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ACTIONS OF FINITE GROUPS
ON KNOT COMPLEMENTS

FENG LUO

We examine the symmetry of the complement of a non-trivial knot
K in S3 and obtain a classification of the actions of finite groups
on the complement of a non-trivial knot in the case where the actions
extend to non-fixed point free actions on the three sphere. We prove
the result by showing first an extension theorem which says that any
action of finite group on a non-trivial knot complement extends to an
action on the three sphere and then by applying the solution of the
Smith conjecture.

Let N(K) be a regular neighborhood of K m, / be a meridian and
a preferred longitude of K in dN(K) respectively; [m], [/] be the
homology classes in H\(dN(K), Z) represented by m, / respectively.
A knot is called a hyperbolic knot if S3 - K has a hyperbolic structure.
See [R], or [B, Z] for the standard terminology that we use. The
main results of this note are the following. Theorem 1 also follows
from the recent result of Gordon and Luecke [G, L]. Since the proof
is simple, it is included here for completeness.

THEOREM 1. If K is a hyperbolic knot, then any self-dijfeomorphism
of the knot complement S3 - int(N(K)) extends to a self-diffeomor-
phism of S3.

Satellite knots have property P by Gabai's work, and torus knots are
also known to have property P. One obtains the following theorem.

COROLLARY 1. Any selfdijfeomorphism of a non-trivial knot com-
plement S3 - N(K) extends to a selfdiffeomorphism of S3.

THEOREM 2. If G is a finite group acting smoothly on the comple-
ment S3 - int(N(l£)) of a non-trivial knot K, then the group G is a
cyclic or a dihedral group, and the G-action extends to a G-action on
S3. In particular, if K is a hyperbolic knot, then Out(πi (S3 - K)) (or
what is the same Isom(53 - K)) is a cyclic or a dihedral group.

With the help of a computer, Riley [Ri] has calculated the

317



318 FENGLUO

O\it(π\(S3 - K)) for the following hyperbolic knots, 52, 63, 7 7, 821,
935, 9 4 3 , and 9 4 8 , the corresponding groups are: D2, D4, D4, D2,
Dβ, Z2, and D^ . The theorem explains the general fact behind Riley's
work. Combining with the work of Culler, Gordon, Luecke, Shalen
(see [CGLS]), Bleiler and Scharlemann [B, S] on the property P of
non-trivial knots invariant under non-trivial periodic automorphisms
of S3, we have the following.

COROLLARY 2. If there exists a finite group acting smoothly non-
trivially on a knot complement in S3, then the knot has property P. In
particular, if K is a hyperbolic knot with non-trivial Out(πi (S3 - K)),
then K has property P.

If the group G in Theorem 2 is cyclic, the G-action on the knot
complement can be described more explicitly. Before stating the corol-
lary, let us make the following conventions. A 2π/n-rotation of S3

is a Zfl-action which is conjugate to the orientation preserving Zn-
action generated by A where A sends a point (x9 z) in S3 = Rx x
C U {infinity} to (x, e2πilnz) and infinity to infinity. The circle
{{x, z)\z = 0} U {infinity} is called the axis of the rotation. A twisted
2π/«-rotation of S3 is an action conjugate to the non-orientation
preserving Zn -action generated by a, where α is described as fol-
lows. Represent S3 as (i?1 x C) U {infinity} , a is the automorphism
sending (x, z) to (—JC , -e2πilnz), and infinity to infinity. The circle
{(x, z)\z = 0} U {infinity} is called the axis of the twisted rotation.
A reflection of S3 through two points is an action conjugate to the
orientation reversing involution of S3 generated by β, where β is
the automorphism of S3 considered as R3 U {infinity} sending x to
-x, for x in R3 , and infinity to infinity.

COROLLARY 3. The smooth action of a cyclic group Zn on a non-
trivial knot complement S3 - int(N(K)) are classified as follows.

