ACTIONS OF FINITE GROUPS ON KNOT COMPLEMENTS

Feng Luo

Abstract

We examine the symmetry of the complement of a non-trivial knot K in S^{3} and obtain a classification of the actions of finite groups on the complement of a non-trivial knot in the case where the actions extend to non-fixed point free actions on the three sphere. We prove the result by showing first an extension theorem which says that any action of finite group on a non-trivial knot complement extends to an action on the three sphere and then by applying the solution of the Smith conjecture.

Let $N(K)$ be a regular neighborhood of $K ; m, l$ be a meridian and a preferred longitude of K in $\partial N(K)$ respectively; [m], [l] be the homology classes in $H_{1}(\partial N(K), Z)$ represented by m, l respectively. A knot is called a hyperbolic knot if $S^{3}-K$ has a hyperbolic structure. See $[R]$, or $[B, Z]$ for the standard terminology that we use. The main results of this note are the following. Theorem 1 also follows from the recent result of Gordon and Luecke [G, L]. Since the proof is simple, it is included here for completeness.

Theorem 1. If K is a hyperbolic knot, then any self-diffeomorphism of the knot complement $S^{3}-\operatorname{int}(N(K))$ extends to a self-diffeomorphism of S^{3}.

Satellite knots have property P by Gabai's work, and torus knots are also known to have property P. One obtains the following theorem.

Corollary 1. Any self-diffeomorphism of a non-trivial knot complement $S^{3}-N(K)$ extends to a self-diffeomorphism of S^{3}.

Theorem 2. If G is a finite group acting smoothly on the complement $S^{3}-\operatorname{int}(N(K))$ of a non-trivial knot K, then the group G is a cyclic or a dihedral group, and the G-action extends to a G-action on S^{3}. In particular, if K is a hyperbolic knot, then $\operatorname{Out}\left(\pi_{1}\left(S^{3}-K\right)\right.$) (or what is the same $\operatorname{Isom}\left(S^{3}-K\right)$) is a cyclic or a dihedral group.

With the help of a computer, Riley [Ri] has calculated the
$\operatorname{Out}\left(\pi_{1}\left(S^{3}-K\right)\right)$ for the following hyperbolic knots, $5_{2}, 6_{3}, 7_{7}, 8_{21}$, $9_{35}, 9_{43}$, and 9_{48}, the corresponding groups are: $D_{2}, D_{4}, D_{4}, D_{2}$, D_{6}, Z_{2}, and D_{6}. The theorem explains the general fact behind Riley's work. Combining with the work of Culler, Gordon, Luecke, Shalen (see [CGLS]), Bleiler and Scharlemann [B, S] on the property P of non-trivial knots invariant under non-trivial periodic automorphisms of S^{3}, we have the following.

Corollary 2. If there exists a finite group acting smoothly nontrivially on a knot complement in S^{3}, then the knot has property P. In particular, if K is a hyperbolic knot with non-trivial $\operatorname{Out}\left(\pi_{1}\left(S^{3}-K\right)\right)$, then K has property P .

If the group G in Theorem 2 is cyclic, the G-action on the knot complement can be described more explicitly. Before stating the corollary, let us make the following conventions. A $2 \pi / n$-rotation of S^{3} is a Z_{n}-action which is conjugate to the orientation preserving Z_{n} action generated by A where A sends a point (x, z) in $S^{3}=R^{1} \times$ $C \cup\{$ infinity $\}$ to $\left(x, e^{2 \pi i / n} z\right)$ and infinity to infinity. The circle $\{(x, z) \mid z=0\} \cup\{$ infinity $\}$ is called the axis of the rotation. A twisted $2 \pi / n$-rotation of S^{3} is an action conjugate to the non-orientation preserving Z_{n}-action generated by α, where α is described as follows. Represent S^{3} as $\left(R^{1} \times C\right) \cup\{$ infinity $\}, \alpha$ is the automorphism sending (x, z) to $\left(-x,-e^{2 \pi i / n} z\right)$, and infinity to infinity. The circle $\{(x, z) \mid z=0\} \cup\{$ infinity $\}$ is called the axis of the twisted rotation. A reflection of S^{3} through two points is an action conjugate to the orientation reversing involution of S^{3} generated by β, where β is the automorphism of S^{3} considered as $R^{3} \cup\{$ infinity $\}$ sending x to $-x$, for x in R^{3}, and infinity to infinity.

