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NOTES ON REPRESENTATIONS
OF NON-ARCHIMEDEAN SL(n)

MARKO TADIC

Let F be a non-archimedean local field. In this paper the relation
between irreducible representations of GL(n, F) and SL(«, F) is
studied. Using the results on GL(n, F) a parametrization of (var-
ious classes of) irreducible representations of SL(n, F) by parame-
ters expressed in terms of cuspidal representations of GL(n, F) is
obtained.

Introduction. Before we give a more detailed description of the con-
tent of this paper, a few historical remarks on SL(n, F) are needed.
Gelfand and Naimark gave in [8] proof of the irreducibility of unitary
principal series representations of SL(n, C). The same proof gives
the irreducibility of unitary principal series for GL(n) over any local
field. Using the fact that the unitary principal series have non-trivial
Whittaker models for GL(n), and the uniqueness of the model proved
by Rodier ([18]), Howe and Silberger proved in [10] that the unitary
principal series of GL(n, F) restricted to SL(n, F) are multiplicity
free. The same idea appears in Labesse and Langlands paper [14]. In
this way, Howe and Silberger obtained that unitary principal series
representations of SL(n, F) are multiplicity free. Shahidi observed
in [20] that one can prove, using the same idea of Whittaker models,
that any irreducible tempered representation of GL(n, F) restricted
to SL(n , F) is multiplicity free. In this way one obtains that the
parabolically induced representation of SL(«, F) by irreducible tem-
pered representation is multiplicity free. A general approach to the
reducibility and the multiplicities was done by Keys. The structure
of the commuting algebras of unitary principal series representations
for Chevalley groups was described by him in [11] and it turned out
the multiplicities are not always one. This was also shown earlier by
Knapp and Zuckerman in [12]. Gelbart and Knapp gave in [5] a de-
scription of irreducible constituents of the restriction to SL(w, F) of
the unitary principal series representations of GL(n, F). Their pa-
per [6] is based on two working hypotheses, the second of them is the
multiplicity one of the restriction to SL(«,/Γ) of irreducible represen-
tations of GL(/ι, F). Bernstein showed in [1] that any parabolically
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induced representation of GL(n, F) by an irreducible unitary rep-
resentation is irreducible. In [13] Kutzko and Sally and in [17] Moy
and Sally, studying the restriction to SL(n, F) of cuspidal represen-
tations of GL(n, F) showed in the tame and in the prime case that
any cuspidal representation of SL(n, F) is induced from a compact
open subgroup. These papers contain a lot of informations about re-
strictions of cuspidal representations in these two cases.

Now we give a more detailed description of the content of this pa-
per. In the first paragraph it is shown that the restriction to SL(n, F)
of an irreducible smooth representation of GL(n, F) is a multiplic-
ity free representation. In particular, it proves "Working Hypothesis
2" of Gelbart and Knapp in [6]. Using the Bernstein result in [1] on
the irreducibility of the unitary parabolic induction for GL(n, F) it
is obtained that the parabolically induced representation of SL(n, F)
by an irreducible unitary representation of a Levi subgroup is multi-
plicity free.

The second paragraph presents some simple general facts about re-
striction of irreducible representations of a connected reductive group
G over F to a connected reductive subgroup G\ of G which con-
tains the derived group G d e r . We need those facts in the sequel. Most
of them were observed and proved by a few authors, the greatest part
by Gelbart and Knapp in [5] and [6]. Here we present proofs because
Gelbart and Knapp were dealing with the case of chari 7 = 0. In this
case G/Z{G)G\ is a finite group (Z(G) denotes the center of G).
This is not always the case in the positive characteristic.

Let P = MN be a parabolic subgroup of GL(n, F), and M\ =
SL(rc, F) Π M. In particular, one may consider the case of M —
GL(n, F) and M\ = SL(n, F). For an irreducible smooth repre-
sentation π of M, XMX{K) denotes the set of all characters χ of
Fx such that π = (χ o det)π. This is a finite group and it has been
introduced by several authors, for example in [5], [14], [17]. Fix a
non-trivial unitary character of F . Take a pair consisting of an orbit
(9 for the action of characters of Fx on the classes of irreducible
representations of M and a from the dual group of XM (π) where
π G (9. Considering Whittaker models and the Langlands classifica-
tion we fix an irreducible subrepresentation Δ((^f, a)) of π\M\. In
this way a parametrization of all irreducible representations of M\ is
obtained by irreducible representations of GL(«, F) (Theorem 3.1).
One can obtain a parametrization of other classes of irreducible repre-
sentations of M\ because Λ((^, a)) is square integrable if and only
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if the orbit (9 is square integrable, Λ((*f, a)) is unitary if and only
if the orbit (9 is unitary,.... Let us observe that the parameters for
the irreducible constituents of unitary principal series of SL(n, F)
introduced in [5] are of the same type.

In the last paragraph the parametrization of M\ is reduced to cuspi-
dal representations of G L ( Λ , F) and groups XSL(Π,F)(P) for cuspidal
representations p. Further reduction would be a description of the
groups Xsh(n,F)(p) in terms of a classification of cuspidal representa-
tions. A great amount of information and calculations of these groups
can be found in the paper [14] by Kutzo and Sally, and the paper [17]
by Moy and Sally. In the tame case these groups appear naturally (see
Remark 4.3). In this paragraph we give a necessary and sufficient con-
dition for the irreducibility of parabolically induced representations
by irreducible unitary representation (Theorem 4.2).