(I) The action preserves the orientation. There are two cases.
(a) The action on S3-int(N(K)) is free. Then the action is induced

by a fixed point free Zn-action on S3. K is invariant under the action.
(b) The action is not free. Then the Zn-action is induced by a 2π/n-

rotation of S3 about a trivial knot L. K is invariant under the ro-
tation. K is disjoint from L, or K intersects L transversely in two
points. If the latter happens, n — 2.

(II) The Zn-action on S3 -int(N(K)) does not preserve the orienta-
tion. Then the Zn-action has fixed points in S3, and is of even order.
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There are four kinds:
(c) n = 2. Then the action is induced by a reflection R of S3

through two points, or is induced by a reflection R of S3 with respect
to a two-sphere, which is the same as a twisted π-rotation of S3. K is
invariant under the involution. There are three types of Z^-actions on
S3 - int(N(K)).

(c)i K is disjoint from the two fixed points of the reflection R. In
this case the Z2-action on S3 - wt(N(K)) has two fixed points.

(c)2 K contains the two fixed points of R. In this case, the Z2-
action is a free action on S3 - vat(N(K)).

(c)3 K intersects the 2-sphere fixed points of R! transversely in two
points. In this case, K is of the form K = L#(-L) for some knot L.

(d) n>4. Then the action is induced by a twisted 2π/n-rotation of
S3 about an axis L. K is invariant, and is disjoint from L.

We state the following as a corollary for convenience.

COROLLARY 4. If a cyclic group Zn generated by g acts smoothly on
a non-trivial knot complement S3 -in\{N{K)) such that g*([l]) = — [/]
in H\(dN(K), Z ) , then g is an involution.

Combining Corollaries 3 and 4, smooth action of dihedral groups
on a knot complement can also be classified. We omit it here.

Recall that a knot K is invertible if K is oriented equivalent to
-K, the inverted knot of K K is amphicheiral if K is equivalent
to its mirror-image K*.

COROLLARY 5. If K is a hyperbolic knot in S3, then the following
holds.

(a) K is invertible if and only if K is invariant under a π-rotation
in S3 about an axis L such that L intersects K transversely in two
points.

(b) K is amphicheiral if and only if K is invariant under a twisted
2π I n-rotation of S3 about an axis missing K, for n > 4, or K is
invariant under a reflection of S3 through two points missing K.

(c) If K is both invertible and amphicheiral, then K is invariant
under a reflection of S3 through two points contained in K.

In §1, we prove Theorem 1. In §2, we prove Theorem 2, and its
corollaries. In the appendix, we prove the following proposition con-
cerning smooth non-orientation preserving cyclic group actions on S3.
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PROPOSITION. Any smooth non-orientation preserving cyclic group
action on the 3-sphere is conjugate to a twisted rotation or a reflection
of the sphere through two points.

Acknowledgment. The author would like to thank his thesis advisor
M. Freedman, and X.-S. Lin for many discussions on knot theory. He
also thanks the referee for the comments and for pointing out that
Corollary 5 (a) was a result of Kawauchi [Ka].

1. Proof of Theorem 1. Let K be a hyperbolic knot in S3 with
S3-K having a hyperbolic metric; N(K) be a regular neighborhood of
K such that dN(K) is a flat torus in S3 - K with respect to the hyper-
bolic metric; m, / be a meridian and a preferred longitude of K re-
spectively, m, / lie in dN(K) and be realized as geodesies, ra, / will
also be used to denote the elements in %χ (S3-int(N(K))) represented
by them. Let [m], [/] be the homology classes in H\(dN(K), Z)
represented by m, I respectively. Let h be a self-diίfeomorphism
of S3 - int(N(K)). Our goal is to prove that A*([m]) is ±[m] in
Hχ(dN{K), Z ) . Since if this condition is satisfied,

h\dN{κ):dN(K)^dN(K)

