primes in R are in one-to-one correspondence with
the chains of distinct primes in i? r e d , with the chain PQ D D
Pn+\ in R corresponding to the chain {/Vrad(iϊ)}/=o * n ^redίthus,
ht(P0) = ht(Po/τ2id(R))\ and P0/rad{R) is minimal over an n-
generated ideal / of i? r e d if and only if / can be written as / =
(/ + rad(i?))/rad(i?), where / is an ^-generated ideal of R such that
Po is minimal over / . D

THEOREM 3.3. If a ring R satisfies GPIT and an ideal I of R is
generated by an R-sequence, then R/I satisfies GPIT.

It will be convenient to make the following definition and remarks
before proving Theorem 3.3. If R is a ring and n is a nonnegative
integer, we shall say that R satisfies n-PIT in case ht{P) < n for
each P e Spec(i?) which is minimal over an ^-generated ideal of
R. Evidently, each ring R satisfies 0-PIT and n-PIT for all n >
dim(i?) 1-PIT is equivalent to PIT; and R satisfies GPIT if and
only if R satisfies ft-PIT for each n > 0. It is easy to see from
the above proofs that Propositions 2.1, 2.5(a), 3.1 and 3.2 all remain
valid if one replaced "GPIT" with " n-PIT" in their statements. Such
generalizations aside, our purpose in introducing n-PIT is to develop
the next result, which immediately implies Theorem 3.3.

LEMMA 3.4. Let R be a ring satisfying k-PIT for some k > 0. Let
I be an ideal of R generated by an R-sequence y\, . . . 9yn, for some
n<k. Then R = R/I satisfies (k - n)-PIT.

Proof. We shall proceed by induction on n, which clearly can be
assumed positive.

Case n = 1: Since y = y{ is a non-zerodivisor, y lies in no
minimal prime of R (cf. [12, Theorem 84]). Suppose the assertion
fails. Then there exists a prime P/I of R such that ht(P/I) > k - 1
and P/I is minimal over (jcf, . . . , ~xj~[). (As usual, if x e R, then
x denotes x + (y) £ R.) Hence there is a chain P D P\ D D /\
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of distinct primes in R containing y. As noted above, y is in no
minimal prime. Thus, being nonminimal, /\ properly contains a
minimal prime of R. It follows that ht{P) >k+\. However, ht{P) <
k since R satisfies /c-PIT and P is minimal over the Λ:-generated
ideal (x\, . . . , Xfc_{, y). This (desired) contradiction establishes the
induction basis.

Induction step: By the induction hypothesis, A — R/(y\, . . . , yn-\)
satisfies (k - (n - 1))-PIT; that is, (k - n + 1)-PIT. Consider z =
yn + Cvi, , yn-\) £ A. Since y\, . . . , yn is an i?-sequence, z is a
non-zerodivisor in A. It follows from the proof of the "case n = 1"
that A/(zJ_ satisfies ((k - n + 1) - 1)-PIT; that is, (k - «)-PIT. Since
A/(z) = i?, the proof of Lemma 3.4 (and hence of Theorem 3.3) is
complete. D

4. GPIT and monoid domains. In this section, we study when a
monoid domain R[S] satisfies GPIT. ([8] is an excellent reference
for monoid domains.) We show in Corollary 4.3 that any torsionfree
abelian group ring over a Noetherian domain satisfies GPIT, and next
give an example to show that "almost anything" can happen for a
monoid domain. For simplicity, we assume that all coefficient rings in
this section are domains. We begin with a result noted in the remarks
preceding [4, Proposition 6.4]; its proof is omitted.

PROPOSITION 4.1. Let R be a domain. Then R[{Xa}] satisfies
GPIT for each family {Xa} of algebraically independent indetermi-
nates if and only if the polynomial ring R\X\, . . . , Xn\ satisfies GPIT
for each positive integer n.

In general, R[X] need not satisfy GPIT when R satisfies GPIT
(cf. [4, Remark 6.2]). However, if R[X] satisfies GPIT, than by The-
orem 3.3, R = R[X]/(X) also satisfies GPIT. Our next result, the
main one of this section, shows that "GPIT-stability" (in the sense of
Proposition 4.1) characterizes the validity of GPIT for certain group
rings over R.

