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A,, AND THE GREEN FUNCTION
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Let G(x) be the Green function in a domain Q C R™ with a
fixed pole, and I" be an (m — 1)-dimensional hyperplane. We give
conditions on Q and QNI so that |VG| is A. with respect to the
(m — 1)-dimensional measure on Q N I". Certain properties of the
Riemann mapping of a simply-connected domain in R? are extended
to the Green function of domains in R” .

In [3], Fernandez, Heinonen and Martio have proved the following:

THEOREM A. Let f be a conformal mapping from a simply-
connected planar domain Q onto the unit disk A and L be a line
segment in Q. Then f(L) is a quasiconformal arc. Moreover, if L is
a line segment on the boundary of a half plane contained in Q, then
|f'| € Axo(ds) on L with respect to the linear measure ds .

If L is any line segment in Q, |f’| need not be in A, (ds) on L.
In fact, Heinonen and Nékki [9] have proved the following:

THEOREM B. Let f be a conformal mapping from a simply-
connected domain Q onto the unit disk A and L be a line segment
in Q. Then the following are equivalent:

(1) |f'| € Ax(ds) on L,

(2) fIL is quasisymmetric,

(3) there exists a chord arc domain D C Q so that L C D,

(4) there exists a quasidisk D C Q so that LC D.

Let 4 and v be two measures on R” (m > 2). Recall that u
belongs to the Muckenhoupt class 4., (dv) if there exist o, f € (0, 1)
such that whenever E is a measurable subset of a cube Q,

(0.1) v(E)/v(Q) <o implies u(E)/u(Q) < B.

If 4 and v have the doubling property, then u € A, (dv) if and
only if v € A (du) ([2]). We say a function is in A, (dv) on L,
provided that (0.1) holds with du = gdv for all cubes Q C L.

f]L is quasisymmetric provided that forall a, b, x € L, |a—x| <
|b—x| implies |f(a)— f(x)| < c|f(b)—f(x)| for some constant ¢ > 0.
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Let G be the Green function for Q with pole f~1(0) and J(z) be
dist(z, 0Q). From the distortion theorem, it follows that

1-1f(2)] o G(2)
a(z) — 6(2)

when f(z) is away from 0. Thus it is natural to study the analogue
of Theorem B for general domains Q in R™ (m > 2), that is, to
find conditions on Q and the planar section L C Q, so that |VG| €
Ax(do) on L with respect to the (m — 1)-dimensional measure do .
Because |VG| may vanish, we study G(z)/d(z) instead. :

From now on, Q denotes a domain in R” (m > 2), G the Green
function on Q, P a fixed point in Q and G(x) = G(P, x). Let I" be
an (m—1)-dimensional hyperplane in R” which does not contain P,
and o be the (m — 1)-dimensional measure on I'. If L is a domain
in I', denote by 9’L its boundary relative to I". We shall prove the
following:

(0.2) IVG(2)| = |f(2)| =

THEOREM 1. Suppose that Q is a nontangentially accessible (NTA)
domain and that L C Q is a uniform domain on the hyperplane T .
Furthermore, there exists 0 < ¢ < 1 so that for each x € L, at least
one component of B(x, cdist(x, 8'L))\L is contained in Q. Then
%ﬁ%l L can be extended to become an A.,(do) function on the entire
hyperplane T .

THEOREM 2. Suppose that Q is a quasiball and is a BMO, domain.
Then g%%lrng can be extended to become an A..(da) function on the
entire hyperplane T".

The assumption that L is a uniform domain arises naturally in
defining A4,, and in extending G(x)/d(x) by the method of reflection.
The additional condition on L is needed in view of the following:

ExAMPLE. For each m > 2, there exists an NTA domain so that
QNn{xn =0} is an (m — 1)-dimensional cube, but g% ¢ Ax(da) on

Qn{x, =0}.

The additional condition on L is satisfied when L C D for some
domain D C Q whose complement R™\D has the linearly locally
connected property (LLC). Examples of such D are quasidisks in R?
or domains quasiconformally equivalent to a ball in R™ (m > 3), see
[7] and [8].
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In Theorem 2, no condition is imposed on QN I, and it may be
any open set. Lipschitz domains which are homeomorphic to a ball
satisfy the conditions in Theorem 2. The theorem remains true for all
quasidisks in R? (Theorem B).

In the core of our proof is the following theorem, which in its most
general form is proved by B. Davis [4] by probabilistic methods. Spe-
cial cases and related results can be found in [5], [13] and [15].