Corollary 3. The smooth action of a cyclic group Z_{n} on a nontrivial knot complement $S^{3}-\operatorname{int}(N(K))$ are classified as follows.
(I) The action preserves the orientation. There are two cases.
(a) The action on $S^{3}-\operatorname{int}(N(K))$ is free. Then the action is induced by a fixed point free Z_{n}-action on $S^{3} . K$ is invariant under the action.
(b) The action is not free. Then the Z_{n}-action is induced by a $2 \pi / n$ rotation of S^{3} about a trivial knot $L . K$ is invariant under the rotation. K is disjoint from L, or K intersects L transversely in two points. If the latter happens, $n=2$.
(II) The Z_{n}-action on $S^{3}-\operatorname{int}(N(K))$ does not preserve the orientation. Then the Z_{n}-action has fixed points in S^{3}, and is of even order.

There are four kinds:
(c) $n=2$. Then the action is induced by a reflection R of S^{3} through two points, or is induced by a reflection R^{\prime} of S^{3} with respect to a two-sphere, which is the same as a twisted π-rotation of S^{3}.K is invariant under the involution. There are three types of Z_{2}-actions on $S^{3}-\operatorname{int}(N(K))$.
$(\mathrm{c})_{1} K$ is disjoint from the two fixed points of the reflection R. In this case the Z_{2}-action on $S^{3}-\operatorname{int}(N(K))$ has two fixed points.
$(\mathrm{c})_{2} K$ contains the two fixed points of R. In this case, the $Z_{2^{-}}$ action is a free action on $S^{3}-\operatorname{int}(N(K))$.
(c) $)_{3} K$ intersects the 2-sphere fixed points of R^{\prime} transversely in two points. In this case, K is of the form $K=L \#(-L)$ for some knot L.
(d) $n \geq 4$. Then the action is induced by a twisted $2 \pi / n$-rotation of S^{3} about an axis $L . K$ is invariant, and is disjoint from L.

We state the following as a corollary for convenience.
Corollary 4. If a cyclic group Z_{n} generated by g acts smoothly on a non-trivial knot complement $S^{3}-\operatorname{int}(N(K))$ such that $g_{*}([l])=-[l]$ in $H_{1}(\partial N(K), Z)$, then g is an involution.

Combining Corollaries 3 and 4, smooth action of dihedral groups on a knot complement can also be classified. We omit it here.

Recall that a knot K is invertible if K is oriented equivalent to $-K$, the inverted knot of $K ; K$ is amphicheiral if K is equivalent to its mirror-image K^{*}.

COROLLARY 5. If K is a hyperbolic knot in S^{3}, then the following holds.
(a) K is invertible if and only if K is invariant under a π-rotation in S^{3} about an axis L such that L intersects K transversely in two points.
(b) K is amphicheiral if and only if K is invariant under a twisted $2 \pi / n$-rotation of S^{3} about an axis missing K, for $n \geq 4$, or K is invariant under a reflection of S^{3} through two points missing K.
(c) If K is both invertible and amphicheiral, then K is invariant under a reflection of S^{3} through two points contained in K.

In $\S 1$, we prove Theorem 1. In $\S 2$, we prove Theorem 2, and its corollaries. In the appendix, we prove the following proposition concerning smooth non-orientation preserving cyclic group actions on S^{3}.

Proposition. Any smooth non-orientation preserving cyclic group action on the 3 -sphere is conjugate to a twisted rotation or a reflection of the sphere through two points.

Acknowledgment. The author would like to thank his thesis advisor M. Freedman, and X.-S. Lin for many discussions on knot theory. He also thanks the referee for the comments and for pointing out that Corollary 5(a) was a result of Kawauchi [Ka].

1. Proof of Theorem 1. Let K be a hyperbolic knot in S^{3} with $S^{3}-K$ having a hyperbolic metric; $N(K)$ be a regular neighborhood of K such that $\partial N(K)$ is a flat torus in $S^{3}-K$ with respect to the hyperbolic metric; m, l be a meridian and a preferred longitude of K respectively, m, l lie in $\partial N(K)$ and be realized as geodesics. m, l will also be used to denote the elements in $\pi_{1}\left(S^{3}-\operatorname{int}(N(K))\right)$ represented by them. Let [m], [l] be the homology classes in $H_{1}(\partial N(K), Z)$ represented by m, l respectively. Let h be a self-diffeomorphism of $S^{3}-\operatorname{int}(N(K))$. Our goal is to prove that $h^{*}([m])$ is $\pm[m]$ in $H_{1}(\partial N(K), Z)$. Since if this condition is satisfied,