Note that in the case of GL(n, C) or GL(n, R) the question about
the multiplicities of the restriction of irreducible unitary representa-
tions to SL(ft) is pretty simple. Since R* has two characters of finite
order and C* only one, by (a simple) Lemma 3.2 of [5] the multiplic-
ities of the restriction are always one and the length can be at most 2
for R, and 1 for C (for C it is evident since GL(n, C) is a product
of SL(n, C) and its center).

This author is thankful to P. J. Sally for conversations on the prob-
lems considered in this paper and for suggesting to write this paper.

1. Multiplicities one. 1. We fix a locally compact non-archimedean
filed F. By A (resp. A\) we shall denote the maximal torus in
GL(n, F) (resp. SL(n, F)) of all diagonal matrices. The Borel sub-
group of all upper triangular matrices in GL(n, F) (resp. SL(n, F))
will be denoted by B (resp. B\). The choice of the Borel subgroup
determines in a natural way a set of positive roots and further, the set
of simple roots.

Now we have a well known

1.1. LEMMA. Let (σ, V) be a smooth representation of a Levi fac-
tor M of a parabolic subgroup P = MN in GL(n, F), where N
denotes the nilpotent radical ofP. Set Mx = M n SL(rc, F). Then
P\ = M\N is a parabolic subgroup of SL(n, F) and P\ = M\N is a
Levi decomposition of P\. The representation IndpL^> F^(σ)|SL(^, F)
is isomorphic to IndpL^>jF^(σ|Λfi) with an isomorphism given by re-
striction to SL(«, F).
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Let π be an irreducible smooth representation of GL(n, F ) . Then
π| SL(n, F) is a finite sum of irreducible representations. This can be
obtained from [21] (see Lemma 2.1 for a more detailed explanation).

1.2. THEOREM. For an irreducible smooth representation (π, V)
of GL(n, F), π| SL(n, F) is a multiplicity free representation.

Proof. We consider Langlands parameters of π. We can choose a
parabolic subgroup P = MiV of GL(n, F) containing B, an irre-
ducible tempered representation τ oϊ M and a positive-valued char-
acter χ oϊ M satisfying the positiveness condition with respect to
roots of Proposition 2.6 in Chapter XI of [3], such that π is a unique
irreducible quotient of I n d p L ^ ' F ^ τ ) . We shall assume that we took
a Levi factor M which consists of diagonal block matrices for a suit-
able partition of n = n\ Λ h n^ . Then

M = GL(ni, F) x x GL(nk, F)

and we identify M with GL(ni, F) x x G L ( Λ * , F ) . Set Mx =
MnSL(n,F) and Λ = MXN.

Note that τ = τ\ ® ® τ^ where τ, are irreducible tempered rep-
resentations of GL(«/, F). Since t/ has Whittaker model by [25],
in the same way as in [10] one obtains that τ;|SL(ft;, F) is multi-
plicity free (this was observed in [20], see also Proposition 2.8). Thus
τ| SL(n, F) x x SL(nk, F) is multiplicity free. Since SL(/ii, F) x
• x SL(ftfc, F) C Afj, τ|Afi is multiplicity free.

Note that τ\M is a direct sum of irreducible representations of M\
(for a more detailed explanation see Lemma 2.1). Let τ = 0f= 1 τz be
a decomposition into irreducible representations of M\. Observe that
all unipotent radicals in M are contained in M\ and thus the Jacquet
modules for parabolic subgroups of M and M\ are the same spaces.
Applying Theorem 2.8.1 of [23] one obtains that %\, . . . , τp are tem-
pered representations of M\ (central exponents of Jacquet modules
of Mi-representations are obtained by restricting central exponents of
Jacquet modules of M-representations, see also Proposition 2.7).

The representations τ, are inequivalent irreducible tempered repre-
sentations of M\ and χ\ = χ\M\ satisfies the positiveness condition
of Proposition 2.6 in Chapter XI of [3], considered for SL(n, F ) .
Thus IndpL ( / I ϊ j F )(/iτ/) has a unique irreducible quotient say (π | , V{).
Since all τ, are inequivalent, π\, . . . , πf

p are all inequivalent. By
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Lemma 1.1 we can fix an isomorphism

'F> (χτ)\ SL(n, F) =

1=1

Let ψ : φf= 1 IndpL^'F^(/!T/) —> Ŵ  be a non-trivial morphism of

SL(π, F)-representations where (σ, W) is an irreducible SL(n, F)-

representation. Suppose that ψ\lnά^{n'F\χιτi )φθ. Thus σ = π' .
Γ\ ° 0

Since π\9 ... , π'D are inequivalent, ^ | I n d p ^ ' \χ\Ti) — 0 for / Φ

io . If we have another SL(n, F) -morphism

it must be proportional to ψ by the uniqueness of irreducible quotient

([3]):
Consider a decomposition π| SL(n, F) = φ y = 1 τry into irreducible

representations of SL(n, F ) . Consider the natural morphisms of
n, i7)-representations

1=1

Suppose that π, = π7 for some i φ j . Let Λ be an isomorphism of
π, onto π, . Then

are non-trivial SL(n, F)-morphisms. Note that ker ^ ^ ker(Λ o φt).
Thus ί̂ y and Λ o ^ are not proportional. This contradicts the above
observations about SL(n , F)-morphisms ^ . Thus π7 ^ π7 for i' Φ j .
This proves the theorem.