THEOREM C. Let Q be a domain in R™, m > 2, and {D;} be a
sequence of closed sets contained in Q with dist(D;, Dj) > 0 whenever
i#j. Set Qj=Q\Uy;Dx. If {D;} are uniformly separated in the
sense:

(0.3) n}leéllf)'jco(z,aﬂ,ﬂj)=a>0,
then for any x € Q\JDj,
1
> w(x, D, D)) < zo (x, JD;, AUD)).
J

1. Preliminary Theorems. For a domain Q and a set S in R”,
denote by J(S) the distance from S to 9Q, d(S) the diameter of S
and [(S) the side length of S if S is a cube. If S is a ball, a cube or
a square, denote by ¢S the ball, the cube, or the square on the same
hyperplane, concentric to S, of diameter cd(S). Denote by B(x, r)
the ball centered at x of radius r.

Q is called a nontangentially accessible (NTA) domain [10], if it
is bounded and there exist constants 7y > 0, M > 10 and N > 10
depending on Q so that the following conditions are satisfied:

(1.1) Corkscrew condition: for any Z € 0Q, 0 < r < ry, there exist
A= A4,(Z) € Q such that M~'r < |A—-Z| < r and dist(4, 9Q) >
M-1r.

(1.2) R™\Q satisfies the corkscrew condition.

(1.3) Harnack chain condition: if X; and X, arein Q, dist(X;,0Q)
>e>0,i=1,2, and |X; — X;3| < 10Me, then there exist balls
B; = B(Yj,rj), 1 £ j<n with n <N, so that ¥, = X; and
Y, = X, and that the balls satisfy

M~'rj < dist(B;, 0Q) < Mr;, 1<j<n,
and

B(Yj,%)nB(Ym,-’fzi);ee, 1<j<n-1.
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Suppose Q is an NTA domain. For Z € 9Q, denote by A(Z, r)
the surface ball B(Z,r)Nn9oQ. Let P be a fixed point in Q. Then
the Green function in Q and the harmonic measure @ on 9Q have
the following properties, [10]:

(1.4) Doubling property of  : there exists C > 0 depending only
on Q and P so that

w(P,ANZ,2r),Q) <Cw(P,ANZ,r), Q)
for any surface ball A(Z,r)=B(Z,r)noQ.

(1.5) Relation between ® and G: suppose that 4 € Q, Z € 0Q
with ¢~16(4) < |4 — Z| < ¢6(A) ; then there exists C >0 depending
on Q, P and c only so that

_ G(P, A)5(A)"-2
C < P AZ 3D

Let ©Q be an NTA domain, Q be a cube in Q satisfying dist(P, Q)
>d(Q)>dQ) > %J(Q), and I be an (m — 1)-dimensional hyper-
plane in R™ passing through the center of Q. Following the argu-
ments in [10], we may find constants ¢, C > 0 depending on € and
P, so that

<C.

Clow(P,Q,Q\Q) <GP, x)d(x)" 2

(1.6)
<Cw(P,Q,Q\0Q), xegQ,

and

(1.7) w(x, 0Q\I', Q\(I'\Q)) > ¢, xelgQ.

Q is called a uniform domain if it satisfies the interior corkscrew
condition (1.1) and the interior Harnack chain condition (1.2) in the
definition of NTA domain. It is also called a BMO extension do-
main because of its characterization in terms of extension properties
of BMO(Q) by Jones [11]. For properties of uniform domains, see
[7]. In R?, a simply-connected uniform domain is a quasidisk.

A bounded domain Q C R” is called a BMO; domain if its bound-
ary is given locally in some C* coordinate system as the graph of a
function ¢ with V¢ € BMO. BMO,; domains are defined and stud-
ied by Jerison and Kenig in [10]. They are NTA domains and can be
regarded as the analogue of chord arc domains in R” (m > 3); note
that the graph of y = ¢(x) is a chord arc curve if ¢’ € BMO(R!). It
is proved in [10] that
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THEOREM D. If Q is a BMO, domain, then the harmonic measure
w on 9Q belongs to Ax(da).

An extension of Hall’s Lemma is proved in [19]; it is stated here
with constants given more precisely.

THEOREM E. Let Q be a BMO, domain and Cy > 1 be given.
There exist constants A, ¢ > 0 depending on Q and Cy only, so that
for any point A € Q and closed set E C QN B(A, Cyd(A)),

w(4, E, Q\E) > c(Mpn_1(E)S(4)7" ),

where M,,_, is the (m — 1)-dimensional content.