$$
\left.h\right|_{\partial N(K)}: \partial N(K) \rightarrow \partial N(K)
$$

extends to be a self-diffeomorphism of $N(K)$ which in turn gives an extension of h to S^{3} by gluing. By Mostow Rigidity, one can assume that h is a hyperbolic isometry. $h_{*}([l])=\varepsilon_{1}[l]$ with ε_{1} being ± 1 in $H_{1}(\partial N(K), Z)$, because $\pm[l]$ are the only primitive homology classes in $H_{1}(\partial N(K), Z)$ which vanish in $H_{1}\left(S^{3}-\operatorname{int}(N(K)), Z\right)$ under the inclusion homomorphism. h_{*} is an automorphism of $H_{1}(\partial N(K), Z)$; hence $h_{*}[m]=\varepsilon[m]+a[l]$, where $\varepsilon_{2}= \pm 1$, and a is in Z. Our goal is to show $a=0$. If $\varepsilon_{1}=\varepsilon_{2}$, i.e., h is orientation preserving, the result is trivial because on one hand h, being an isometry of a hyperbolic manifold of finite volume, is of finite order (i.e., composition of h finite times is the identity map; see [$\mathbf{M}, \mathbf{B}]$, or $[\mathbf{T h}]$), on the other hand the matrix $\left[\begin{array}{cc}\varepsilon_{1} & a \\ 0 & \varepsilon_{2}\end{array}\right]$ has infinite order if a is non-zero. Therefore, we need only to consider the case where $\varepsilon_{1}=-\varepsilon_{2}$. Suppose conversely $a \neq 0$. Then by Culler, Gordon, Luecke, Shalen [CGLS], one has that $a= \pm 1$, and that K does not have property P. Since the matrix $\left[\begin{array}{cc}\varepsilon_{1} & a \\ 0 & \varepsilon_{2}\end{array}\right]$ is of order two, $h_{*} h_{*}=$ id in $H_{1}(\partial N(K), Z)$. Consider the orientation preserving isometry $g=h \circ h . g$ is of finite order; hence it generates a finite cyclic group G acting isometrically on the flat torus $\partial N(K)$. Because $g_{*}([m])=[m]$ and $g_{*}[l]=[l]$ in $H_{1}(\partial N(K), Z), G$ preserves the foliations $\partial N(K)$ by geodesic
meridians and by geodesic longitudes. The following lemma shows that the G-action on $\partial N(K)$ can be extended to a G-action on $N(K)$.

Lemma 1. If G acts isometrically on a flat boundary ∂N of a solid torus N and $g_{*}[m]= \pm[m], g_{*}[l]= \pm[l]$ in $H_{1}(\partial N, Z)$ where g is a generator of G, m, l are a meridian and a longitude of ∂N respectively, then the G-action can be extended to an action on N. Moreover the extended G-action on the core of N preserves a flat Riemannian metric on it.

Proof. Parametrize ∂N by (u, v), where u, v are the unit complex numbers such that $S^{1} \times\{v\}$ and $\{u\} \times S^{1}$ correspond to the geodesic meridian m and the geodesic longitude l in ∂N. Since the action on the homology group $H_{1}(\partial N, Z)$ satisfies the conditions above, the G-action on ∂N corresponds now to a G-action on $S^{1} \times S^{1}$ preserving the standard product metric and the product structure. Extending the G-action on ∂N to N is the same as extending the G-action on $S^{1} \times S^{1}$ to $D^{2} \times S^{1}$. The extension of the latter is trivial. To see this, for $g \in G$, we have,

$$
g(u, v)=(\phi(u, g), \psi(v, g))
$$

where $u, v \in S^{1}, \phi(u, g)=\alpha u$, or $\alpha \bar{u}$, and $\psi(v, g)=\beta v$ or $\beta \bar{v}$, for some roots of unity α and β. The extension of the G-action to $D^{2} \times S^{1}$ is given by the same formula with u in $D^{2}=\{z \in C| | z \mid \leq 1\}$. The extended G-action still preserves the product metric and acts on the core $\{0\} \times S^{1}$ isometrically with respect to the flat metric induced from $D^{2} \times S^{1}$.

We have now a cyclic group G which acts on S^{3} preserving K. If G is non-trivial, then K has property P by Corollary 7 of Culler, Gordon, Luecke, Shalen [CGLS] which contradicts $a \neq 0$. Therefore $h \circ h=\mathrm{id}$ in $S^{3}-\operatorname{int}(N(K))$. It is easy to check, using $a= \pm 1$, $h_{*}([m])=-\varepsilon_{1}[m]+a[l]$ and $h_{*}([l])=\varepsilon_{1}[l]$, that

$$
h_{*}\left(-2 \varepsilon_{1} a[m]+[l]\right)=-\varepsilon_{1}\left(-2 \varepsilon_{1} a[m]+[l]\right)
$$

Note that $[l]$, and $-2 \varepsilon_{1} a[m]+[l]$ are primitive elements, and are the (± 1)-eigenvectors of h_{*} in $H_{1}(\partial N(K), Z)$. The algebraic intersection number of $[l]$ and $-2 \varepsilon_{1} a[m]+[l]$ is ± 2. The following lemma shows that h has fixed points in $\partial N(K)$.