extends to be a self-diffeomorphism of N(K) which in turn gives an
extension of h to S3 by gluing. By Mostow Rigidity, one can assume
that h is a hyperbolic isometry. /**([/]) = e\[l] with εi being ±1 in
H\{βN(K), Z ) , because ±[l] are the only primitive homology classes
in Hx(dN(K),Z) which vanish in Hx(S3-int(N(K))9 Z) under the
inclusion homomorphism. Λ* is an automorphism of H\ (dN(K), Z)
hence h*[m] = ε[m] + a[l], where 82 = ± 1 , and a is in Z . Our goal
is to show a = 0. If β\ = 82, i.e., h is orientation preserving, the
result is trivial because on one hand h, being an isometry of a hyper-
bolic manifold of finite volume, is of finite order (i.e., composition of
h finite times is the identity map; see [M, B], or [Th]), on the other
hand the matrix [e^ *] has infinite order if a is non-zero. There-
fore, we need only to consider the case where εi = -82 Suppose
conversely a Φ 0. Then by Culler, Gordon, Luecke, Shalen [CGLS],
one has that a = ± 1 , and that K does not have property P. Since the
matrix [J *] is of order two, KK = id in Hχ(dN(K)9 Z). Con-
sider the orientation preserving isometry g = h o h . g is of finite
order; hence it generates a finite cyclic group G acting isometrically
on the flat torus dN{K). Because g*([m]) = [m] and g*[l] = [I]
in Hι(dN(K), Z), G preserves the foliations dN(K) by geodesic
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meridians and by geodesic longitudes. The following lemma shows
that the G-action on dN(K) can be extended to a G-action on N(K).

LEMMA 1. If G acts isometrically on aflat boundary dN of a solid
torus N and g*[m] = ±[m], g*[l] = ±[l] in Hχ(dN, Z) where g is
a generator of G, m91 are a meridian and a longitude of dN respec-
tively, then the G-action can be extended to an action on N. Moreover
the extended G-action on the core of N preserves a flat Riemannian
metric on it.

Proof. Parametrize dN by (u, v), where w, v are the unit com-
plex numbers such that Sι x {υ} and {u} x Sι correspond to the
geodesic meridian m and the geodesic longitude / in ON. Since
the action on the homology group H\(dN, Z) satisfies the condi-
tions above, the G-action on dN corresponds now to a G-action on
Sι x Sι preserving the standard product metric and the product struc-
ture. Extending the G-action on d N to N is the same as extending
the G-action on Sι x Sι to D2 x S1. The extension of the latter is
trivial. To see this, for g e G, we have,

g(u,υ) = (φ(u, g), ψ(v, g))

where w, v e Sι, φ(u, g) = au, or αw, and ψ(υ , g) = βυ or βv,
for some roots of unity a and β. The extension of the G-action to
D2xSι is given by the same formula with u in D2 = {z e C\ \z\ < 1} .
The extended G-action still preserves the product metric and acts on
the core {0} x Sι isometrically with respect to the flat metric induced
from D2 x Sι.

We have now a cyclic group G which acts on S 3 preserving K.
If G is non-trivial, then K has property P by Corollary 7 of Culler,
Gordon, Luecke, Shalen [CGLS] which contradicts a Φ 0. Therefore
h o h = id in S3 - int(N(K)). It is easy to check, using a = ± 1 ,
h*([m]) = -ει[m] + a[l] and Λ#([/J) = *i[/], that

h*{-2eιa[m] + [/]) = -βi(-2β!α[/w] + [/]).

Note that [/], and -2ε\a[m] + [I] are primitive elements, and are the
(±l)-eigenvectors of K in H\(dN(K), Z ) . The algebraic intersec-
tion number of [/] and -2β\a[m] + [l] is ± 2 . The following lemma
shows that h has fixed points in dN(K).
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LEMMA 2. Suppose h is an orientation reversing fixed point free in-
volution of a torus Γ 2 , then the (±l)-eigenspaces of h* are generated
by two primitive classes with ±1 as their algebraic intersection number.