The a-dimensional content M,(E) of a set E is defined to be
inf}_, ry, with the infimum taken over all coverings of E consist-
ing of countably many balls with radii r,.

We also need the following estimate of harmonic measures [19],
which is first proved by Carleson [1] for the half plane. Again, the
constants are described more precisely here.

THEOREM F. Let Q be a BMO; domain in R (m > 3), Cy > 1,
A € Q and E be a closed set in QN B(A, Cyd(A)). Let A be the
Jamily of positive measures v on E, which satisfy, for each cube Q in
Q with 16d(Q) < d(Q) <256d4(Q),

v(Q) < cap(ENQ)(Q);
and for each cube Q in R™ that meets 6QQ,
v(Q) < I(Q)™ .

Then there exist constants y, ¢ > 0, depending only on Q and Cy so
that

w(A4, E, Q\E) > csup(v(E)5(4)~"+)7,
M
Here cap is the Newtonian capacity.
Let ®:R™ — R™ be a K-quasiconformal mapping. Following are

some properties of @ due to Gehring and Vdiisila [17]; all constants
depend on m and K only unless otherwise mentioned.
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LEMMA 1. There exists ¢y > 0 so that if 0 < ¢ < ¢y, By and
B, are balls with d(B,) < cd(B;) and dist(B,, B;) < cd(B;), then
d(®(By)) < coc*d(®(B;)) for some o > 0 depending only on K .

LEMMA 2. Let B be a ball with center X ; then there exist balls
B' and B" with center ®(X), so that B" C ®(B) C B’ and d(B’) <
Cd(B").

The next theorem is due to Gehring [6].

THEOREM G. The Jacobian of @ is in A,(dx) on R™. Thus there

exists a > 0 so that
©(F)| _ (|F|)a
C ToDI ’
|[®(B)| = ~ \|B|

for any ball B and F C B.

LEMMA 3. There exists a > 1 depending on K so that if U is a
ring {x:r < |x — xo| < ar} then ®(U) contains a ring in the form
{x:p <|x —=D(x0)| < 2p} for some p>0.

Proof. Let By = B(xy, r) and B, = B(xp, ar). Then there exist
balls B{, Bf, B}, B] centered at ®(xg) so that B C ®(B;) C B},
B C ¢(B,) € By, diam B{ < Cdiam Bf and diam B; < C diam By .
Because of Theorem G, (diam By /diam B) < Ca~*. Hence diam B
< ca~*diam B} and ®(U) contains the ring B}\B] provided that a
is sufficiently large.

Let Q = ®(B(0, 1)) and ®* be the quasiconformal reflection about
0Q defined by

. P!
& > =2 (o)

Then Q is an NTA domain [10], and ®* is quasiconformal on {c¢~! <
|x — ®(0)| < c}. Denote by S* the reflection ®*(S).

LEMMA 4. Given ¢y, cy; > 1 there exists ¢ = c(¢1, ¢, K) > 1 sq
that if Q is a cube in {c;' < |x — ®(0)| < ¢;} which does not meet
0Q and satisfies c;' < 1(Q)/6(Q) < ¢, then

_1_ d(Q)
¢ <50

<c.



A,, AND THE GREEN FUNCTION 165

Moreover, there exists a ball B C Q* so that

d(Q*) = [(Q) = d(B).
And if Q is a cube in {cl‘1 < |x —®(0)| < ¢} that meets OS2, then
d(Q*) < cl(Q).

By a = b, we mean a/b is bounded above and below by positive
constants.
This lemma is a simple consequence of Lemmas 1, 2 and 3.

LEMMA 5. Let h > 3 and H be the circular right cylinder
{x: Z{"“x]2 <1 and 0 < xm < h}. Let E be the base {x:Y1""' x?
<1 and x, =0} of H, and A be the point (0,0,...,0,h—1).
Then there exists ¢ > 0 depending on m, h and K only so that

(1.9) w(D(A), B(E), ®(H)) > c.

Proof. Note that each d)({x:Z{”‘lx} <1, j<xm<j+2}) is
a C-quasiball (0 < j < h—2). Hence (1.9) follows from successive
applications of the Harnack inequality.

2. Proof of Theorem 1. Constants in this section depend on Q, L,
D, P and dist(P,I).

Assume from now on that I = {x,, = 0} and fix a partition & =
{S;} of I'NnQ so that §;’s are (m — 1)-dimensional closed dyadic
squares on I' with mutually disjoint interiors and that
15 1
o(S;) — 10
Let Y; be the center of S;, B; = B(Y;, {5/(S;)) and Dj = B;NT.

