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RATIONAL FORMAL GROUP LAWS

ROBERT F. COLEMAN AND FRANCIS OISIN MCGUINNESS

In this paper we determine the rational formal groups defined over
a field of characteristic zero. This answers a question originally posed
by Robert MacPherson.

While one can answer this question using Weil's theorem which
asserts that every birational group is birationally isomorphic to an
actual algebraic group [Wl], below we give an elementary argument
using methods similar to those used in [C].

THEOREM. Every rational formal group law over an algebraically
closed field K of characteristic zero is of the form

L-ιG(L(x),L(y))

where G(x, y) is either x+y or x+y+xy and L is a linear functional
transformation over K such that L(0) = 0.

One deduces easily from this that

COROLLARY. The rational formal group laws over afield K of char-
acteristic zero are the rational functions

(x + y + cxy)/(l -dxy)

where c and d are elements of K. Moreover, this formal group is
rationally isomorphic to x+y over K if c2-4d = 0 and to x+y+xy
over K(\J(c2 - 4d)) otherwise.

Proof of theorem. Recall that now K is algebraically closed. Suppose
F(x,y) is a rational formal group.

Let ω = dx/Fiix, 0) and g(x) = F(x, x) (the rational function
giving multiplication by 2 on F). Then ω and g satisfy the hypoth-
esis of the following proposition:

PROPOSITION. Suppose ωeK(x)dx and geK(x), ω^O, ord0ω
= 0, g(0) = 0 and g*ω = 2ω. Then ω = L*(dx) or L*{cdx/(x+l))
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where L is a linear fractional transformation defined over K such that
L(0) = 0 and ceK*.

Proof. Let Y denote the set of poles and Z the set of zeros of ω.
It follows from the hypothesis that g~ι Y = Y and g~ιZ = Z .

The equation g*ω = 2ω implies that

* ω

where the sums run over Q e Y = g~ι Y. Suppose Q e Fι(K). Then
we also have the formula

^ o r d p g*ω = deg(s) ord ρ ω + (deg(^) - #g~ι(β))

where the sum runs over P € g~λ{Q). Suppose now Q is a pole
of ω. The right-hand side of this formula is less than or equal to
ordρ ω. Hence the last two formulas imply that

deg(#) ord β ω + (deg(g) - #g~ι(Q)) = oτdQ ω

for alll Q e Y. This occurs for a given Q e Y iff deg(#) = 1 or

ordρ ω = - 1 (in which case #gr~1(Q) = 1) •
Suppose first that deg(g) = 1 and ω has a pole of order greater than

one. Since g*ω = 2ω, no iterate of g is the identity. As g(0) = 0
it follows that there exists exactly one non-zero point fixed by some
iterate of g. Since g~ιY = Y, g~ιZ = Z and ordoω = 0, we see
that ω has only one pole and no zeros. It follows that ω = L*(dx)
for some linear fractional transformation L which we may assume
vanishes at the origin.

Suppose now that ω has only simple poles. If Q is a pole of ω
we know that g~ι(Q) consists of exactly one point, P say, and we
have the formula

Res/> g*ω = deg(#) Res e ω

by a local computation. Since g*(ω) = 2ω, this becomes

Resp ω = (deg(g)/2) Res β ω.

Now we know that g~ι Y = Y. Hence, there exists a Q in Y and a
positive integer n such that {Q} = g~n(Q). By iterating the previous
equation we deduce that

(deg(g)/2)π Resβ ω = Resβ ω.

Hence, as Res β ω φ 0 and deg^) e Z > 0 , deg(^) = 2.
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The facts that g~ιY = Y and g~ιZ = Z imply that the zeros
and poles of ω lie among the branch points of g: P1 —• P 1 . Since
g has degree 2 it has only two branch points. Since ω is not equal
to zero, has only simple poles and its residues sum to zero it must
have exactly two poles and no zeros. Hence ω = L*(cdx/(x+ 1)) for
some linear fractional transformation L and some constant c € K*.
Since ordo ω = 0, we may assume L(0) = 0. This proves the proposi-
tion. D

The theorem follows from the proposition noting that F(x,y) =
L~ιG(L(x), L{y)) where G(x, y) = x + y if ω = L*(dx) and
G(x,y) = x + y + xy if ω = L*(cdx/(x + 1)). D

REMARK. The only place in the above argument where the algebraic
closedness of K was used in a serious manner was in the last step
which required finding a linear fractional transformation which moved
one pole of ω to 0 and the other to oo.
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