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A REMARK ON LERAY'S INEQUALITY

AKIRA TAKESHITA

In this paper we recapitulate briefly the significance of Leray's
inequality in his proof of the existence of stationary solutions to the
Navier-Stokes equations and show that in some simple cases it is
equivalent to the flux condition on the boundary value.

1. Leray's inequality. The problem about whether or not there exist
stationary solutions to the Navier-Stokes equations has been an open
problem despite of a lot of efforts of many mathematicians. What has
been so far obtained for this equation in this respect is an existence
theorem due to Leray [2] under the condition which we call "flux
condition" to be explained below.

Let D be a bounded domain with C°° boundary Γ in W (n>2).
The stationary Navier-Stokes equation in D is expressed as

{ ΔX - (X V)X - gradp = F in/) ,

divX = 0 i n / ) ,

X = B o n Γ ,
where X = {X\, . . . , Xn) is the velocity vector field, p the pressure,
F the exterior force and B is the boundary condition. Δ is the
Laplacian, (ΔX)/ = ΔX/, and

The boundary condition B cannot be given arbitrarily. As a nec-
essary condition of the solenoidalness condition divX = 0 and the
Gauss-Stokes formula, B should satisfy the following compatibility
condition

(2) ί B.ndS =
Jτ

where n is the unit outer normal to the boundary Γ and dS is the
surface element. The problem is whether equation (1) admits a solu-
tion (X, p) under the compatibility condition (2).
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In his celebrated 1933 thesis, Leray succeeded in giving an affirma-
tive answer to this problem under a condition which is stronger than
(2) namely,

(3) /
Jr.

i= 1, . . . , N,

where Γ, is the connected component of the boundary Γ and Γ =
UJLi Γ;. We shall call this condition (3) "flux condition." (Leray says
that condition (2) which does not satisfy (3) is unphysical, and he did
not go further to investigate what would happen if the flux condition
(3) is not satisfied. In this respect, see Takeshita [3].)

The crucial point of Leray's arguments is the following inequality
which is due essentially to him and we call Leray's inequality.

Leray's inequality. Let B be a C°° vector field defined on Γ satis-
fying flux condition (3). Then for any ε > 0, there exists a solenoidal
extension Bε of class C°° into domain D such that

(4) | ( (X.V)5 ε ,X) |<ε | |VX | | 2

for any solenoidal C°° vector field X with compact support in D.
Here we have used the notations

= J2 ί
This inequality of Leray enables us to obtain an a priori bound for the
possible solutions to the stationary Navier-Stokes equation in question
and thereby to apply topological method (which is again due to Leray
(and Schauder)) to prove existence theorem of stationary solutions.
Thus we find that Leray's inequality is the most basic in his proof of
existence of solutions.

2 Condition (L). The next problem to study after Leray is to prove
or disprove the existence of solutions only under compatibility condi-
tion (2) on the boundary value without assuming flux condition (3).

Since in Leray's arguments what is needed to prove the existence of
solutions is Leray's inequality and not the flux condition itself, and it
seems that there would be some gap between the flux condition and'
Leray's inequality, one might quite well hope that one might be able to
prove Leray's inequality even in the case in which the flux condition
is dropped.

The aim of this short note is to study this problem.
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First we make clear our problem. By C™σ{D) we denote the totality
of all the solenoidal C°° vector fields with compact supports in D.

Problem. Let B be a C°° vector field defined on Γ. What condi-
tions should B satisfy in order that for any e > 0, B admits a C°°
solenoidal extension Bε into D such that

\((X.V)Bε,X)\<ε\\VX\\2

holds for all X e C^σ{D)Ί When this holds, we shall say that B
satisfies condition (L).

As for condition (L), we can prove the following

LEMMA 1. Let B, B' be C°° vector fields defined on Γ such that

(i) [B-ndS = 0, IB'.ndS = 0,
Jr JT

(ii) / B-ndS= I B' -ridS, i=l,...,N,
Jr Jr,

(ii) B satisfies the condition (L).

Then B1 also satisfies condition (L).