1.3. REMARK. The above observations on SL(n, F)-morphisms
ψ imply that {π\, ... , πq} C {π^, . . . , π'p}. It is not difficult to
obtain p = q and thus {π\, . . . , π^} = {π^, .. . , πf

p] (otherwise

lnά^n'F\χτ) would have two different irreducible quotients). In
this way there is a natural bijection between irreducible subrepresen-
tations of χσ\M\ and irreducible subrepresentations of π| SL(rc , F).
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1.4. THEOREM. Let P\ be a parabolic subgroup of $L{n, F) with

a Levi decomposition P\ = M\N. Let (σ, U) be an irreducible uni-

tary representation of M\. Then IndpL^'F^(σ) is a multiplicity free

representation.

Proof. Choose a parabolic subgroup P of SL(«, F) with the Levi
decomposition P = MN such that M\ = M Π SL(n, F ) . Then
px = p n S L ( « , f ) . It is not difficult to see that there exists an ir-
reducible unitary representation σo of M such that σ is a subrep-
resentation of σ$\M\ (for the proof see Propositions 2.2. and 2.7).
Now IndpL(w'F)(<7) is a subrepresentation of IndpL(M'F)(σo|Λ/i) which

is isomorphic to IndpL ( Λ > j F )(σo)|SL(n ? F) by Lemma 1.1. Thus, to

prove the theorem it is enough to prove that Indp L ( w ' F ) (σ 0 ) | SL(rc, F)

is multiplicity one. Since IndpL ( Λ ) j F )(σ 0) is irreducible by Corollary

8.2 of [1], IndpL ( π > j F )(σ 0) |SL(«, F) is multiplicity free by Theorem

1.2.

2. Some general remarks. In this paragraph we collect some general
remarks, most of them well-known, about the connection of represen-
tations of reductive groups G\ C G which are in a position analogous
to the position of SL(n, F) C GL(n, F). A great part of this is
proved, among other papers, in [5], [6], [18], [20]. For the sake of
completeness we shall give proofs for which we do not know a pre-
cise reference in considered generality. Usually it was considered the
situation when G\Z(G) is of finite index in G but this is not nec-
essarily true if chari 7 Φ 0. (Z(G) denotes the center of G). Since
G/G\Z(G) is always compact, the case of infinite G/G\Z(G) is a
slight modification of the case of finite G/G\Z(G).

We shall denote by G the group of rational points of a connected
reductive group over a non-archimedean field F, and by <?der the
group of rational points of its derived subgroup. The center of G
is denoted by Z(G). By G\ it will be denoted rational points of a
connected reductive subgroup of G containing G d e r . The set of all
classes of irreducible smooth representations of G will be denoted by
G while the subset of all unitarizable (resp. tempered, square inte-
grable modulo center, cuspidal) classes will be denoted by G (resp.
ΓW(G), DU(G), C(G)). The subset of G of essentially square inte-
grable representations (resp. essentially tempered representations) will
be denoted by D{G) (resp. T(G)). Set CU{G) = C(G) ΠG.
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For (π, V) G G and a a continuous automorphism of G, πσ

will denote the representation πσ(g) = π(σ(#)) which is again in
G. Clearly π ^ = (πσι)σ2. Let x G G and let y(x) be the inner
automorphism of G defined by γ(x) : g —• x ^ x " 1 . For (τ, V) G Gi
set

In this way G acts on G\. This action factorizes to an action of
G/Z(G)G{.

Now we have an easy consequence of [21].

2.1. LEMMA. For π eG, π\G\ is a finite direct sum of irreducible
representations of G\.

Proof. Let for a moment G, G d e r and Z(G) will be considered
as algebraic groups over an algebraic closure of F. Let Z(G)o be
the connected component of Z(G). Then the multiplication G d e r x
Z(G)o -> G is an isogeny ([2], 14.2, Proposition). Let us return to
the groups of rational points. By [21], π|G d e rZ(G) is a finite direct
sum of irreducible representations of GderZ(G) and moreover, by the
Schur lemma, of G d e r . Thus π\G\ is a finite length representation.
This implies that π\G\ is completely reducible (see proof of Lemma
3 of [21]).

Let π G G. Denote by &Gx{
π) the set of all τ G G\, which are

isomorphic to a subrepresentation of π\G\. Clearly, ^ M is a finite
set and it is invariant for the action of G (since π = ny(g) for # e (J) .
The action of G on ^ ( π ) is transitive (since π is irreducible). Set

n(τ)τ.

The linear independence of characters together with the transitivity
of the action of G on ^ ( π ) implies that all n(τ) are the same, say

r (π). Thus
1 ~ ^^ τ.

I

The cardinality of ^ ( π ) will be denoted by no{n).