Let {S;}; be any subcollection of #. Because Q is an NTA
domain, it follows from (2.1) and the exterior corkscrew condition
(1.2) that the disks {D;}; are uniformly separated as in (0.3). It
follows from Theorem C and the maximum principle that for any
X € Q\ UJ DJ s

Y o(x, S, AS) =D wx, D;, Q\D;)
J J

<cw (x, UDj, Q\UDj)
J J

<cw (x,USj,Q\USj>.
J J

(2.1) 0O<c<



166 JANG-MEI WU

The last two inequalities can easily be reversed; thus

(2.2) do(x, S, QAS)=w (x, Usi. Q\USJ)
J J J

which is a weak substitute for the additivity and is essential in our
proof.

Suppose that I is a dyadic square on I' with center in I'NQ and
that

(2.3) InQ=|JS; forsome {S;}, CC.
J

Then 6(I) < C3l(I) for some c3 > 1, because d(I) < 6(S;) =
[(Sj) < I(I) for any j € J. Let Z be a point on 0Q that satis-
fies dist(Z,I) = 6(I), and let B = B(Z,4C3d(I)), A= BNaQ.
Clearly that I C %B . Because of (1.1), we may choose and fix a point
A € Q\I" with

8¢s/(I) < |4~ Z| < cl(I)
and 6(A4) = [(I). We claim that
(24) P, S;, QS) = w(P, A, Quw4, S;, Q\S))

foreach je J. If S; were on 0Q, (2.4) would follow from Lemma
4.11 in [10]. Since S; is interior to Q, (2.4) can be obtained by
modifying the proof of that lemma; or by applying it to the NTA
domain Q\B,; and then using the Harnack inequality.

Suppose that F = (J7S; for some J C J. It follows from (2.2)
and (2.4) that

(2.5) oP,F,QF)=> oP,S;, Q\S))
T
=" w(P, A, Qwd, S;, Q\S))
T
=Zw(P,A, Qw(A, F, Q\F).

So far, only the NTA assumption on € is used; this part of the
proof also applies to Theorem 2. To localize the problem, we need the
estimate w(P,INQ, Q\I) = w(P, A, Q) which may not hold even
when QNT is a square (example in §4).

Let

(2.6) W(F) = /F %da(x) for FCTNQ.
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LEMMA 6. There exist o, B € (0, 1) so that if I is a closed square
on T centeredin L and F CINL then

2.7) _oF) o oo M)

o(InL) GIREE

Proof . Suppose that I is a dyadic square. Then either I C S, for
some S; €% or (2.3) holds.
When I C S , from the Harnack inequality, it follows that

u(F)/u(InL)=a(F)/a(INL);

and thus (2.7).

Proceed with the assumption (2.3) and assume as we may that
[(I) < 4diam(L). Because L is a uniform domain on I' and the
center of I isin L, there exists a square S C I N L satisfying

(2.8) I(I) = I(S) = dist(S, 8'L).

Notice that dist(S, 8Q) < c¢/(I) and that in general they are not com-
parable. To get around this difficulty, we deduce from the additional
assumption on L that there exists a cube Q C Q so that Q has one
face lying on S and /(Q) = /(S). Let A4y be the center of Q; thus
0(Ag) =U(Q)+d(S)=I(I).

It follows from (1.5), (1.6) and the Harnack inequality that

oP,INL, Q\(INL))>w(P, S, Q\S) > cG(P, Ag)d(Ag)™ 2
=w(P, A, Q);

and from Lemma 4.2 in [10] and I C {B that
w(P,INL, Q\(INL)) < cao(P, A, Q).

Thus

(2.9) o(P,INL, QO\(INL)Zw(P, A, Q).

Let F = U;Sj for some J C J. We deduce form (1.6), (2.5), and
(2.9) and the Harnack inequality that

W)= S 6P, V)AS) 2= T (P, 5;, O\S))
J J
=wP,INL,Q\(INL))w(A4, F, Q\F).

