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A SPECTRAL THEORY FOR SOLVABLE LIE ALGEBRAS
OF OPERATORS

E. BoAssO AND A. LAROTONDA

The main objective of this paper is to develop a notion of joint
spectrum for complex solvable Lie algebras of operators acting on a
Banach space, which generalizes Taylor joint spectrum (T.J.S.) for
several commuting operators.

I. Introduction. We briefly recall the definition of Taylor spectrum.
Let A(C") be the complex exterior algebra on »n generators ey, ... , €,
with multiplication denoted by A. Let E be a Banach space and
a=(ay,...,a,) be amutually commuting n-tuple of bounded lin-
ear operators on E(m.c.0.). Define A;(E) = A\,(C") ®c E, and for
k >1, Dk—l by:

n h
Dei: NE)— A\ (B)
k h—1

Di_1(x®e; A---Ne;)
k .
=Z(_1)J+1x.ail®...®eil/\.../\éij/\.../\eik
j=1

where ~ means deletion. Also define D, =0 for k <0.

It is easily seen that Dy Dy, = O forall k, thatis, {AZ(E), Di}tkez
is a chain complex, called the Koszul complex associated with a and
E and denoted by R(E, a). The n-tuple a is said to be invertible or
nonsingular on FE, if R(E, a) is exact, i.e., KerD;, = ran Ej; for
all k. The Taylor spectrum of @ on E is Sp(a, E)={A€C":a—-1
is not invertible}.

Unfortunately, this definition depends very strongly on ay, ..., a,
and not on the vector subspace of L(E) generated by then (= (a)).

As we consider Lie algebras, and then naturally involve geometry,
we are interested in a geometrical approach to spectrum which de-
pends on L rather than on a particular set of operators.

This is done in II. Given a solvable Lie subalgebra of L(E), L, we
associate to it a set in L*, Sp(L, E).
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This object has the classical properties. Sp(L, E) is compact. If
L’ is an ideal of L, then Sp(L’, E) is the projection of Sp(L, E) in
L™, Sp(L, E) is non-empty.

Besides, it satisfies other interesting properties.

If x € L?, then Sp(x) = 0. If L is nilpotent, one has the inclusion

Sp(L, E)c{felL, LI"[Vx e L, |f(x)| < llx]}.
However the spectral mapping property is ill behaved.

II. The joint spectrum for solvable Lie algebras of operators. First of
all, we establish a proposition which will be used in the definition of
Sp(L, E).

From now on, L denotes a complex finite dimensional solvable Lie
algebra, and U(L) its enveloping algebra.

Let f belongto L* such that f([L, L]) =0, i.e., f isa character
of L. Then f defines a one dimensional representation of L denoted
by C(f). Let &(f) be the augmentation of U(L) defined by f:

e(f): U(L) — C(f),

e(Nx)=1(x) (xel).
Letus ci)nsider the pair of spaces and maps V' (L)=(U(L)QA L, Zp_l ),
where d,_; is the map defined by:

p p-1
UL ANL-UL)® A\ L.
If p>1
p

dp1(xi - x) = > (=D)F g — £6,) (x5 &%)

k=1
+ Y (DR, xR R X))
1<k<I<p

where ~ means deletion. If p < 0, we also define -c_l_p =0. Then

PROPOSITION 1. The pair of spaces and maps V(L) is a chain com-
plex. Furthermore, with the augmentation &(f), the complex V(L) is
a U(L)-free resolution of C(f) as a left U(L) module.

We omit the proof of Proposition 1 because it is a straightforward
generalization of Theorem 7.1 of [3, XIII, 7].

Let L be as usual, from now on, F denotes a Banach space on
which L acts as right continuous operators, i.e., L is a Lie subalgebra
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of L(E) with the opposite product. Then, by [3, XIII, 1], E is a right
U(L) module.

If f isa character of L, by Proposition 1 and elementary homolog-
ical algebra, the g-homology space of the complex, (E® AL, d(f))
is Tory W(E, C(f)) (= Hy(L, E®C(f)).

We now state our definition.

DEFINITION 1. Let L and E be as above the set {f € L*, f(L?) =
O|H.((L, E®C(f))) is non-zero}, is the spectrum of L acting on FE,
and is denoted by Sp(L, E).

By Proposition 1 and Definition 1, it is clear that, if L is a com-
mutative algebra Sp(L, E) reduces to Taylor joint spectrum.

Let us see an example. Let (E, | ||) be (C2,| |2) and a, b the

operators
0 4 11
a=(y5) o=(4 4)-

It is easily seen that [b, a] = b, and then, the vector space C(b) ®
C(a) = L is a solvable Lie subalgebra of L(C?).