Lemma 2. Suppose h is an orientation reversing fixed point free involution of a torus T^{2}, then the (± 1)-eigenspaces of h_{*} are generated by two primitive classes with ± 1 as their algebraic intersection number.

Proof. Since any orientation reversing fixed point free involution of T^{2} has the quotient space homeomorphic to the Klein bottle, and since the Klein bottle has only one orientable two-fold cover up to covering equivalence, any two orientation reversing fixed point free involutions on T^{2} are conjugate. Because the hypothesis and the conclusion of the lemma are invariant under conjugation, the lemma follows by checking a concrete example. Take T^{2} to be $S^{1} \times S^{1}$ parametrized by (u, v), where $u, v \in S^{1}$, the unit circle in the complex plane. Let $h: T^{2} \rightarrow T^{2}$ be the automorphism sending (u, v) to $(\bar{u},-v)$. h generates a fixed point free orientation reversing involution of T^{2}. The 1 -eigenspace of h_{*} is generated by the homology class of the curve $\{1\} \times S^{1}$, and the (-1)-eigenspace of h_{*} is generated by the homology class of the curve $S^{1} \times\{1\}$. Hence the algebraic intersection number of the primitive generators of (± 1)-eigenspaces is ± 1.

By the lemma, h has fixed points in $\partial N(K)$. However, h is an orientation reversing involution, $\operatorname{Fix}\left(\left.h\right|_{\partial N(K)}\right)$ is a 1 -dimensional submanifold. This implies that Fix (h) contains a 2-manifold, say F. We claim that this is impossible. By Smith theory (see [B], Theorem 5.1), for the Z_{2}-action generated by h on the 1 -dimensional Z_{2}-homology sphere $S^{3}-\operatorname{int}(N(K))$, the fixed point set $\operatorname{Fix}(h)$ is a Z_{2}-homology sphere of dimension at most one. Hence $\operatorname{Fix}(h)(=F)$ is an annulus or a Möbius band.

Case 1. F is an annulus. Since $S^{3}-K$ has a hyperbolic structure, $S^{3}=\operatorname{int}(N(K))$ is annulus free. Hence F is parallel to an annulus in $\partial N(K)$. In particular, F is separating. The two components of the complement of F in $S^{3}-\operatorname{int}(N(K))$ are interchanged by h and hence are homeomorphic. Therefore both of them are solid tori. This implies that $S^{3}-\operatorname{int}(N(K))$ is the union of two solid tori along an annulus in their boundaries which contradicts the existence of the hyperbolic structure of finite volume in $S^{3}-K$.

Case 2. F is a Möbius band. ∂F is now a simple closed curve in $\partial N(K)$ fixed by h, and hence [$\partial F]$ is in the 1 -eigenspace of h_{*} which is generated by $[l]$, or by $2 a[m]+[l]$ according to $\varepsilon_{1}=1$, or -1 . Thus ∂F and K bound an annulus A in $N(K)$. The Möbius band $F \cup_{\partial} A$ in S^{3} has K as its boundary. Let L be the core of
the Möbius band. If L is non-trivial, K is the cable knot of L. This contradicts that K is a hyperbolic knot. If L is the trivial knot, then K is the $(2, n)$-torus which is again absurd.

This completes the proof of Theorem 1.

Since any non-trivial knot with property P has the property that any self-diffeomorphism of the knot complement preserves the meridian, and since the only non-trivial knots which are not known to have property P are some hyperbolic knots by the work of Gabai and others, Corollary 2 follows from Theorem 1.
2. Proof of Theorem 2. We shall still use the same notations introduced in $\S 1$. Hence K is a non-trivial knot in $S^{3} ; N(K)$ is a regular neighborhood of $K ; m, l$ are a meridian and a preferred longitude of K respectively. m, l lie in $\partial N(K)$. Our first observation is that there exists a flat metric on $\partial N(K)$ such that G acts on $\partial N(K)$ isometrically. This follows from the Geometrization Theorem that any action of a finite group G on a 2 -manifold is equivalent to a geometric group action (see [E]). Fix the metric on $\partial N(K)$, and realize m, l by geodesics in $\partial N(K)$. Theorem 1 shows that the G-action on $\partial N(K)$ preserves the geodesic meridians and geodesic longitudes in $\partial N(K)$. By Lemma 1 , the G-action on $\partial N(K)$ extends to a G-action on $N(K)$ such that the extended G-action preserves a flat metric on K. Hence the G-action on $S^{3}-\operatorname{int}(N(K))$ extends to a G-action on S^{3} which preserves K and acts on K preserving a flat metric d. The restriction of the G-action to K gives a representation:

$$
\sigma: G \rightarrow \operatorname{Isom}(K, d)
$$

The solution of the Smith Conjecture shows that σ is a monomorphism. To see this, let $h \in \operatorname{ker}(\sigma)$, and H be the cyclic group by h. Then H acts on S^{3} with fixed point set containing K, and H preserves each geodesic meridian in $\partial N(K)$. Moreover, $h_{*}([l])=[l]$ in $H_{1}(\partial N(K), Z)$. There are now two cases that might happen.