Proof. Since any orientation reversing fixed point free involution of
T2 has the quotient space homeomorphic to the Klein bottle, and since
the Klein bottle has only one orientable two-fold cover up to covering
equivalence, any two orientation reversing fixed point free involutions
on T2 are conjugate. Because the hypothesis and the conclusion of the
lemma are invariant under conjugation, the lemma follows by checking
a concrete example. Take T2 to be Sι x Sι parametrized by (u,υ),
where u, v E Sι, the unit circle in the complex plane. Let h:T2 —• T2

be the automorphism sending (u, v) to (w, — υ). h generates a fixed
point free orientation reversing involution of T2 . The 1-eigenspace of
Λ* is generated by the homology class of the curve {1} x S1, and the
(-l)-eigenspace of Λ* is generated by the homology class of the curve
Sι x {1}. Hence the algebraic intersection number of the primitive
generators of (±l)-eigensρaces is ± 1 .

By the lemma, h has fixed points in dN(K). However, h is an
orientation reversing involution, F i x ^ l ^ * : ) ) is a 1-dimensional sub-
manifold. This implies that Fix(Λ) contains a 2-manifold, say F. We
claim that this is impossible. By Smith theory (see [B], Theorem 5.1),
for the Z2-action generated by h on the 1-dimensional Z2-homology
sphere S3 - int(N(K)), the fixed point set Fix(Λ) is a Z2-homology
sphere of dimension at most one. Hence Fix(Λ) (= F) is an annulus
or a Mόbius band.

Case J . F is an annulus. Since S3 -K has a hyperbolic structure,
S3 = int(N(K)) is annulus free. Hence F is parallel to an annulus
in dN(K). In particular, F is separating. The two components of
the complement of F in S3 - int(N(K)) are interchanged by h and
hence are homeomorphic. Therefore both of them are solid tori. This
implies that S3 - int(N(K)) is the union of two solid tori along an
annulus in their boundaries which contradicts the existence of the
hyperbolic structure of finite volume in S3 - K.

Case 2. F is a Mobius band. dF is now a simple closed curve
in dN(K) fixed by h, and hence [dF] is in the 1-eigenspace of h*
which is generated by [/], or by 2a[m] + [/] according to e\ = 1, or
— 1. Thus dF and K bound an annulus A in N(K). The Mόbius
band F \JQ A in S3 has K as its boundary. Let L be the core of
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the Mόbius band. If L is non-trivial, K is the cable knot of L. This
contradicts that K is a hyperbolic knot. If L is the trivial knot, then
K is the (2, /?)-torus which is again absurd.

This completes the proof of Theorem 1.

Since any non-trivial knot with property P has the property that any
self-diίfeomorphism of the knot complement preserves the meridian,
and since the only non-trivial knots which are not known to have
property P are some hyperbolic knots by the work of Gabai and others,
Corollary 2 follows from Theorem 1.

2. Proof of Theorem 2. We shall still use the same notations intro-
duced in § 1. Hence K is a non-trivial knot in *S3 N(K) is a regular
neighborhood of K; m, / are a meridian and a preferred longitude
of K respectively, m, / lie in dN(K). Our first observation is that
there exists a flat metric on dN(K) such that G acts on ΘN(K) iso-
metrically. This follows from the Geometrization Theorem that any
action of a finite group G on a 2-manifold is equivalent to a geo-
metric group action (see [E]). Fix the metric on dN(K), and realize
m, / by geodesies in dN(K). Theorem 1 shows that the (/-action on
dN{K) preserves the geodesic meridians and geodesic longitudes in
dN(K). By Lemma 1, the G-action on dN(K) extends to a G-action
on N(K) such that the extended G-action preserves a flat metric on
K. Hence the G-action on S3 - int(N(X)) extends to a G-action on
S3 which preserves K and acts on K preserving a flat metric d. The
restriction of the G-action to K gives a representation:

σ:G->Isom(K, d).

The solution of the Smith Conjecture shows that σ is a monomor-
phism. To see this, let h e ker(σ), and H be the cyclic group by
h. Then H acts on S3 with fixed point set containing K, and H
preserves each geodesic meridian in dN(K). Moreover, /**([/]) = [/]
in Hι(dN(K), Z ) . There are now two cases that might happen.