Note also from the Harnack inequality that
w(A, F, Q\F) Z w(Ag, F, Q\F)
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and that
(A, INL, Q\(INL)) = w(dg, INL, QA\(INL))>1/2m.
Thus,
HF)/u(INL) = w(dg, F, Q\F).
We note that
(4o, F, Q\F) > w(4o, F, Q) > w(4o, FN3(8QNS), Q)
S ca(F niG0nSs))
- c(0QnS)
Because o(3(0QNS)) > c40(INL) for some ¢4 >0, we conclude
o(FNn$0Qns))
a(3(0QNS))
provided that o(F)/c(INL) > 1 —c4/2. This implies (2.7) when
F=U5S;.
Let a and B be the constants associated with (2.7) for all previ-
ously proved special cases.
In general, for F C INL, we may write F =J;F; where F; C S
and J C J. Suppose that
a(F) S 1+
a(INL) 2 -

Let J; = {j € J:0(F;})/a(S;) > (1 —a)/2} and J, = J\J;. Then

l-a | e
> <— > a(S)) < 5—o(INL).
T 7,
Since Z a(F) < ZJ , we have Z, d(S;) > ac(INL). There-
fore )~ JH (S )= B ,u(I N L) It follows from the Harnack inequality

and the choice of J; that

W(F) 2> u(Fj) = ¢y uS)) = cBuInL)
J J

1 1

Cq

This proves (2.7) for dyadic squares /.

For general I, (2.7) follows from the fact that L is a uniform
domain and the following doubling property (2.10) of u.

Doubling property: for any square I on I" centered in L,

(2.10) u(2INL) = u(INL).
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Again, we assume as we may that /() < 4diam L. Let I; be the
union of the squares in {S;} that meet 2/, and S be a squarein INL
that satisfies (2.8). Then /(Iy) = I(I) = (S). If o(L;) > I(I;), (2.10)
follows from the Harnack principle. Otherwise, let Z; be a point
on OQ that satisfies dist(Z,, I,) = 6({,), By = B(Z,, 4c3d(1Iy)),
A;=B;NdQ and A, be a point in Q satisfying 8c3d([})<|4;—-Z;| <
cd(I,) and 6(A;) = d(I,). Following the argument before, we con-
clude that

.u(Il nL) %’w(P, Il nQ, Q\Il) gw(Pa Al > Q)
= G(P, AN(I)"2 = (P, S, Q\S) < cu(I N L).

This proves (2.10) and Lemma 6.
The extension of %| L to I' follows from the next lemma.

LEMMA 7. Let L be a uniform domainin R" and o be the Lebesgue
measure on R". Let u be a measure on L which is absolutely con-
tinuous with respect to ¢, and satisfies the restricted doubling property
on L:

uINLY<cu(INL)

for any cube I centered in L, and the restricted A, property on L:
there exist a, p € (0, 1) so that if I is a cube centered in L and
F C1, then
o(F) U(F)
sinD) >~ wanD > #
Then p can be extended to R" so that u < o, u has the doubling
property and u € Ax.(do) on R".

Proof. Let € = {Qx} be a dyadic Whitney decomposition of L,
' = {T;} be a dyadic Whitney decomposition of R”\L, and Q; be
one of the largest cubes in % . Following Jones ([11] and [12]), we
define the reflection 7; of T; € ' as follows: If L is unbounded,
i:'j is chosen to be a cube Q; in & nearest to 7; and that /(Qy) >
[(T}); if L is bounded, define TJ as above provided that /(7;) <
[(Q;), otherwise define Tj = Q;. Because L is a uniform domain,
dist(7;, Tj) < cl(T;) and that [(T;) = l(7~"j) unless /(T;) > 1(Qy).
See [11] and [12] for detailed properties of this reflection.
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Because L is a uniform domain, g(8L) = 0 ([12]). Extend u to
R™ by defining u(0L) =0 and

N E—(—]N;’—)— do onT;.
o(Tj)

The proof of the doubling property and the A, property of u is
based on the following observation: let / be a dyadic cube that meets
OL; then either IN L or I\L contains a large Whitney cube. More
precisely, if 1/ NL # @, then due to the fact that L is uniform,
there exists a Whitney cube Q; C INL with [(Qy) > cl(I); otherwise
3I € R"\L, and hence there exists 7; € €’ so that 7; C I\L and
[(T}) > cl(I). The rest of the proof is routine verification.

3. Proof of Theorem 2. Let Q = ®(B(0, 1)), where ®:R” — R™ is
K-quasiconformal and P = ®(0). When m = 2, Theorem 2 follows
from Theorem B. We assume that m > 3 and constants depend on
K, dist(P,T), and dist(P, 0Q) only.

Assume I' = {x,, = 0} and 0 e I'N Q. Let & = {S;} be the
partition of I'NQ in §2, M be the integer satisfying 32diamQ <
2M < 64diamQ, and D be the (m — 1)-dimensional square on I’
centered at 0 with sides parallel to the axes and of length 2M+! Let
Q' =R™Q and &’ = {R;} be a partition of I'NQ’ by dyadic squares
with mutually disjoint interiors so that
[(R}) 1
3(R;) =10
and D\Q = Ug R, for a subcollection {R,}k, of &".