Proof. Let ε > 0 be given arbitrarily. Since B satisfies the condi-
tion (L), B admits a solenoidal C°° extension Bε such that

(4) §
for any X e C^σ{D). On the other hand, by (ii) we have

(B-B')ΉdS = 0, i=l,...,N.L
From this we infer that there exists a C°°(n - 2)-form φ on D such
that *dφ is a C°° solenoidal extension of B - Bι into D. Here *
is the Hodge star operation and d denotes the exterior derivation.
Choosing an appropriate C°° function p on D which is identically
1 near Γ and applying Leray's arguments, we can prove that

(5) | ( (X.V)(*J(^)) ,X) |< | | |VX | | 2

holds for any X e Cf£σ(D). From (4) and (5) we immediately see
that B'ε = Bε- *d(ρφ) is a desired extension of B'.

From this lemma we see that condition (L) does not depend on
the boundary value B itself but only on the domain D and μ, =
JΓ B -ndS, i = 1, ... , N. This observation leads us to the following
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DEFINITION 1. Let {μ\, . . . , μ^} be a set of real numbers such that
Σf=ι μι — 0. We say that a pair {D μ\, . . . , μ^} satisfies condition
(L) if for any ε > 0 and for any C°° vector field B defined on Γ
with /Γ B ndS = μiy i = I, ... , N, there exists a solenoidal C°°
extension Bε of B such that

\{{X V)Bε,X)\<ε\\VX\\2

for any XeCf£σ(D).

DEFINITION 2. Let {//h..., μN} be as above. We say that a pair
{D; μ\, ... , μx} satisfies condition (L) if for any ε > 0 there exists
a C°° solenoidal vector field Bε on D such that

(i)

(ii)

For these two conditions the following is proved by Leray's arguments.

LEMMA 2. Definitions 1 and 2 are equivalent

Concerning condition (L), it would be of much interest to study the
following

Conjecture. The necessary and sufficient condition for a pair
{D; μ\, ... , μπ} to satisfy condition (L) is μt = 0, i — 1, . . . , N .

3. Some examples. So far the author has not been able to give a
complete answer to our conjecture. As a partial answer to this problem
we give some affirmative simple examples.

THEOREM 1. Let D = {x e Rn i?i < \x\ < R2}, 0 < R{ < R2 and

Γz = {x G Rn \x\ = Ri}, / = 1, 2. In this case the necessary and
sufficient condition for a pair {D\ —a, a} to satisfy condition (L) is
a = 0.

Proof. Sufficiency is trivial by Lemma 2. We give a proof for ne-
cessity. Let ε > 0 be given arbitrarily. By the assumption there exists
a C°° solenoidal vector field Bε on 5 such that

(6) / Bε ndS = -a, ί Bε.ndS =

(7) \«X.V)Bε,X)\<ε\\VX\\2 for any X e
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We shall make use of the averaging method with respect to G =
SO(n), the /^-dimensional rotation group. For this purpose we de-
fine an action of G on Bε and its mean M(Bε) by

g-ιx), xeD, geG, M(Bε) = ί TgBεdg
JG

where dg is the normalized Haar measure on G. Then by the isom-
etry of the action of G and (7), M{Bε) is solenoidal and we get

(8) / M(Bε).ndS = -a, ί

(9) |((X V)M(Bε), X)\ < e|| VX||2 for any X e Cfiσ(D) .

By virtue of averaging with respect to G, M(B£) is G-invariant and
consequently has a very simple form.

Before determining the form of M{Bε), we give a proof of inequal-
ity (9) since it appears rather nontrivial.

For vector fields X, Y on D we set at x e D,(X, Y)(x) =

For vector fields X, Y, B and any g e G we have at any x € D

(10) {VTgX, VTgY)(x) =
(11) (((TgX).V)TgB,TgY)(x)

Now we prove inequality (9). For short we denote by / the integration
JG dg. Then
(12)

((X . V)M(Bε), X) = [{X V) j TgBε, X^j = J((X . V)TgBε, X).