Case 1. $h_{*}([m])=[m] . h$ is now an orientation preserving homeomorphism because $h_{*}([l])=[l]$ and $h_{*}([m])=[m]$ imply that h is an orientation preserving homeomorphism in $H_{1}(\partial N(K), Z)$. Therefore the H-action on a geodesic meridian m is a rotation. Suppose $h \neq \mathrm{id}$; then H acts non-trivially on m. Therefore K is the only fixed point set of h in $N(K)$. By Smith theory, $\operatorname{Fix}(h)=K$, which then contradicts the solution of the Smith Conjecture.

Case 2. $h_{*}([m])=-[m] . h$ is now an orientation reversing homeomorphism. Since $h \circ h \in \operatorname{ker}(\sigma)$, and $h_{*} h_{*}([m])=[m]$, one has $h \circ h=\mathrm{id}$ by the solution of Case 1. Hence h is an orientation reversing involution of S^{3} with fixed point set containing K. Because the $\operatorname{Fix}(h)$ is a submanifold of odd codimension and contains K, Fix (h) contains a 2-manifold. By Smith Theory, the Fix (h) is a $Z_{2}-$ homology sphere. Hence $\operatorname{Fix}(h)$ is a 2 -sphere and contains K. This implies that K is a trivial knot which is absurd.

Therefore G is a subgroup of $\operatorname{Isom}(K, d)$. It is well known that a finite subgroup of $\operatorname{Isom}(K, d)$ is a cyclic or a dihedral group. In case K is a hyperbolic $\operatorname{knot}, \operatorname{Out}\left(\pi_{1}\left(S^{3}-K\right)\right)$ acts isometrically on $S^{3}-\operatorname{int}(N(K))$ where $\partial N(K)$ is a flat torus in $S^{3}=K$ (see [M, B], or [Th]). Hence $\operatorname{Out}\left(\pi_{1}\left(S^{3}-K\right)\right.$) (or the same $\operatorname{Isom}\left(S^{3}-K\right)$) is a cyclic or a dihedral group.

Proof of Corollary 3. By Theorem 2 and its proof, the Z_{n}-action extends to a Z_{n}-action on S^{3} such that K is invariant and K intersects the fixed point set of a nontrivial element f in Z_{n} if and only if $\operatorname{Fix}(\sigma(f)) \cap K \neq \varnothing$. But $\operatorname{Fix}(\sigma(f)) \cap K \neq \varnothing$ if and only if $\sigma(f)$ is a reflection on K which in turn is the same as $f_{*}([l])=-[l]$ in $H_{1}(\partial N(K), Z)$. Moreover, in this case, K intersects Fix (f) transversely in two points. The classification is now reduced to the classification of smooth cyclic group actions on S^{3}.
(I) The Z_{n}-action preserves the orientation.

If the Z_{n}-action on S^{3} is fixed point free, we have (a). Otherwise, by Smith theory, the fixed point set is a knot, say L. The solution of the Smith Conjecture shows that L is a trivial knot, and the Z_{n}-action is a $2 \pi / n$-rotation about L. Let g be a generator of the Z_{n}-action. If L intersects K, then by the remark above, we have $g_{*}([l])=[l]$, and $\sigma(g)$ is a reflection in K. Hence Fix $(g \circ g)$ contains K. However $g g$ is orientation preserving. Therefore the solution of the Smith Conjecture implies that $g \circ g$ is the identity, i.e., $n=2$. This proves (b).
(II) The Z_{n}-action does not preserve the orientation.

Let g still be the generator of the Z_{n}-action on S^{3}. Since g reverses the orientation, g has fixed points in S^{3}, n is even, and Fix (g) is a submanifold of odd codimension in S^{3}.
(c) $n=2$.