By °G it is denoted the set of all g eG such that \χ(g)\r = 1 for
all F-rational characters χ of G. Then °G/Gάer is compact, G/°G
is a free Z-module of finite rank, say n, and G/°GZ(G) is finite.
Thus

°GZ(G)/°G = Z(G)/(Z(G) n °G)
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is a free Z-module of rank n . Therefore

splits. Denote by S the image of a splitting homomorphism. Then S
is a closed discrete subgroup of Z(G) which is a free Z-module of
rank n, Sn°G = {l}, S(Z(G) Π°G) = Z(G), and ° G Z ( G ) - ° G ^ .
Note that SG d e r is a closed subgroup of G and that G/SGάQT is
compact. Also SG d e r is a direct sum of S and G d e r . Note that
°GZ(G)/°G = °GS/°G = S is also of rank n and it is of finite index
in G/°G. Let k be the rank of °GGι/°G. Then

(°GS/°G) n (°GGi/°G) = (°GS n °GGι)/°G

is also of rank A:. Let

S' = {seS;s°GC°GSn °GGι}.

Then

Let S\ be a maximal subgroup of S among subgroups satisfying Sx Π
Sf = {1} . Now S\ is of rank n — k and S\S' is of finite index in S.

Consider S\G\. First note that 5Ί Π °GGχ = {1} (in particular
5i Π Gi = {1}). This implies 5ΊGi Π °GG! = Gj . Since °G is an
open subgroup of G and Gi is closed, it is easy to see that S\G\ is
a closed subgroup of G. It is a direct product of S\ and G\. Note
that

°GSι Gx /Si Gx = °G/(Sι Gx n °G)

is compact since °G/Gάer is compact. Since G/°GSιS' is finite and
° G 5 i ^ c ° G 5 i G 1 ? G/°GSXGX is finite. Thus G/SΊGi is compact.

2.2. PROPOSITION. For eαc/z τ G Gx there exists π eG such that τ
is isomorphic to a subrepresentation of π\Gx. If the central character of
τ is unitary, then there exists such π with the unitary central character.

Proof. Let (τ, U) G Gx. Extend τ to a representation of SXGX

defining that each element of Sx acts as identity. Let (πi, Vx) be the
representation Indf G (τ). This is an admissible representation. Then
/ -* / ( I ) , Vx —• U is a 5ΊGi-intertwining whose restriction to any
non-zero G-invariant subspace is non-zero (thus it is surjective).

Let V2 be any non-zero finitely generated G-subrepresentation of
V\. Then we have a surjective SXGX-intertwining a : V2 —• U. Since
V2 is finitely generated and admissible, it is of finite length. Therefore,
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we can choose an irreducible G-subrepresentation V3 of V2 with the
property a{V$) = U. This completes the proof of existence.

Suppose that the central character ωτ of τ is unitary. Then for
the central character ωπ of π we have coπ\S\ = 1 by construction.
Consider \ωπ\. It extends to a character χ oΐ G into R+. First
χ\Gχ = 1 since χ = 1 on the center of G\. Therefore χ\S\G\ = 1
and finally χ\G = 1. Thus \ωπ\ = 1.

2.3. COROLLARY. Let (τ, ί/) e Gi.

GΓ = { ^ G : T ^ τ}.

Then Z(G)G\ CGτ and Gτ is an open normal subgroup of G of finite
index.

Proof. Choose (π, V) e G such that there is a Gi-subrepresentation
V\ c V equivalent to U. Let VQ e V\, VQ 7̂  0. Denote by K an
open subgroup of G fixing vO Then KZ(G)GX C Gτ and KZ{G)GX

is open in G and has finite index.

Similarly as in Lemma 3.2 of [5] we obtain the following:

2.4. PROPOSITION. Let [π\, V{), (π 2 ? V2) e G. Let hGι(πι, π2)
be the number of all characters χ of G/G\ such that χπ\ = π2 as
representations of G. Then hcfti, π2) is finite and equal to the di-
mension of

HomG i(π1 ? π2).

Proof. First we shall prove the proposition in the case when the
restrictions of central characters of %\ and π2 to S\ are the same.
Observe that with this assumption

i π ! , π2) = Hom^^^πi, π2).

By Frobenius reciprocity

, π2) = ^

Denote by C°°(S\Gι\G) the representation of G by right translations
on the space of locally constant functions on G constant on S\G\-
cosets. We have an isomorphism

a
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given by / ® v —• (x H+ /Cx)π2(*)^) It is obvious that a is a
well defined injective intertwining. Let φ G Indf G (π 2 ) . Let X be
an open compact subset such that S\G\X = G. Choose an open
compact subgroup K fixing #> and fixing each element of the finite set
{π2(x~ι)φ(x) x G X}. Let g i ? . . . , ^ G X be the representatives
for SιG\\G/K. Define φt by p/ISiGig/tf = φ\SχGγgK and p, (jc) =
0 otherwise. Then φ = ψ\ + h #>« and ^, G Indf ^ (π2). Let χι
be the characteristic function of S\ G\ giK. Now

and this proves the surjectivity.
Note that C°°(S\G\\G) is isomorphic to the sum of all characters

of G/S\ G\. Thus the set of all unitary characters χ of G/S\ G\ such
that χτt2 = n\ is finite and the number of such χ is the dimension of
Hom^G (πi, πj) = Home (πi, πj). Note that for a character χ of
G/G\ such that j^π2 = %\ it must be χ|SΊ = 1 (consider the central
character).