THEOREM 4.2. Let G be a nonzero torsionfree abelian group with
n = rank(G) finite. Let R be a domain. Then the following conditions
are equivalent:

(1) R[X{ ,...,Xn] satisfies GPIT;
(2) R[X{, X-1, . . . , Xn , X~{] satisfies GPIT;
(3) R[G] satisfies GPIT.
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Proof. (1) =» (2) since GPIT is preserved by localization.
(2)=>(3): Suppose that B = R[G] does not satisfy GPIT. Then

there exist f\9 ... 9 freB and a prime ideal P of B with ht(P) > r
such that P is minimal over (f\9 ... 9 fr)B. Choose a finitely gener-
ated subgroup F of G with rank(P) = n such that f\, . . . , fr € A =
i?[F] and Q = PnA has Λί(β) > r. Since A satisfies GPIT by (2),
there exists a prime ideal Q\ of 4̂ with (f\9 ... 9 fr)A C βi § Q. As
5 is a flat (in fact, free [8, Theorem 12.1]) A -module, A c B satisfies
GD (cf. [12, Exercise 37, p. 44]). Thus there is a prime ideal Pi of
B with (/i, ... , fr)B c P\ § P, contradicting the minimality of P .

(3)=>(2): Choose a finitely generated subgroup F of G with
rankίi7) = n . Hence G/i7 is a torsion group, and thus

A = R[XX ,X;ι,...,Xn,X;ι] = R[F] c R[G]

is an integral extension. By Proposition 2.1(c), A satisfies GPIT.
(2) => (1): Suppose that a prime ideal P of A = R[X{, . . . , Xn] is

minimal over I = (f\, ... , f r ) . We show that ht(P) < r. By applying
a suitable automorphism, f{X\, ... , Xn)\-+ f(X\ + a\, . . . , Xn + an)
of A9 we may assume that X/ ^ P for 1 < / < n. Let B =
i?[^ ! , Xf1, . . . , Xn, X~ι]. Then PB is minimal over 75 since B
is a ring of fractions of A. Thus ht(PB) < r since B satisfies GPIT.
But ht{P) = ht{PB). D

COROLLARY 4.3. Let R be a domain. Then R[G] satisfies GPIT
for each torsionfree abelian group G if and only if R[X\, . . . , Xn]
satisfies GPIT for each positive integer n. In particular, if R is a
domain containing, and integral over, a Noetherian domain, then R[G]
satisfies GPIT for each torsionfree abelian group or free abelian monoid
G.

Proof. (=>) follows directly from Theorem 4.2. Conversely, sup-
pose that R[G] does not satisfy GPIT, for some torsionfree abelian
group G. Arguing as in the proof of (2) =>> (3) of Theorem 4.2, we
see that R[F] does not satisfy GPIT for some finitely generated sub-
group F of G with rank(F) = n. But this contradicts (1)=*(2) of
Theorem 4.2 because R[X\, . . . , Xn] satisfies GPIT by hypothesis.

The "in particular" statement follows from the first assertion and
Corollary 2.3 for the group ring case, and from Proposition 4.1 and
Corollary 2.3 for the free abelian monoid case. D
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REMARKS 4.4. (a) It is worthwhile to note, via Theorem 3.3 and
Theorem 4.2, that if R[X{, ... , Xn] satisfies GPIT, then R[G] satis-
fies GPIT for each torsionfree abelian group G with rank(G) < n.

(b) Corollary 4.3 may be used to construct additional examples of
non-Noetherian domains which satisfy GPIT. In particular, the group
ring k[G] satisfies GPIT for any field k and torsionfree abelian group
G. This construction has been used to construct finite-dimensional
non-Noetherian UFD's [9, Theorem 2] and [8, §14]). (Recall that
k[G] is a Krull domain <& k[G] is a UFD o each ring-one subgroup
of G is cyclic [8, Theorems 16.2, 14.7, 14.10, and 14.15].) Thus, the
non-Noetherian Krull domains constructed as group rings over a field
satisfy GPIT.