Using Definition 1, a standard calculation shows that Sp(L, E) =
{f € @)f(b)=0; fla) =13, fla)=—3}.

Observe that, |la|| = §; however, Sp(L, E) is not contained in
{f e (@) vx e C? |f(x)| < |Ix]} -

I11. Fundamental properties of the spectrum. In this section, we shall
see that the most important properties of spectral theory are satisfied
by our spectrum.

THEOREM 2. Let L and E be as usual. Then Sp(L, E) is a com-
pact set of L*.

Proof. Let us consider the family of spaces and maps (E® A\' L,
di_1\(f)) f € L? , where L? = {f € L*|f(L?) = 0}. This family
is a parameterized chain complex on . By Taylor [6, 2.1] the set
{f e L2L|(E @ AN L, di_i(f)) is exact} = Sp(L, E)¢ is an open set
in L2 . Then, Sp(L, E) is closed in L2 and hence in L*.

To verify that Sp(L, E) is a compact set we consider a basis of
L? and we extend it to a basis of L, {X;}i<i<n. If K =dimL? and
n=dimL let L; be the ideal generated by {X;}i<j<n, jzi> i > K+1.

Let f be a character of L and represent it in the dual basis of
{Xiti<i<n»> {fiti<i<n f =2 ig41&ifi . Foreach i, there is a positive
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number r; such that if & >r;,

Tory Y(E, C(f)) = H, (E@/\L, di_l(f)) =0 Vp.

To prove our last statement, we shall construct an homotopy oper-
ator for the chain complex (E® A\’ L, d,—1(f)) (f(L*) =0).
First of all we observe that

E®/p\L=(E®/p\L,~>@(E®

As L; isanidealof L, d, ((E®/APL;) C E®AP~!L;. On the other
hand, there is a bounded operator L,_; such that

dp1(f)(a A (X))

p—1
= (dp-1(f)a) AN {Xi) + (=1)PL,_1a (a cE® N\ Li) .

p—1

A L,-) A

It is easy to see that, for each p, there is a basis of A? L;, {I/}p }
1 < j<dimA? L;, such that if we decompose

FeNL- @ EW,

1<j<dim A’ L,

then L, has the following form

a‘?j i<j,
Lp;;= Xi=&+ad; i=],
0 i >j whereo;;€C.

Besides, let K, be a positive real number such that
U  Sp(Xi+e%) C BIO, K]
1<j<dim A" L,

and N; = maxo<p<,—1{Kp}. Then, as L, has a triangular form, a
standard calculation shows that L, is a topological isomorphism of
Banach spaces if &; > N;.
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Outside B[0, N;] we construct our homotopy operator

D p+l
Sp: E@ A\L-E® \ L,
p—1
Sp: E® N\ LiA(X;) =0,

p p
Sp: E® \Li—» E® A\ Li A (X))
Sp=(-1)PM L A (X)),

From the definition of L,, we have the following identity:

(=1)P*28y_1dy_1(f)Lp = dp-1(f) A (Xi) .

The above identity and a standard calculation shows that Sp in an
homotopy operator, i.e., d,S, +S,-1d,—1 =1 and then S,(L, E) is
a compact set.

THEOREM 3 (Projection property). Let L and E be as usual, and I
an ideal of L. Let m be the projection map from L* onto I*, then

Sp(I, E) =n(Sp(L, E)).

Proof. By [2, 5, 3], there is a Jordan Holder sequence of L such
that I is one of its terms. Then, by means of an induction argument,
we can assume dim(L/I)=1.

Let us consider the connected simply connected complex Lie group
G(L) such that its Lie algebra is L [5, LG, V].

Let Ad* be the coadjoint representation of G(L) in L*: Ad*(g)f =
fAd(g™1), where g € G(L), f € L* and Ad is the adjoint represen-
tation of G(L) in L.

Let f belong to Sp(/, E). Then, as I is an ideal of L, by
[7, 2.13.4], Ad*(g)f belongs to I*; besides, it is a character of I.
Then, one can restrict the coadjoint action of G(L) to I*. Moreover,
Sp(Z, E) is invariant under the coadjoint action of G(L) in I*, i.e.:
if feSp(l, E), Ad*(g)feSp(I, E) Vge G(L).

In order to prove this fact, it is enough to see:

(D) Tory V(E, C(f)) = TorlVY(E, C(h))

where h = Ad*(g)f, g€ G(L).
Let I" be the ring U(I) and ¢ the ring morphism

0 =U(Adg): U(I) — UU).
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Let us consider the augmentation modules (C(f), E(f)) and
(C(h), E(h)).