Now let %\ and π2 be arbitrary. Let ωπ be the central character
of π, . Consider ω π |5Ί as a character of

Sι°GGι/°GGι =SX.

Note that G/S\0GG\ is finite. It is easy to see that ωπ \S\ extends to

a character of G/°GG\, say χι. Then

Hom G i (π! , π2) = H o m G i ( / f ^ i , χ2

xπj).

Now we can apply the first part of the proof and the proposition is
proved.

2.5. COROLLARY. Let π\, π 2 G G . Then the following statements
are equivalent

(i) There exists a character χ of G/Gι such that χπγ = π2 .
(ii)

(iii) ^

By the above corollary the orbits of the action of G on G\ are in
the bijection with the orbits of the action of the characters of G/G\
onto G.

2.6. REMARK. Let π G G. We shall denote by XG (n) the group
of all characters χ of GjG\ such that χπ = π. It is simple to
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see that a character χ of G which is trivial on Gπχ, where πi is
any irreducible subrepresentation of π\G\, is in JΓ^ (π) ([6], Lemma
2.1, (e)). If π\G\ is multiplicity free, then the converse is true: if
χ e XG(π), then χ{Gπγ) = 1 ([6], Corollary 2.2). The converse is a
consequence of comparison of two finite cardinal numbers.

2.7. PROPOSITION. Let (π, V) be an irreducible smooth represen-
tation of G with unitary central character. Then the following equiva-
lences hold:

(i) πeG^^WcG^^WnGi/0.
(ii) π e CU(G) 4 0Gχ{%) c CU(GX) <* 0Gχ{π) n Cw(Gi) ̂  0 .

(iii) π e DU(G) <* 0Gγ{π) c Z)M(Gi) ̂  ^ ( π ) ΠDU(G{) φ 0 .
(iv) π e TU{G) *> 0G[(π) c ΓM((?0 ^ ^ ( π ) n Tu{Gλ) φ 0 .

Proof. We shall outline only the proofs of implications which are
not completely trivial.

The only such implication in (i) is 0G{π) C G\ => π e G. Suppose

@G (π) Q G\ Now we can choose a G\-invariant scalar product ( , )i
on V. Then π\S\G\ is unitary. For v\, V2^V set

(v\ ,v2)= / (π(g)υι, π(g)v2)i rfg.

This is a G-invariant scalar product on V.
It is easy to obtain directly all implications of (ii).
One obtains implications in (iii) by directly comparing integrals

of matrix coefficients (one can also prove (iii) using the criterion for
square-integrability in Theorem 2.7.1 of [23]).

Let V\ be an irreducible tempered G\ -subrepresentation of V.
Then V\ is a subrepresentation of suitable Indy iV((5) where M\N
is a parabolic subgroup of G\ and δ a square-integrable representa-
tion of the Levi factor M\. Now it is easy to see that all elements
from the orbit 0G (π) are subrepresentations of the same type of rep-
resentation. We can choose M\N in such a way that there exists a
parabolic MN in G and Mx = M n Gx, MXN = MN n G{. Then
we can choose by Proposition 2.2, an irreducible representation δo of
M with the unitary central character such that δ is a subrepresen-
tation of <5ol̂ i By (iii)? ^ois square integrable. Then we have a
projection of lvLd^N{δ^)\G onto V\. Thus there exists πf e TU(G)
such that V\ is a subrepresentation of π'\G\. Now Proposition 2.4.
implies π' = χπ with χ unitary. Thus π e TU(G). The implication
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π e TU(G) => 0Gx{π) Q TU{G\) proceeds in the similar way. One can
prove also (iv) using the criterion in Theorem 2.8.1 of [23].

One can prove the next proposition in the same way as the Theorem
in [10]. Nevertheless we shall present the proof because we shall need
it in the later discussion.

2.8. PROPOSITION. Suppose additionally that G is a split group and
that (π, V) G G possesses a Whittaker model Then π\G\ is multi-
plicity free.

Proof. Let B = AN be a Borel subgroup of G such that A is a
maximal split torus of G and N the nilpotent radical of B. Suppose
that π has a Whittaker model with respect to a nondegenerate char-
acter ϋ of N. Then there exists a non-trivial linear form φ on V
such that φ(n{u)v) = ϋ(n)φ(v), n e N, υ eV.

Let V = Vγ + ••• + Vn be a decomposition into irreducible G\-
representations. Then ψ\Vx Φ 0 for some /. We may take / = 1.
The uniqueness of the Whittaker model with respect to ϋ implies
φ\ViI = 0 for i > 2 ([18]). Thus P , / > 2 do not have Whittaker
models with respect to ϋ. This implies that V\ is not isomorphic to
Vi for any / > 2 . Therefore, π\G\ is multiplicity free.