Let ®* be the quasiconformal reflection about 9Q defined in (1.8),
Xj be the center of R; and X; = ®(X;). Define x on I' so that

O<cex

fsf;(x)dx scrng,
u(S) = zjﬁ(E;ﬁ— (SNR;), SCDNL,

(P, S, Q), ScrnoQ,

a(S), S CT\D.

Let U; = B(X;, 5/(Rj)), V;=U;NT and {R;}x be a subcollec-
tion of {R;}k . We note that {}*}x lie on a quasisphere; and claim
that {Vj* }k are uniformly separated, that is,

: : 1"
(3.1) 1%fx1€ny€‘w(x,89,§2j)>c>0

where QF =Q\U ., jex Vi
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To prove this, we fix j € K and recall that J(R;) = /(Rj) <
Cdiam Q. Recall also that Q is a quasiball thus an NTA domain
and that dist(P, 0Q) > cdiam 2. From these facts and elementary
geometry, we may find a circular cylinder H; C R™\I', whose base
has radius r; = /(R;) and whose height is 4;r; (3 <h; < C), joining
U; to Q. Moreover, we may require one base E; lying in , and the
point 4; which is on the axis of H; and of distance r; to the other
base, lying in U;\I'. Because H; NI = @, we have Hin QC Q;f.
Applying Lemma 5 to ®*, H;, h;, we obtain from the maximum
principle that

w(45,0Q, Q) > w(4:, dQNH} , HI N Q)

2>
> w(4;, E;NH}, H)>c>0.

In view of Lemmas 1 and 5, we conclude (3.1) by applying the Harnack
inequality to w(x, 0Q, Q’Jf ) on U IE
Therefore Theorem C implies that

32 Do,V Q)
K

gw<x,UVj*,Q\UV;> for x e Q\J V7.
K K K

Also note from (3.2), Lemmas 1 and 5 and the Harnack inequality
that

1(R)) = G(P, X;)(d(R;))"?
= w(P, Ur, Q\U)) = o(P, Vi, Q\F)).

The last equivalence relation holds because w(x, V', Q\F) > ¢ >0
on U7.

Let I be a dyadic square in D. Then either I C §; for some
S;, €% or ICR; forsome R; €%’ or

(3.3) I=(InaQulJs;ul R,
J K

for some {S;} C % and {Rj}x C %’. In the first two cases, by the
Harnack inequality,
u(F) _ o(F)

u) — o(I)

forany F C 1.
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We proceed with the assumption of (3.3), and denote by
L=({InoQulJs;ulJr;
J

Let Z be a point on 9Q so that dist(Z,I) = J(I). Because
Q = ®(B(0, 1)), in view of Lemmas 1 and 5 we may find ¢5 > 0 so
that I, UI C B(Z, ¢5l(I));let B=B(Z, 4csd(I)), A=BnNoQ and
A be apointin Q sothat §(A4) = /(I) and 8csd(I) < |A-Z| < Cl(I).

Since Q is NTA, it follows from the argument for (2.4) that
(3.4) o(P,V:, Q\V') 2 w(P, A, Qw(d, V], Q\V}).

We claim that there exist a, # € (0, 1) sothatif F C I,

H(F) o (F)
3.5 —Z <a=s>——= < B.
(32) w0 <7 om <’
Assume first that F is in one of the three forms: (1) F C INdQ,
(2) F =U5S; for some JCJor(3) F= Uz R, for some KCK.

If Fisin the form (1) or (2), we deduce from theorems in [9] or

arguments in §2 respectively, that

WF)= (P, F,Q\F) = wP, A, Qw(d, F, Q\F).

If F is in the form (3), then it follows from (3.2), (3.4) and the
Harnack inequality that

(36)  wF)= Y oP, V7, )
K

=w(P,A, Qo (A, Uy a\y V;)
K K

=~ (P, A, Qw(d, F*, Q\F*)

= (P, A, Quw (A, Uu;, Q\UU;) :
K K

Again the last two equivalence relations follow from

w <x,UVj*,Q\UVj*) >c>0
K K

on F* and on (Jz U;. Similarly,

(3.7) u)=Z2wP, A, Qw(Ad, L., Q\L,).
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Thus

(3.8) ”(( 1) > csw(A, F, Q\F) or csw(d, F*, Q\F")
dependingon FCQ or FC Q.