Case 1. /z*([ra]) = [m]. h is now an orientation preserving home-
omorphism because A*([/]) = [/] and /z*([m]) = [m] imply that h is
an orientation preserving homeomorphism in H\(dN(K)9 Z ) . There-
fore the //-action on a geodesic meridian m is a rotation. Suppose
h Φ id then H acts non-trivially on m. Therefore K is the only
fixed point set of h in N(K). By Smith theory, Fix(A) = K, which
then contradicts the solution of the Smith Conjecture.
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Case 2. K([m\) = -[ra] . h is now an orientation reversing home-
omorphism. Since ho h e ker(σ), and A*A*([mJ) = [m], one has
h o h = id by the solution of Case 1. Hence h is an orientation re-
versing involution of S3 with fixed point set containing K. Because
the Fix(Λ) is a submanifold of odd codimension and contains K,
Fix(Λ) contains a 2-manifold. By Smith Theory, the Fix(Λ) is a Z 2-
homology sphere. Hence Fix(Λ) is a 2-sphere and contains K. This
implies that K is a trivial knot which is absurd.

Therefore G is a subgroup of Isom(A^, d). It is well known that
a finite subgroup of Isom(A^, d) is a cyclic or a dihedral group. In
case K is a hyperbolic knot, Out(πi(iS3 - K)) acts isometrically on
S3 - int(N(K)) where 0JV(tf) is a flat torus in S3 = K (see [M, B],
or [Th]). Hence Out(πi(S3 - K)) (or the same Isom(S3 - K)) is a
cyclic or a dihedral group.

Proof of Corollary 3. By Theorem 2 and its proof, the Zn -action
extends to a Zrt-action on *S3 such that K is invariant and K inter-
sects the fixed point set of a nontrivial element / in Zn if and only
if Fix(σ(/)) n K φ 0 . But Fix(σ(/)) Π i^ ^ 0 if and only if σ(/)
is a reflection on ^ which in turn is the same as f*([l]) = -[/] in
H\(dN(K), Z ) . Moreover, in this case, K intersects Fix(/) trans-
versely in two points. The classification is now reduced to the classi-
fication of smooth cyclic group actions on S3.

(I) The Zn-action preserves the orientation.
If the Zn-action on S3 is fixed point free, we have (a). Otherwise,

by Smith theory, the fixed point set is a knot, say L. The solution of
the Smith Conjecture shows that L is a trivial knot, and the Zn-action
is a 2π/«-rotation about L. Let g be a generator of the Zw-action. If
L intersects K, then by the remark above, we have #*([/]) = [/], and
σ(g) is a reflection in K. Hence Fix(g o g) contains K. However
gg is orientation preserving. Therefore the solution of the Smith
Conjecture implies that gog is the identity, i.e., n = 2. This proves
(b).

(II) The Zn -action does not preserve the orientation.
Let g still be the generator of the Zn -action on S3. Since g re-

verses the orientation, g has fixed points in S3, n is even, and Fix(g)
is a submanifold of odd codimension in S3.

(c) n = 2.

By Smith theory, Fix(g) is a Z2-homology sphere. Hence Fix(g)
is the two points set or the 2-sphere. If Fix(#) is the two points set,
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by Livesay's theorem [L], the Z2-action is a reflection of S3 through
two points; if Fix(g) is a 2-sphere, then the action is a reflection of S3

with respect to a 2-sphere by Schonflies theorem. Now the Z2-action
is classified as follows. If #*([/]) = [/], then Fix^) Γ)K = 0. In this
case Fix(G) cannot be a 2-sphere. To see this, Fix(g) n K = 0. In
this case Fix(G) cannot be a 2-sphere. To see this, Fix(g) n K = 0
implies the fixed point set of g in S3 is actually in S3-int(N(K)). By
Smith theory, for the g involution on the one-dimensional homology
sphere S3-int(N(K)), Fix(^|S3_inwΛΓ,A:)x) is a Z2-homology sphere of
dimension at most one. Hence Fix(g) are two points. This gives (c){.
If £*([/]) = - [ / ] , then σ{g) is a reflection in K, and K intersects
Fix(g) transversely in two points. (c)2, (c)3 follow from the above
mentioned classification of the orientation reversing involutions of
S3.