By Smith theory, $\operatorname{Fix}(g)$ is a Z_{2}-homology sphere. Hence $\operatorname{Fix}(g)$ is the two points set or the 2 -sphere. If $\operatorname{Fix}(g)$ is the two points set,
by Livesay's theorem [L], the Z_{2}-action is a reflection of S^{3} through two points; if $\operatorname{Fix}(g)$ is a 2-sphere, then the action is a reflection of S^{3} with respect to a 2 -sphere by Schonflies theorem. Now the Z_{2}-action is classified as follows. If $g_{*}([l])=[l]$, then $\operatorname{Fix}(g) \cap K=\varnothing$. In this case $\operatorname{Fix}(G)$ cannot be a 2 -sphere. To see this, $\operatorname{Fix}(g) \cap K=\varnothing$. In this case $\operatorname{Fix}(G)$ cannot be a 2 -sphere. To see this, $\operatorname{Fix}(g) \cap K=\varnothing$ implies the fixed point set of g in S^{3} is actually in $S^{3}-\operatorname{int}(N(K))$. By Smith theory, for the g involution on the one-dimensional homology sphere $S^{3}-\operatorname{int}(N(K)), \operatorname{Fix}\left(\left.g\right|_{S^{3}-\operatorname{int}(N(K))}\right)$ is a Z_{2}-homology sphere of dimension at most one. Hence Fix (g) are two points. This gives $(c)_{1}$. If $g_{*}([l])=-[l]$, then $\sigma(g)$ is a reflection in K, and K intersects $\operatorname{Fix}(g)$ transversely in two points. (c) $)_{2},(\mathrm{c})_{3}$ follow from the above mentioned classification of the orientation reversing involutions of S^{3}.
(d) $n \geq 4$.

The result is a consequence of the following proposition which will be proven in the appendix.

Proposition. Any smooth cyclic group action on S^{3} which does not preserve the orientation is conjugate to a twisted rotation of S^{3}, or to a reflection of S^{3} through two points.

Applying the proposition, we need only to check that K is disjoint from the axis of the twisted rotation g. However the axis of g is $\operatorname{Fix}(g \circ g)$. $\operatorname{Fix}(g \circ g)$ does not intersect K follows now from $g_{*} g_{*}([l])=[l]$, and $g \circ g \neq \mathrm{id}$. This completes the proof of (d).

Corollary 4 is actually proven in the proof of Corollary 3.
Proof of Corollary 5. (a) By Proposition 3.19 of [B, Z], K is invertible if and only if there is an automorphism

$$
\phi: \pi_{1}\left(S^{3}-\operatorname{int}(N(K))\right) \rightarrow \pi_{1}\left(S^{3}-\operatorname{int}(N(K))\right)
$$

such that $\phi(m)=m^{-1}$ and $\phi(l)=l^{-1}$. Since K is a hyperbolic knot, Mostow Rigidity Theorem shows that ϕ can be realized by a hyperbolic isometry $h: S^{3}-\operatorname{int}(N(K)) \rightarrow S^{3}-\operatorname{int}(N(K))$ such that $h_{*}([m])=-[m]$, and $h_{*}([l])=-[l]$ in $H_{1}(\partial N(K), Z)$. Here we have assumed that $\partial N(K)$ is a flat torus in $S^{3}-K$. The condition $h_{*}([l])=-[l]$ implies that h is an involution by Corollary 4. Because $h_{*}([m])=-[m], h$ is orientation preserving. Hence by Corollary 3, the Z_{2}-action generated by the extension of h on S^{3} is induced by a π-rotation of S^{3} about an axis $L . \quad H_{*}([l])=-[l]$ implies that
L intersects K transversely in two points. Therefore K is invariant under a π-rotation about an axis intersecting K at two points. The inverse implication is trivial.
(b) By Proposition 3.19 of [$\mathbf{B}, \mathbf{Z}], K$ is amphicheiral if and only if there is an automorphism

$$
\phi: \pi_{1}\left(S^{3}-\operatorname{int}(N(K))\right) \rightarrow \pi_{1}\left(S^{3}-\operatorname{int}(N(K))\right)
$$

such that $\phi(m)=m^{-1}$ and $\phi(l)=l$. Realize ϕ by an isometry $h: S^{3}-\operatorname{int}(N(K)) \rightarrow S^{3}-\operatorname{int}(N(K)) . h$ is orientation reversing since $h_{*}([m])=-[m]$, and $h_{*}([l])=[l]$ in $H_{1}(\partial N(K), Z) . h$ generates a smooth cyclic group action on $S^{3}-\operatorname{int}(N(K))$ which does not preserve the orientation. Hence by Corollary $3, h$ is induced by a twisted rotation of S^{3} about an axis L missing K if the order of h is at least four. If the order of h is two, the h involution is the case (c) $)_{1}$ in Corollary 3 because $h_{*}([l])=[l]$. Therefore, in this case K is invariant under a reflection of S^{3} through two points missing K. Then the condition is clearly sufficient.
(c) If the knot is both invertible and amphicheiral, then there exists an automorphism

$$
\phi: \pi_{1}\left(S^{3}-\operatorname{int}(N(K))\right) \rightarrow \pi_{1}\left(S^{3}-\operatorname{int}(N(K))\right)
$$