(c) Finally, we note that Proposition 4.1 and Theorem 4.2 have
ft-PIT analogues; we leave these to the interested reader.

It is natural to ask if monoid domains other than polynomial rings
and group rings satisfy GPIT. Our next example shows that the answer
may be negative even for a very nice domain (cf. [12, Exercise 8,
p. 114] and [4, Remark 3.6(c)]).

EXAMPLE 4.5. Let k be a field and 1 < m < n < oo. Set Γ =
fc[{*i}?=iL P = (Xi,...,Xm)T,axid R = k + P. Then R = k[S]9

where S is the submonoid of ΊL\ determined by the exponents of the
monomials in R. Moreover:

(1) dim(i?) = dim^i?) = n .
(2) R is an integrally closed Mori domain.
(3) htR{P) = n and P = rad*((*i, ... , Xm)R).
(4) R does not satisfy r-PIT for m < r < n - 1.
(5) R satisfies r-PIT for 1 < r < m - 1.

Proof. We assume that n < oo the case n = oo may be treated in
a similar manner.

(1) Since (S) = Zn, dim(7?) = n by [8, Theorem 21.4 and Theo-
rem 17.1], while dimv(R) = n by [2, Theorem 1.17].

(2) Just note that R = Tn(k + PTP) (cf. [4, Remark 3.6(c)]).
(3) By (1), htR(P) < n. Put />- = (Xi9 XM , ... , Xn)T ΓΊ R.

Since P = P{ D PI D D Pn 3 {0} is a chain of n + 1 dis-
tinct prime ideals of i?, we have htR(P) = n. To show that P =
τadR((Xι, ... , Xm)R), it suffices to show that any prime ideal Q of
R which contains X\, ... , Xm also contains P. If / e P, then
/ 2 G ( X 1 , . . . , X m ) i ? c Q , a n d s o feQ. Hence P = Q.

(4) This is an immediate consequence of (3).
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(5) Suppose that 1 < r < m - 1. Let Q be a prime ideal of R
minimal over (/i, . . . , fr) for some / ! , . . . , fr e R. We show that
ht(Q) < r. If Xi• £ Q for some 1 < / < m, then R[X~ι] = T[X~ι]
satisfies GPIT because it is Noetherian, and so ht(Q) = ht(Q[X~1]) <
r. Thus we may assume that (XΪ9 ... 9 Xm)R c Q. Then, by (3), P =
Q. Thus P is minimal, as a prime ideal of T, over (fχ9 ... , fr)T.
Since htτ(P) = m > r, this contradicts the fact that T satisfies
GPIT. D

5. A Krull domain not satisfying GPIT. A celebrated theorem of
Mori-Nagata [13, Theorem 33.10(1)] asserts that the integral closure
of a Noetherian domain must be a Krull domain. Thus, by Corol-
lary 2.3, each Krull domain arising in this way must satisfy GPIT.
As shown in Remark 4.4(b), group algebras lead to other examples
of Krull domains satisfying GPIT. Moreover, each Krull domain of
dimension < 2 satisfies (G)PIT. We next present an example of a
three-dimensional Krull domain that does not satisfy GPIT. (The his-
tory of this example was explained in the introduction.) Finally, as
a consequence, we show in Example 5.2 that the class of domains
satisfying PIT is not stable under factoring out principal prime ideals.

EXAMPLE 5.1. There exists a quasilocal three-dimensional Krull do-
main whose maximal ideal is the radical of a 2-generated ideal. Thus,
this domain does not satisfy GPIT.