(d) n>4.
The result is a consequence of the following proposition which will

be proven in the appendix.

PROPOSITION. Any smooth cyclic group action on S3 which does not
preserve the orientation is conjugate to a twisted rotation of S3, or to
a reflection of S3 through two points.

Applying the proposition, we need only to check that K is dis-
joint from the axis of the twisted rotation g. However the axis of
g is Fix(g o g). Fix(g o g) does not intersect K follows now from
g*g*([l]) = [/], and g o g φ id. This completes the proof of (d).

Corollary 4 is actually proven in the proof of Corollary 3.

Proof of Corollary 5. (a) By Proposition 3.19 of [B, Z], K is in-
vertible if and only if there is an automorphism

φ: nx (S3 - int(N(K))) -• nx (S3 - int(N(K)))

such that φ(m) = m" 1 and φ{l) = l~ι. Since K is a hyperbolic
knot, Mostow Rigidity Theorem shows that φ can be realized by a
hyperbolic isometry h:S3 - int(N{K)) -> S 3 - int(N(K)) such that
λ*([m]) = - [ m ] , and /**([/]) = -[/] in Hx(dN(K),Z). Here we
have assumed that dN(K) is a flat torus in S3 - K. The condition
h*([l]) = -[/] implies that h is an involution by Corollary 4. Because
Λ*([ra]) = —[m], h is orientation preserving. Hence by Corollary 3,
the Z2-action generated by the extension of h on S3 is induced by
a π-rotation of S3 about an axis L. //*([/]) = — [/] implies that
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L intersects K transversely in two points. Therefore K is invariant
under a π-rotation about an axis intersecting K at two points. The
inverse implication is trivial.

(b) By Proposition 3.19 of [B, Z], K is amphicheiral if and only if
there is an automorphism

φ: πx {S3 - int{N(K))) - πx (S3 - int(N{K)))

such that φ(m) = m" 1 and φ(l) = /. Realize φ by an isometry
h: S3 - uA(N(K)) -> S3 - int(N(K)). h is orientation reversing since
h*{[ni\) = - [ m ] , and /**([/]) = [/] in Hλ{dN{K),Z). h generates a
smooth cyclic group action on S3-in\(N(K)) which does not preserve
the orientation. Hence by Corollary 3, h is induced by a twisted
rotation of S3 about an axis L missing K if the order of h is at
least four. If the order of h is two, the h involution is the case
(c)i in Corollary 3 because /**([/]) = [/]. Therefore, in this case K
is invariant under a reflection of S3 through two points missing K.
Then the condition is clearly sufficient.

(c) If the knot is both invertible and amphicheiral, then there exists
an automorphism

φ:πx{S3 - m\(N(K))) -> π i (5 3 - mX{N{K)))

such that φ(m) = m, and φ(l) = l~ι. φ is the composition of
the two automorphisms coming from (a) and (b). Realize φ by an
orientation reversing hyperbolic isometry h such that Λ*([m]) = [m],
and /**([/]) = -[/] in H{(dN(K), Z ) . By Corollary 4, /**([/]) = -[/]
and A*([m]) = [m] imply h is an orientation reversing involution of
S3 - m\{N(K)) -• S3 - JV(#). By Corollary 3, A is the case (c)2

or the case (0)3. Case (0)3 cannot happen since K is a prime knot.
Hence K is invariant under the reflection of S3 through two points
contained in K.

Appendix. We prove the following proposition concerning smooth
cyclic group action on the 3-sphere which does not preserve the orien-
tation.

PROPOSITION. Any smooth non-orientation preserving cyclic group
action on S3 is conjugate to a twisted rotation of S3, or to a reflection
of S3 through two points.