Then, a standard calculation shows that the hypothesis of [3, VIII,
3.1] are satisfied, which implies (I).

Thus, if f € Sp(Z, E), the orbit G(L) - f C Sp(I, E). However,
Sp(I, E) is a compact set of I*.

As the only bounded orbits for an action of a complex connected
Lie group on a vector space are points; G(L)- f = f.

Let f be an extension of f to L*, and consider a = G(L)- f, the
orbit of f under the coadjoint action of G(L) in L*.

As G(L)- f = f, as an analytic manifold

(IT) dima < 1.

Now suppose f is not a character of L: i.e., f(L?) #0.

Let L+ be the following set: L1 = {x € L|f([X, L]) = 0}, and let
n be the dimension of L.

As I is an ideal of dimension n — 1, f(I?) =0 and f(L?) #0,
by [2, 5, 3], [1, IV, 4.1] and [4, 1, 1.2.8], we have: L‘ C I, and
dmLt=n-2.

Let us consider the analytic subgroup of G(L) such that its Lie
algebra is L+ .

As the Lie algebra of the subgroup G(L)7 ={g e GLIAd*(g)f = f}
is L+, the connected component of the identity of G(L)7 is G(L*Y).

However, by [7, 2.9.1, 2.9.7] a = G(L) - f satisfies the following
properties: o = G(L)/G(L)T, and dima = dim G(L) — dim G(L);: =
dim G(L) — dim(G(L')) = dim L — dim L+ = 2, which contradicts
(1I1).

Then f is a character of L.

Thus, any extension f of an f in Sp(I, E) is a character of L.

However, as in [6], there is a short exact sequence of complexes

0— (/*\I®E,d(f))
— (/*\L®E,d(7)) — (/*\I®E, d(f)) — 0.

As U([I) is a subring with unit of U(L) and the complex involved in
Definition 1 differs from the one of [6] by a constant term, Taylor’s ar-
gument of [6, 13, 3.1] still applies and then Sp(I, E) =II(Sp(L, E)).

As a consequence of Theorem 3 we have
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THEOREM 4. Let L and E be as usual. Then Sp(L, E) is non-void.

IV. Some consequences. In this section we shall see some conse-
quences of the main theorems.

Let E be a Banach space and L a complex finite dimensional solv-
able Lie algebra acting on E as bounded operators.

One of the well known properties of Taylor spectrum for an n-tuple
of m.c.o. actingon E is Sp(a, E) CIIB[O, ||4;||]. In the noncommu-
tative case, as we have seen in §II, this property fails.

However, if the Lie algebra is nilpotent, it is still true.

PROPOSITION 5. Let L be a nilpotent Lie algebra which acts as
bounded operators on a Banach space E .
Then, Sp(L, E)yc{feL*||f(x)| <|x||, xeL}.

Proof. We proceed by induction on dim L. If dim L = 1, we have
nothing to verify.

We suppose true the proposition for every nilpotent Lie algebra L’
such that dimL’' < n.

If dimL = n, by [2, 4, 1], there is a Jordan Hoélder series S =
(Li)o<i<n » such that [L, L;] C L; ;.

Let {X;}i<i<n be a basis of L such that {X;},<;<; generates L;.
Let L) _, be the vector subspace generated by {X;}i<i<n. As
[L,L,_1€L,,cL, ,, L, isanideal Besides, L,_+L,_; =
L.

Then, by means of Theorem 4 and the inductive hypothesis, we
complete the inductive argument and the proposition.

Now, we deal with some consequences of the projection property.

PROPOSITION 6. Let L and E be as usual.
If I is an ideal contained in L?, then Sp(I, E) = 0. In particular
Sp(L?, E)=0.

Proof. By the projection property, Sp(Z, E) =II(Sp(L, E)), where
IT is the projection from L* on I*. However, as Sp(L, E) is a subset
of characters of L, f|;=0,if I C L?.

ProposITION 7. Let L and E be as in Proposition 5.
If Sp(L, E) =0, then Sp(x)=0 VxeL.

Proof. By means of an induction argument, the ideals L,_;, L;_,
of Proposition 5 and Theorem 3, we conclude the proof.
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ProrosITION 8. Let L and E be as usual. Then, if x € L?: Sp(x) =
0.

Proof. First of all, recall that if L is a solvable Lie algebra, L?
is a nilpotent one. Then by Proposition 6 Sp(L?, E) = 0, and by
Proposition 7 Sp(x) =0 Vx e L2.

V. Remark about the spectral mapping theorem. Note that the exam-
ple of §II shows that the projection property fails for subspaces which
are not ideals (take I = (x)). Clearly this implies that the spectral
mapping theorem also fails in the noncommutative case.
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