such that $\phi(m)=m$, and $\phi(l)=l^{-1} . \phi$ is the composition of the two automorphisms coming from (a) and (b). Realize ϕ by an orientation reversing hyperbolic isometry h such that $h_{*}([m])=[m]$, and $h_{*}([l])=-[l]$ in $H_{1}(\partial N(K), Z)$. By Corollary $4, h_{*}([l])=-[l]$ and $h_{*}([m])=[m]$ imply h is an orientation reversing involution of $S^{3}-\operatorname{int}(N(K)) \rightarrow S^{3}-N(K)$. By Corollary 3, h is the case (c) ${ }_{2}$ or the case (c) $)_{3}$. Case (c) $)_{3}$ cannot happen since K is a prime knot. Hence K is invariant under the reflection of S^{3} through two points contained in K.

Appendix. We prove the following proposition concerning smooth cyclic group action on the 3 -sphere which does not preserve the orientation.

Proposition. Any smooth non-orientation preserving cyclic group action on S^{3} is conjugate to a twisted rotation of S^{3}, or to a reflection of S^{3} through two points.

Proof. Let g be a generator of the Z_{n}-action. n has to be even. g is orientation reversing, and hence has fixed points in S^{3}. If $n=2$,
we have shown in the proof of Corollary 3 (c) that the result holds. Assume $n \geq 4$ from now on. Let $h=g \circ g . \quad h$ is an orientation preserving automorphism of order m, and has fixed points. The solution of the Smith Conjecture shows that the $\operatorname{Fix}(h)$ is a trivial knot, say L. Now L is invariant under $g . g$ acts on L with fixed point and is of order two in L. Hence the action of g on L is a reflection by the classification of Z_{2}-action on the circle. Take a Z_{n} equivariant regular neighborhood $N(L)$ of L in S^{3} (see [B]). By the choice of the regular neighborhood, one knows that the action of Z_{n} on $N(L)$ is standard. Therefore by choosing the generator g of the Z_{n}-action appropriately, we can assume that the restriction of g on $N(L)=D^{2} \times S^{1}$ is conjugate to α, where

$$
\alpha: D^{2} \times S^{1} \rightarrow D^{2} \times S^{1}
$$

sends (z, w) to $\left(e^{2 \pi i / n} z, \bar{w}\right)$, with z in $D^{2}=\{z \in C| | z \mid \leq 1\}$ and w in $S^{1}=\{z \in C| | z \mid=1\}$. Note that α generates an orientation reversing Z_{n}-action on $D^{2} \times S^{1}$ with two fixed points in $\{0\} \times S^{1}$. Since L is the trivial knot, $S^{3}-\operatorname{int}(N(L))$ is a solid torus. Let $\phi: S^{3}=\left(S^{3}-\operatorname{int}(N(L))\right) \cup N(L) \rightarrow \bar{S}^{3}=\left(S^{1} \times D^{2}\right) \cup_{\text {id }}\left(D^{2} \times S^{1}\right)$ be a diffeomorphism taking $N(L)$ to $D^{2} \times S^{1}$ such that $\left.\phi g\right|_{N(L)} \phi^{-1}=$ α. Now extend α to be a self-diffeomorphism $\bar{\alpha}$ of \bar{S}^{3} by sending $(z, w) S^{1} \times D^{2}$ to $\left(e^{2 \pi i / n} z, \bar{w}\right)$ with $z \in S^{1}$ and $w \in D^{2}$. Then $\bar{\alpha}$ generates a twisted $2 \pi / n$-rotation of \bar{S}^{3}. Our goal is to show that $\phi g \phi^{-1}$ is conjugate to $\bar{\alpha}$ in \bar{S}^{3}. This is consequence of the following claim.

Claim. $g^{\prime}=\left.\phi g \phi^{-1}\right|_{S^{1} \times D^{2}}$ is conjugate to $\beta=\left.\bar{\alpha}\right|_{S^{1} \times D^{2}}$ by a piecewise smooth diffeomorphism ψ such that ψ is the identity map on $\partial\left(S^{1} \times D^{2}\right)$.

Let us assume the claim and finish the proof. By gluing ψ with Id $\left.\right|_{D^{2} \times S^{1}}$ along the boundaries, we obtain a piecewise smooth selfdiffeomorphism of \bar{S}^{3} which conjugates $\phi g \phi^{-1}$ to $\bar{\alpha}$. Therefore $\phi g \phi^{-1}$ is smoothly conjugate to $\bar{\alpha}$ by the work of Moise.