Proof. Let g be a generator of the Zn-action, n has to be even, g
is orientation reversing, and hence has fixed points in S3. If n = 2,
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we have shown in the proof of Corollary 3 (c) that the result holds.
Assume n > 4 from now on. Let h = g o g. h is an orienta-
tion preserving automorphism of order m, and has fixed points. The
solution of the Smith Conjecture shows that the Fix(Λ) is a trivial
knot, say L. Now L is invariant under g. g acts on L with fixed
point and is of order two in L. Hence the action of g on L is a
reflection by the classification of Z2-action on the circle. Take a Zn-
equivariant regular neighborhood N(L) of L in S3 (see [B]). By the
choice of the regular neighborhood, one knows that the action of Zn

on N(L) is standard. Therefore by choosing the generator g of the
Zn -action appropriately, we can assume that the restriction of g on
N(L) = D2 x Sι is conjugate to a, where

a:D2xSι -> D2 x Sι

sends (z, w) to (e2πilnz, ΰ7), with z in D2 = {z e C\ \z\ < 1} and
w in Sι = {z G C\\z\ = 1}. Note that a generates an orientation
reversing Zn-action on D2 x Sλ with two fixed points in {0} x Sι.
Since L is the trivial knot, S3 - int(N(L)) is a solid torus. Let
φ: S3 = (S3 - int(N(L))) u ΛΓ(L) -> £ 3 = (Sι x D2) Uid (D2 x Sι) be
a diίfeomorphism taking N(L) to Z>2 x Sι such that

)

a. Now extend α to be a self-diffeomorphism a of S by sending

(z, w)^ 1 x 2)2 to (e2πilnz, w) with Z E ^ 1 and w e D2. Then a

generates a twisted 2π/«-rotation of S . Our goal is to show that

φgφ~ι is conjugate to a in S . This is consequence of the following
claim.

Claim. gf = ΦgΦ~ι\s

ιχD2 *s c o n J u g a t e to /? = α|£iXjD2 by a piece-
wise smooth diffeomorphism ψ such that ψ is the identity map on
d(sι χ ΰ 2 ) .

Let us assume the claim and finish the proof. By gluing ψ with

\ά\DiχS\ along the boundaries, we obtain a piecewise smooth self-

diffeomorphism of S which conjugates φgφ~x to a. Therefore

φgφ'1 is smoothly conjugate to a by the work of Moise.

Proof of the Claim. By the choice of φ, gr is the same as β on
d(Sι x D2). Using the equivariant Dehn's lemma, we can find n
copies of disjoint properly embedded disks D\, D2, . . . , Dn with dDj
= eeπ^ln x dD2 in ^ x ΰ 2 , such that g'(Dj) = Dj+X for j =
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1, 2, . . . , ft, where D\ = Dn+\. g': Dj —• i) 7 + i is a diffeomor-
phism for each j . These disks cut Sι x D2 into n components, say
Bu B2, . . . , Bn with Z)7 U Z)/+1 c dBj, and each of £/ is a 3-ball
by Schonflies' theorem. Let DJ = e2*'.//* x D 2 (where D'n+ι = D[)
5} = {e2*"/"!; < / < j + 1} x 2)2. a n d Ej = dBι} _ ( j D y u ^ . + l ) 9 t h e

annulus, for each i = 1, 2 , . . . , « . The construction of ^ is now as
follows. Let A\\ D\ -^ D[ be a diffeomorphism which is the identity
on dDx. Define A2: D2 -+ Df

2 to be β\DΆιg'-ι\D2. It is still a diίfeo-
moφhism which fixes dD2 pointwise. Since dB\ = D\\JE\UDι and
dB[ = D[ \JE\ UD'2, glue A\, A2 and id|^ along the boundaries, one
obtains a piecewise smooth diίFeomorphism from dB\-+ dB[ which
is the identity on E\. Extend it to be a piecewise smooth diffeomor-
phism from i?i to B[ by Alexander's lemma, and call it ψ\. Now
ψj : Bj —• B'j is defined to be

for j = 2, 3, . . . , n . All these piecewise smooth diffeomorphisms

match on the Dj's. Gluing them together along the Dj % we obtain a

piecewise diffeomorphism ψ:Sι x D2 -> Sι x D2 . Then ψ\d(S

ι

XD
2) =

id and β = ψ~~ιβψ.
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