Here we have used the Fubini theorem on the interchange of the order
of integrations. On the other hand we have, for any fixed g e G, by

(13) ((X V)TgBε, X) = ί dx((X . V)TgBε, X)(x)
JD

= I dx{((T-ιX) V)Bε,T-ιX)(g-ιx)
J D

= ί dy{{{T-'X).V)Bε,T^X){y)
J D



156 AKIRA TAKESHITA

Combining (12) and (13) we get

\((X.V)M(B€),X)\ =

< Jε\WT-ιX)\\2 = Jε\\VX\\2 = e\\VX\\2.

Here we have used HVT̂ "1 y|| = \\VY\\ which is a direct consequence:
of (10). Thus we have proved inequality (9).

In what follows we discuss the case n = 2 and the case n > 3
separately.

First we discuss the case n = 2. In R2 we use the polar coordinate
system (r, θ) and define vector fields er and e$ to be ones with
directions along r, θ respectively and with length 1. Then the SO(2)-
invariant vector field M(Bε) is found to be of the form

with real-valued functions br{r), bβ{r) depending only on r. The
solenoidalness of M(Bε) is equivalent to

I d ^ d u d u c

vdv ΐdθ dv v

Constant c is determined by (8) to be c = a/2π. Therefore, we see
that M(Bε) has the form

_ a_\
~~ 2π rβr~

Next we calculate the left-hand side of (9). First we calculate the
deformation matrix 3f associated with M(Bε). It is given by

[b'θ{r) - \bθ{r) | ^

In inequality (9) we take such X which has the form X = u(r)ββ
where u(r) is a non-zero smooth function with compact support in
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(R\, R2). For such X , the inequality (9) gives

2\a\ [R2Uu(r))2dr<ε\\V(u(r)eθ)\\2

JRX r

from which a = 0 follows immediately by the arbitrariness of ε.
Next we discuss the case n > 3. It goes almost the same way as the

case n = 2 with a slight difference in that in the case n > 3 the action
of SO(rc) on spheres has isotropy subgroup SO(n - 1) which is not
trivial. Therefore, the SO(/z)-invariant vector field M(B£) is found
to have simpler form M{Bε) = b{r)er. The solenoidalness of M(B£)
and (8) determine b(r) to be b(r) = ^-r~n+ι, where γn is the area of

' nn

the unit (n-1)-sphere. The associated deformation tensor 31 —
(with respect to the cartesian coordinate system) is calculated to be

Ύn

This tensor has eigenvalues ^-r~n along the spherical direction with
'n

multiplicity n - 1 and a simple eigenvalue f-r~n(-n + 1) along the
radial direction. Taking an appropriate spherical test vector field X e
C™ (D) as in case n = 2, we can conclude that α = 0.

Generalizing slightly, we can give a little more general examples.

THEOREM 2. Let D be a bounded domain in Rn with smooth bound-
ary Γ = \jf=ι Γ/, Γ/ being the connected component ofT. Assume that
for each i = 1, . . . , N there exists a diffeomorphism ψι of Sn~ι x
[0, 1] into D such that (Pi{Sn~l x {0}) = Γ, and ψi(Sn-1 x {1}) is
a sphere contained in D. Then the necessary and sufficient condition
for a pair {D μx, . . . , μ#} to satisfy condition (L) is μι = 0, / =
1,...,ΛΓ.

Conclusion. The examples given in this section are quite insufficient
for a general answer to our conjecture but are sufficient to convince
us that if we want to attack the problem of existence or nonexistence
of stationary solutions to the Navier-Stokes equations in the case in
which the flux condition is not satisfied, new ideas should be thought
out.



158 AKIRA TAKESHITA

REFERENCES

[1] E. Hopf, On nonlinear partial differential equations, Lecture Series of the Sym-
posium on Partial Differential Equations, Berkeley, 1955. Pub. by University
of Kansas.

[2] J. Leray, Etude de Diverses Equations Integrates non Lineaires et de Quelques
Problemes que Pose ΓHydrodynamique, J. Math. Pures Appl., serie 9,12 (1933),
1-82.

[3] A. Takeshita, Existence and nonexistence of stationary solutions to the Navier-
Stokes equations on compact Riemannian manifolds, (preprint).

Received November 15, 1989.

KEIO UNIVERSITY

4-1-1, HIYOSHI, KOUHOKU-KU, YOKOHAMA 223

JAPAN