Proof of the Claim. By the choice of ϕ, g^{\prime} is the same as β on $\partial\left(S^{1} \times D^{2}\right)$. Using the equivariant Dehn's lemma, we can find n copies of disjoint properly embedded disks $D_{1}, D_{2}, \ldots, D_{n}$ with ∂D_{j} $=e^{e \pi j i / n} \times \partial D^{2}$ in $S^{1} \times D^{2}$, such that $g^{\prime}\left(D_{j}\right)=D_{j+1}$ for $j=$
$1,2, \ldots, n$, where $D_{1}=D_{n+1} . g^{\prime}: D_{j} \rightarrow D_{j+1}$ is a diffeomorphism for each j. These disks cut $S^{1} \times D^{2}$ into n components, say $B_{1}, B_{2}, \ldots, B_{n}$ with $D_{j} \cup D_{j+1} \subset \partial B_{j}$, and each of B_{j} is a 3-ball by Schonflies' theorem. Let $D_{j}^{\prime}=e^{2 \pi i j / n} \times D^{2}$ (where $D_{n+1}^{\prime}=D_{1}^{\prime}$); $B_{j}^{\prime}=\left\{e^{2 \pi i t / n} \mid j \leq t \leq j+1\right\} \times D^{2}$; and $E_{j}=\partial B_{j}^{\prime}-\left(D_{j} \cup D_{j+1}\right)$, the annulus, for each $i=1,2, \ldots, n$. The construction of ψ is now as follows. Let $A_{1}: D_{1} \rightarrow D_{1}^{\prime}$ be a diffeomorphism which is the identity on ∂D_{1}. Define $A_{2}: D_{2} \rightarrow D_{2}^{\prime}$ to be $\left.\left.\beta\right|_{D_{1}^{\prime}} A_{1} g^{\prime-1}\right|_{D_{2}}$. It is still a diffeomorphism which fixes ∂D_{2} pointwise. Since $\partial B_{1}=D_{1} \cup E_{1} \cup D_{2}$ and $\partial B_{1}^{\prime}=D_{1}^{\prime} \cup E_{1} \cup D_{2}^{\prime}$, glue A_{1}, A_{2} and id $\left.\right|_{E_{1}}$ along the boundaries, one obtains a piecewise smooth diffeomorphism from $\partial B_{1} \rightarrow \partial B_{1}^{\prime}$ which is the identity on E_{1}. Extend it to be a piecewise smooth diffeomorphism from B_{1} to B_{1}^{\prime} by Alexander's lemma, and call it ψ_{1}. Now $\psi_{j}: B_{j} \rightarrow B_{j}^{\prime}$ is defined to be

$$
\left.\left.\beta_{j}\right|_{B_{1}^{\prime}} \psi_{1} g^{\prime-j}\right|_{B_{j}}
$$

for $j=2,3, \ldots, n$. All these piecewise smooth diffeomorphisms match on the D_{j} 's. Gluing them together along the D_{j} 's, we obtain a piecewise diffeomorphism $\psi: S^{1} \times D^{2} \rightarrow S^{1} \times D^{2}$. Then $\left.\psi\right|_{\partial\left(S^{1} \times D^{2}\right)}=$ id and $\beta=\psi^{-1} \beta \psi$.

References

[B] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York (1972).
[B,S] S. Bleiler and M. Scharlemann, Strongly invertible knots have property P, preprint.
[B,Z] G. Burde and H. Zieschang, Knots, Walter de Gruyter, Berlin-New York (1985).
[CGLS] M. Culler, C. Gordon, J. Luecke, and P. Shalen, Dehn surgery on knots, MSRI preprint.
[G,L] M. Gordon and C. Luecke, Knots are determined by their complements, Bull. Amer. Math. Soc., 20, No. 1, (1989), 83-84.
[E] A. Edmonds, Transformation Groups and Low-Dimensional Manifolds, Contemporary Math., 36 (1985), 339-366.
[G] D. Gabai, Surgery on knots in solid tori, preprint.
[Ka] A. Kawauchi, The invertibility problem on amphicheiral excellent knots, Proc. Japan Acad., 55 (1979), 399-402.
[K] B. Kirby, Problems in Low-Dimensional Topology, Proc. Sympos. Pure Math., Amer. Math. Soc., (1978).
[L] G. Livesay, Involutions with two fixed points on the three-sphere, Ann. of Math., 78 (1963), 582-593.
[M,B] J. Morgan and H. Bass, The Smith Conjecture, Academic Press, New York (1982).
[Ri] R. Riley, Seven Excellent Knots, Proceedings of the Conference on Topology in Low Dimension, 81-151, Cambridge University Press, Cambridge (1982).
[R] D. Rolfson, Knots and Links, Publish or Perish, Inc., Berkeley (1976).
[Th] W. Thurston, The Geometry and Topology of 3-Manifold, Lecture Notes, Dept. of Math., Princeton Univ., Princeton, NJ (1978).

Received February 23, 1991. Supported in part by NSF DMS 86-3126.

University of California
Los Angeles, CA 90024-1555