If FCINAQ and u(F)/u(l) < a, then w(4, F, Q) < ¢;'a
Following the proof that w is A, with respect to the surface measure
on the boundary of a BMO; domain [10, p. 133], we obtain

oF) _

(@) =

where 0 < c¢; <1 and A > 0 depend only on the BMO,; constant of
Q. Thus, if « is sufficiently small, a(F )/a(I)<1—cq/2.

In the case F =J7S;, 0(F) = M,,_1(F) because F is contained
in an (m — 1)-d1mens1ona1 hyperplane I'. In view of Theorem E,
o(F)/a(I) <c;/4 if u(F)/u(I) is sufficiently small.

When F = JzR;, (3.5) would follow from Theorem E if we could
prove that

(3.9) My, (F*) 2 co(F).
In view of the examples in [14], [16] and [18] on contents, it is not

clear whether (3.9) is true. We shall apply Theorem F, and define a
measure ¥ on E =Jz Uy with support Jz{X}}, so that

v({X;}) = I(R)" .

Clearly v(Uz Uj) = o(F). We claim that cv is in the class /#
defined in Theorem F.

In fact, let Q beacubein Q satisfying 16d(Q) < d(Q) < 256d(Q).
If X7 e Q forsome j, then by Lemma 4, d(Q) = §(Q) = d(X}) =
d(U*) = d(R;). Since each U; contains a ball of diameter com-
parable to d(U;), there are at most C distinct X;’s in Q; thus
v(Q) < Cd(Q)"'. Moreover, if X; € Q, then cap(Q N U}) =
d(Up)™=% = d(Q)™ . Hence

v(Q) < ccap(QN E)I(Q).

Next, let Q be a cube that meets 9Q, and note from Lemma 4 that
d(®*(Q)) < cd(Q). Note also that if X} € Q then X; € ®*(QN Q)
and 6(R;j) = d(X;) <d(P*(Q)). Thus dist(R;, P*(QNQ)) < d(R))+
d(®*(Q)) < cd(R;) +d(D*(Q)) < cd(P*(Q)) < cd(Q) . Therefore

v(Q)= Y IR)™ ! <cd(@Q™ .

X7eQ

—c7+ 7 (g la)t,
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This shows that cv € .# for some ¢ > 0. We conclude from Theorem
F that

y y
(3.10) (4, E,Q\E) >c (a(ﬁfn)—l) 2¢ (%((II:—))) '

Recall from (3.6) that w(4, E, Q\E) = w(4, F*, Q\F*). Thus in
view of (3.8) and (3.10), a(F)/o(I) < c7/4 if u(F)/u(l) is suffi-
ciently small.

To obtain (3.5) for general F, we follow the corresponding argu-
ments in §2.

It follows from (3.5) that for dyadic I C D

(3.11) w4, L., Q\L) >c>0.

We extend (3.5) to all squares I C D by the doubling property: let
I be a dyadic square in D,

(3.12) p(2I) < cu(l).

In fact, when 5/N9Q = &, (3.12) follows from the Harnack inequal-
ity; when 5/ N9Q # &, (3.12) follows from (1.4), (3.7) and (3.11).

To obtain (3.5) for all squares I C I', we use the facts that u(D) =1
and du/do =1 on R”’\Z‘-D. This completes the proof of Theorem
2.

4. The example. The construction is given in R2 for simplicity; it
can easily be extended to R™, m > 3. If one is only interested in an
example in R2, some steps can be further reduced.

Let Y, , be the point ((p + 1)/2%, 3/2%) in R? and By , be the
disk B(Y; ,,27%"19) for any integers k and p. Let

Qo={x:0<x;<1,0<x <1\ |JBk,
k.p

and note that Qp is an NTA domain. Note also that {J; , Bx,, does
not meet any line x, = 2% or any line segment {x:x; = p/2* and
0<x, < 2'k} . ’

Let sequences {d,} and {A4,} be given so that {J,} C {2"‘73‘k
positive integer}, limd, = 0, 4, > 0 and limA4, = co. Let {4,} C
{2-*:k positive integer} be another sequence with 4, < §,2710. We
shall construct a domain Q C R?, by adding another part in the lower
half-plane and restoring some of the disks Fk’ p Which were originally
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removed. For each n > 1, let
Sn={(x1,0):27" < x; <271}

Un = {x: (x1,0) €Sy, —2n27" < Xy < 027"},
Vi = {x:(x1,0) € (1 —28,)Sn, An27" < x5 < 8,27"73},

where (1-26,)S, isthe interval on x; = 0 concentric to S, of length
(1-26,)27", and W, = U,\V,; and note that 0 W, does not meet

Uk,pﬁk,p' Let

Q = interior of (Qo U U Wn) ,
1

and P be the point (}, {5). Then Q is an NTA domain.
Denoting by I, = (1 —26,)S, and J, = (1 —06,)S,\I», we have the

following lemma.