2.9. REMARK. Consider the proof of Proposition 2.8. Take a e
A. Denote by ϋa a character ϋa(n) = ϋ(ana~ι). Now if %\ has
a Whittaker module with respect to ϋ, then (π\)a has a Whittaker
module with respect to ϋa . Denote

Since AG{ = G,
A/Aπι=G/Gπi.

Now a i-* (πi)^ is a parametrization of (9Q{TI) by ^4/^4πi. Let a$ G
^4. For any a e a§Aπ^, (πi)^ has a Whittaker model with respect to
ϋa. The proof of the preceding proposition implies that π\ e @Q (π)
such that π'j ^ (ττi)α0, cannot have Whittaker model with respect to
ϋa with a E # 0 ^ ^ 0 Γ a finite group X of characters of G set

Since π|Gi is multiplicity one, Remark 2.6 implies
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Thus for fixed ϋ, (A/Ax (π)) parametrizes <9Q (π) in the following

way: for each aAx (π) e (A/Ax ^) there exists a unique σ e <9Q (π)

characterized with the property that a has a Whittaker model with

respect to ϋa.

3. Parametrization of representations of SL-groups by GL-param-
eters. In the rest of this paper we shall consider reductive groups
GL(n, F), SL(n, F) and Levi factors of their parabolic subgroups.
The parabolic subgroup P of GL{n, F) will always be considered
to contain upper triangular matrices, and for a Levi decomposition
P = MN, M will always be assumed to be diagonal block-matrix
(for suitable decomposition n = Π\ + + Λfc). Now parabolics in

(n, F) will be considered to be of the form

Pi = P Π SL(/i, i 7 ) ,

For Λf we know M = GL(ni, JF) X x GL(n^, i7) in a natural
way and we consider parabolic subgroups of M which are products
of the above described parabolics of GL(«Z, F) 's. A similar choice
is made for Levi decompositions. The corresponding notions for M\
we shall assume to be obtained from M by intersecting with M\. We
shall always assume that the maximal torus A in M (and GL(n, F))
consists of diagonal matrices, and the maximal torus A\ in M\ to be
A Π M\. We shall always consider identifications

det: M/Mx -> Fx,

det: A/Ax -> F\

Using the first identification, we have an action of (Fx)~ on M and
(Fx)~ on M.

A non-trivial unitary character ψo of F will be fixed. Fixing ψ0 we
have a canonical non-degenerate character ϋ of the unipotent radical
of the Borel subgroup of GL(n, F).

1 M 1 2

1 W23

1

1

+ W23 +
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For the unipotent radical of the Borel subgroup of a group M (and
thus of M\), we shall consider the nondegenerate character obtained
by restrictingj?, and again denote it by ϋ.

For R C M (resp. M) invariant for the action of (Fx)~ (resp.

(Fx)~) we introduce a notation (R/ ~) x XMχ (resp. (R/~) x XMX)

resp. (i?/-) X I M , = | J

Here {(Fx)~π) (resp. {(Fx)^π}) is considered as a one-element set
consisting of one orbit. We shall give a more detailed description of
these objects.

First suppose that πf e {Fx)~π. Then XMγ{π) = XMι(π'). Thus
the above notations are well-defined. Recall that XM (n) = {χ E
(Af/Afi)^; χπ = π} = {χ e (A/A{)~\ χπ = π} (after identification
MlM\ and A/A\). Let πi be an irreducible subrepresentation of
π|Afi. Then Mπχ = {m G M\ {π\)m = 7Γχ} by Theorem 1.2 and
Remark 2.6 equals

Mπχ ={meM;χ(m)= l 5 V/Gl ¥ i (π)},

and
A%x =MπιΠA = {a eA χ(a) = l,Vχe XMi(*)h

Thus

Aπγ=XMχ{π)L

in ^ , and

(A/AXιΓ = ^ ( π ) =» ^ / ^ = ( ^ ( π ) ) -

canonically.
We have seen that there is a canonical description

(R/ -) x i ¥ i = U {(F*Γπ} x

{ ( ) ^ } x
R/(Fxf

Note that A\ c Ax (π) and therefore we can identify using the deter-

minant homomorphism AjAχM (π) with Fx/Fx ,, where
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Since M/M\ = A/Aχ = Fx by the determinant homomorphism,
we may identify (M/Mχ)*9 (A/Ax)* with (Fx)^ and thus consider
XM (it) Q (Fx)~ Now

Fx (π) = {xtFx χ(x) = 1, V* 6 XMM}.

Now we shall give a canonical parametrization of T(M\).
Take x e (T(M)/ ~) x XMχ. Then x = ((Fx)~π, aAχM{π)).