Proof, Following Rees [14], we take (R, M) to be a two-dimen-
sional integrally closed (Noetherian) local domain having a height 1
prime ideal P such that R/P is a DVR and P is not the radical of
a principal ideal. (For instance, R can be built from a nonsingular
cubic curve over the complex numbers, say R — C[x, y 9 z\x >y9Zj
where x 3 + y3 + z 3 = 0.) As usual let pW = PnRP n R denote the
nth symbolic power of P. Set

B = R [ Γ ι , P t 9 ... , P { n ) t n , . . . ] ,

the symbolic Rees ring with respect to P. It is known that B is a Krull
domain (by adapting a proof of Rees [14, p. 147]: see [6, Lemma 2.1]),
non-Noetherian (cf. [6, Theorem 2.2]) and three-dimensional. Ob-
serve that B is a Z-graded domain: the homogeneous terms of degree
n constitute pWτn if n > 0, and Rtn if n < 0. We shall show that

is a height 3 (maximal) ideal of B and is the radical of a 2-generated
ideal. It will follow that BN has the properties asserted in the state-
ment of Example 5.1.
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Consider the multiplicatively closed set S = R\P. Since Rp is a
DVR, we have Bs = Rp[Γι, πt], where π e P\P{2). Identify

Bs = Rp[u, v]/(uv -π).

Evidently, Bs is a two-dimensional graded domain with maximal
graded ideal (Γι, πt) having height 2. Hence, htβ(N) = 3. It
remains only to show that JV is the radical of a 2-generated ideal.

Next, consider the graded domain A = B/(Γι) = R/P Θ P/P^ φ
• Θ />(")//>("+!) e . . . . Let A* = Rp/PRp , the quotient field of R/P.
Since localization commutes with the formation of factor rings, we
can identify

As = RP[u, v)/(u ,uv-π)= RP[u, v]/(u, π) = K[v],

a polynomial ring in one variable over K. Observe that v in A[t>]
has been identified with the canonical image of πt in As. We thus
have

(R/P)[v] cAc K[υ]

and 4̂ = ®Fnv
n, where each 7^ is a fractional ideal of R/P. Let

x = x + P generate the maximal ideal of R/P (where x e M). We
shall show that the maximal graded ideal of A, namely N/(t~ι), is
the radical in A of x^4. It will follow that N = rad^(/~1, JC) , as
desired.

It suffices to show that Fnv
n c rad( c^) for each n > 1. We

claim that there exists m > 1 such that x~ι(Fnv
n)m c Fnmvnm. If

not, then (Fn)
m = Fnm for each m > 1. Since Ft = (x~d') for

some nondecreasing sequence {^/}, a calculation shows that A =
(R/PftiFiV*: 1 < i < n}]. This contradicts the fact that A is not
Noetherian, and thus proves the claim. Then (Fnv

n)m c xA, whence
Fnv

n c rad( c^). D

The preceding example now leads to an application in the spirit of

§3.

EXAMPLE 5.2. There exists a domain B satisfying PIT and a prin-
cipal prime ideal bB such that B/bB does not satisfy PIT. It can be
arranged that B is a three-dimensional Krull domain.

Proof. Let B be as in Example 5.1 and put b = t~ι. Then B/bB —
A in the above notation. We showed in the proof of Example 5.1 that
N = N/(t~ι) = rad^(^4) thus, N is minimal over xA. It remains
only to observe that ht(N) = 2. D
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We have seen in Example 5.1 that not all Krull domains exhibit
the Noetherian-like behavior of satisfying GPIT. Another instance
of this phenomenon is provided by Fujita's example [7] of a three-
dimensional noncatenarian UFD. Indeed, it is easy to show that any
three-dimensional UFD satisfying GPIT must be catenarian.

Finally, we turn to other Noetherian-like behavior. As in [2], we say
that a domain R is a Jaffard domain in case dim^ (R) = dim(7?) < oo.
It is an open problem to compute the valuative dimension of an arbi-
trary Krull domain. With respect to Corollary 4.3 and Example 4.5, it
should be noted via [2, Corollary 1.19] that k[G] is a Jaffard domain
for each field k and each finite-rank G as in Corollary 4.3. Also, the
finite-dimensional Krull domains of Anderson-Mulay [1, (4)] are all
Jaίfard domains.

In closing, we ask whether the Krull domains that occur in the (gen-
eralized) 14th problem of Hubert must be Jaffard domains. Specif-
ically, let H e a field and let T be either a polynomial ring in n
indeterminate over k, or (more generally) a normal affine domain
over A: or a localization of such a domain. Let F be a field between
k and the quotient field of T, and set R = T n F. Does it follows
that R is a Jaffard domain?
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