LEMMA 9. Given n > 1, A, can be chosen sufficiently small depend-
ing on A, and 6, only, so that

(P, Jy, Q\Jp) > Ano(P, I, Q\I,).

Assume Lemma 9 for the moment and let I' = {x; = 0}. Then
I'nQ is the unit interval on I" and d(x) = 4,27" for x e I, U J,.
From the reasoning in §2, we note that w(P, J,, Q\J,) = u(J,) and
(P, I,, Q\I,) = u(I,) where u is defined in (2.6). Thus

1(Jn) > (1 = CAYu(I, U Jn),

while
0(Jn) < 20001, U Jp)

forall n>1. Thus u ¢ A,(do) on I'NQ.

It remains to prove Lemma 9. Fix n > 1 andlet P, = (27", 0) and
P, = (27"*1 0) be the end points of S, ,and P; = (27" +J,27", 0),
Py= (2 "1 -6,27",0), Ps=(27"4+3,27""1,0) and Pg= (27" —
0,271, 0) be the end points of the two intervals in J,. Note that
Jo=PsPyUP,Ps and I, = P3P,. Let P = Ps — (0, A,27"), Py =
Ps—(0, A,27"), Py = Ps+(0, 6,277 1) and Pjo = Ps+(0, §,27"°1).

In view of the Markov property, it suffices to show that if 4, is
sufficiently small then

(4.1) (x, Jn, Q\Jy) > Apw(x, I, Q\I,)
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for x € PPy U PyPjoU P;gPs. Let D be the domain QN U, and T
be the domain QU {x, x; € Sy}, and note that their configurations
are independent of J;, 4; and A; for any j # n. In view of the
maximum principle, it is enough to show that for sufficiently small
/ln H]

(4.2) w(x, Jn, D\Jn) > Apo(x, Iy, T\I)

for x € PPy U PyPjoU PipPg.

Consider first x € PsPy; and let P;; = P, — (0, 4,27"%), P53 =
P;— (0, A,27"), H be the rectangle P;P;P;3P;; and M be the semi-
infinite strip {x:27" < x; < 27" +3,27", X, > —A,27"}. It is easy
to see that there exists &,, 0 < &, < 6,271, depending only on J,
and A,, such that if 0 < 4, <¢&,, then

Q)(X,P5P3,H)ZA,,(U(X,@M\P]IPB,M)

for x € PsP;. From the maximum principle, we obtain (4.2) for
x € PsP; provided that 0 < A, < &,. Similarly (4.2) holds on PsPg
under the same assumptions.

Denote by K = PsPy U PyP;y U PyoPs ; it remains to prove (4.2) for
x € K. We note that

o(x,Jy, D\Jy)>1,>0, xekK

for some 7, depending only on 4, .

Let 7, be a number in the form 2% with 0 < y, < 8,279, P;5 =
P; + (y,27",0) and Pyg = Py — (427", 0). The number p, can be
chosen sufficiently small, depending on J,, A, and &, only, so that
if 0<4,<&n,

(4.3) w(x, P3PisU PigPy, T\(P13P15 U PigPs)) < 1,/(104,)

for x € K. (First choose and fix y, so that (4.3) holds when 4, =¢&,;
then extend (4.3) to 0 < 4, < ¢, by the maximum principle.)

To complete the proof, it remains to show that for sufficiently small
An ]

(4.4) w(x, PisPig, T\Pi5Pig) < 1,/(104,) on K.

Assume that 4, <27 1%min{¢,, y,}, and let Ry=P;5P;s={(x;, 0):
a<x;<b} where a=2""+4+6,2""4+y,27" and b =2""1-§,27" —
227", For k > 1, let R, be the rectangle {x:a — 1,27 "tk < x, <
b+ 1,27 and —4,27" < x5 < 4,27"tk} . We note that T is an
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NTA domain. By the exterior corkscrew condition of 7T, there exists
a constant ¢, 0 < & < 1, independent of k, so that

o(x,0R.NT, T\R)<e ondR  NT

provided that 2%+5 < y,A-1. From the Markov property it follows
that

w(x, PisPig, T\PisPrg) < g°80/4)=6

for x € K. Therefore (4.4) holds if 4, is sufficiently small, depending
only on J, and A, . This completes the proof of Lemma 9.
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