Now the decomposition π\M\ does not depend on π from the orbit
(Fx)~π. By Remark 2.9. there exists a unique irreducible subrepre-
sentation A(x) of π|Afi possessing a Whittaker model with respect
to ϋa. Then results of §2 imply

is a one-to-on£ correspondence.
Let x e (M/ -) x XM l, x = ((Fx)~π, 0 ^ ( π ) ) . Consider the

Langlands parameters of π: let Pf = Af;iV be a parabolic subgroup
in Λf and σ an essentially tempered representation of M' satisfying
necessary positiveness condition, such that π is a unique irreducible
quotient of Ind^(σ). Set M[ = M' Π Mx. Note first that XM;(σ) c

() i f l d i l i h
;

X (n) The uniqueness of the Langlands parameters implies that
we actually have the equality XM'{G) = Xλίfa) a n d t h u s ^x^ (π) =
A A / AIAA χ M [ { σ ) ι [

Now we shall parametrize irreducible subrepresentations of π|Λ/i
using tempered representations. We shall use the parametrization
obtained in Remark 1.3 (see also the proof of Theorem 1.2). To
x' = {(Fx)~σ, aAχMi{π)) = ((Fx)~σ, aAχM,{σ)) we have attached

A(x') G T(M[). Recall that Λ(x') is an irreducible subrepresenta-

tion of σ\M[. Now ίndpl

ι(A(x)) has a unique irreducible quotient

which will be denoted by A(x). Note that A(x) is an irreducible
subrepresentation of π\M\. Thus we obtained a mapping

S o m e t i m e s w e s h a l l w r i t e (π,aAx ^ ) o r s i m p l y (π9a) i n s t e a d

of ((Fx)~π,aAχMιiκ)) or ((F'Γπ, aAχMχ{κ)). Now §2 implies:

3.1. THEOREM. The map

A : (Ml ~) x XMχ -+ Mx
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is a bijection. The restriction

is a bijection. For (π, a) e (M/~) x XM{ the following equivalences
hold:

Λ((π, a)) € Cu(Mι) &πe CU(M),

Λ((π, a)) G DU{MX) o π e DU(M),

Λ((π, a)) e TU{MX) « i e TU{M).

In particular (GL(«, F)~ / ~) x XSL(Π,F) parametrizes SL(«, F ) ~ ,

(GL(/ι, F)~Γ) xXSL{n >F) parametrizes SL(n, F)~, (Du(GL(n, F))/~)

X^SL(«,F) parametrizes Du(SL(n,F)) etc.

Now we shall give a description of the unitary induction for

SL(n, F). Recall that for π e M, Indp L ( " ' F ) (π) is irreducible by [1].

It is easy to see that XMi(
π) £ ^SL(n,F)(^^?L{n'F\π)) and thus

3.2. PROPOSITION. Let π\ e M\ and Λ (πi) = (π,a§Ax (π)).

representation I n d p ^ ' ^ π i ) is multiplicity free, its length is

caxά(Xs^niF)(ln<^^niF\π))IXMι{π)) and the parameters of all irre-

ducible factors are contained in {π} x Xsh(n,F)(π)

Proof One needs only to find the length of IndpL ( w > j F )(πi). Set

q = card(XSL(W,F)(Ind?L ( w^ )(π))/XM l(π)).

Let n\M\ = π\ + (- πp be the decomposition into irreducible sub-
representations. Then

(n,F) =

Now A/Ax (π) acts simply transitive on the above decomposition.

Thus all Inds^n'F\πi) are of the same length, say r. But the length

of Ind F

L ^ > i Γ ^(π) | SL(n, F) is ?̂  and from the other side pq = pr.
Thus r = q.
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3.3. COROLLARY. The representation IndpL ( / 2 > i ? )(πi) is irreducible

if and only if

Note that the irreducibility of Ind^(/ZίJp)(Λ((π? α))),with Λ((π, a))
unitary, depends only on π.

4. GL-parameters. We continue with the notation of the preceding
paragraph. _

In the last paragraph we defined a parametrization of M\ (in par-
ticular of SL(n, F)~^and some important subclasses, by parameters
defined in terms of M (in particular of GL(«, F)~).

In this paragraph we shall describe further (M/ ~) x XM , (M/~) x

XMχ, ( Γ w Γ ) x X M l , . . . .
We shall fix an isomorphism of M onto GL(rt\, F) x x

GL(n^, F) and identify these two groups. Now, there are natural
bijections given by tensoring representations

k

C»(M)

DU(M)

TU(M)

T(M)

We shall identify M/Mx

Let
π =

i=\
k

k

k

*~* π
1=1

k

** π
1=1

with J

7l\ ® -

Cu(GL(m,F)),

Du(GL(m,F)),

Tu(GL(m,F)),

Γ(GL(/i, ,F)).

F^ and thus {M/M^ with (F*)
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For χ e (Fx)~ we have

Thus
X { ) X ( ) Π

Up to now, we made a reduction of the parameters to the GL(n, F)-
case. Now we shall continue to describe the parameters in this situa-
tion.

For smooth representations τ, of GL(Λ, , F ) , i = 1, 2, we shall
denote by τ\ x τ^ a smooth representation of GL(n\ + Πi, i7) parabol-
ically induced by τi ® T2 from a suitable standard parabolic subgroup
(see [25]). If we have three representations, then (z\ x τi) x ?3 is
naturally isomorphic to τ\ x (i2 x T3). We denote by v the character
I det( )|jp where | |/r is the modulus character of i 7 . Set

Irr

D

C

oo= (J
oo= u

n=\
oo

-u

GL(n, F)~,

D(GL(n, F))

C(GL(n, F))

Irr"

jy

cu

oo-u
oo

= (J
oo=u

GL(n, F ) '

Z>"(GL(n,

C"(GL(n, F))

Γ = [ j Γ(GL(n ,F)), Tu = Q Γ«(GL(«, f ) ) .
«=1 n=l

For a set 7 , -W(l̂ ) will denote the set of all finite multisets in
Y. They are all finite unordered n-tuples, with any n G Z+. For
{y\,-- ,yn), OΊ , , 3Ί«) € Af (F) put

Cvi» , yn) + ( / i , , y'm) = O Ί . »y«»/i» . y'm)

For any τ G T there exist a unique τ" e Γ" and e(τ) e R such
that

Clearly τ € D » τ " e ΰ a .
For t = (τι, ..., τn) € A/(70 and χ e (iΓJC)~ we define

In this way one obtains an action of (Fx)~ on M(T). The stabilizer
of t will be denoted by X{t).
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Let d = (δ\, ... , δn) e M(D). We can choose a numeration of d
such that e(δ\) > >e{δn). The representation δ\ x x δn has a
unique irreducible quotient which depends only on d and which will
be denoted by L(d). Now d \-+ L{d) is a Langlands-type parametri-
zation of Irr by M(D) (see for example [19]). One has

χL{d) = L(χd)

for χ e (F*)~ . Thus XSL{n,F)(L(d)) = X(d).

For p G C and n £ N the representation z/( V)<5 x z/̂  V)~M x x
v~{ V) J has a unique essentially square integrable subquotient which
will be denoted by δ(p, n). Now (p, n) \-+ δ(p, /z) is a parametri-
zation of Z> (resp. Du) by C x N (resp. C M x N ) , Similarly as
above

χδ(p, n) = δ(χp, n)

(see [25]).
The mapping

{M{Du)\{0}) 9 ( τ 1 ) , . . , ί , ) H τ 1 χ . . . χ τ w G r

is a parametrization of Tu by Λf (Z>w)\{0> (see [22] and [25]).
For δ eDu set

u(δ,n)=L((i/—δ9v— ιδ, . . . , i/—r δ)),

π(u(δ, n), a) = vau{δ, ή) x i/~αw(J, n)

where 0 < a < 1/2. Set

5 = {w((5, ή), τr(w((5 ̂ ) , α ) ; ( 5 G i ) M , / ί € N , 0 < α < 1/2}.

Then by [24]

Λ/(J?) 3 (πi, . . . , πΠ) H^ πi x x nn e Irr"

is a parametrization of Irr" by M(B). Again

χu(δ,n) = u(χδ,n), χe(FxΓ

and
χπ(u(δ,n),a) = π{u{χδ,n),a), χe {Fx)~.

According to formulas

χδ{p, n) = δ{χp, n)
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and previous observations, we have a reduction of parameters [M j ~)

x XM to computing of XSL(Π,F)(P) f°Γ P ^C.

4.2. REMARK. Consider an essentially square integrable represen-
tation δ of GL(m, F). Let P = MiV be the minimal parabolic
subgroup among those for which the Jacquet module of δ for P
is non-trivial (it is the parabolic subgroup from which is induced
v^ί1 p x x v'^ p if δ = δ(p, ή)). This parabolic subgroup is ho-
mogeneous and the Jacquet module is cuspidal and irreducible. Take
0 Ξ ^SL(/I,F)(^) Then Λ((<5, 0)) is an essentially square integrable
representation and all such representations are obtained in this way.
Set Mx = S L ( « , F ) n M and Pi = MXN. It is easy to see that the
Jacquet module of A((δ, a)) for Pi is irreducible and cuspidal.

We can express now the irreducibility condition of Corollary 3.3 for
unitary parabolic induction more explicitly:

4.2. THEOREM. Let P = MN be a parabolic subgroup of GL(n, F),
Mi = M Γ) SL(/i, F) and Pγ = MXN. Let π{ = Λ((π, a)) be an
irreducible unitary representation of Mi. We may suppose M =
GL(«i, F) x x GL(nk , F). Let π = π 1 x x πk and π[ = L{d{),

Then I n d ^ ' ^ ^ O is irreducible if and only if

X(d\ H h dk)di c d\ for each i = 1, . . . , k,

6>r equivalently X(d\ Λ h dk) c X(d/), / = 1 , . . . , & .

4.3. REMARK. We have reduced the parameters to the computa-
tion of ^SL(«,,F)(/>) f° r /> cuspidal (equivalently to XSL(Π,F)(P)~

or ArSLrtF(/>) or i7^ , x). The following step would be to ex-
press (some of) these groups in terms of a parametrization of C.
R. Howe constructed in [9] cuspidal representations in the tame case.
H. Carayol in [4] classified the cuspidal representations in the prime
case. A great number of informations on the above groups in these
two cases can be found in papers [13] by P. Kutzko and P. Sally and
[17] of A. Moy and P. Sally. Let us illustrate this by an example.
Suppose that we are in the tame case. Then the cuspidal representa-
tions of GL(n, F) are parametrized by admissible characters of the
multiplicative groups of «-dimensional extensions E of F, modulo
conjugacy. In [17] A. Moy and P. Sally showed that in two of the three
possible cases the answer is particularly nice:
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where NE/F \ Ex -+ Fx denotes the norm map (charF = 0). For
details one should consult [17].
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