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DETERMINANT IDENTITIES

G E O R G E E. A N D R E W S A N D WILLIAM H. B U R G E

A number of determinants are evaluated in closed form including

1. Introduction. In one of their series of papers on plane partitions
and related questions, Mills, Robbins and Rumsey [9; p. 53] prove
the following determinant formula.

(1.1) mn(x) = det (ίl + ] +X)) = i Π
\ \ z ι ~ J / / 0 < i j < l Zl Z

 k==0

where Δ0(w) = 2 and for j > 0

with

(1.3)

Our object here is primarily to prove the following generalization
of (1.1).

THEOREM 1. Let

o<i,y</i—l

(1.5) Nn(x,y)--

Then
n-\

(1.6) Mn(x, y) = Nn(x, y) = "[I
k=o
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Sections 2 and 3 will be devoted to the proof of this result. In §§4
and 5 we shall show how our work leads to two alternative proofs of the
T.S.S.C.P.P. conjecture [2], and we shall mention a related application
of Ishikawa [6].

2. Bailey's balanced 4F3 summation. In this section, we consider
summation formulas for hypergeometric series [4; p. 8], [10, p. 41]:

n ix \ a o , a u ... , a n ; t ^
( j w + 1 Λ bl9...,bn f^ jj

The formula of Bailey [3; p. 512, (c)] [10; p. 245, (IIL20)] alluded to
in the title of this section is

φ φ - g)n

and a closely related companion is

φ-a + \)n]
b+\ b+2 n \ ~ JΪΓTΓΰ (hΛ-

Also useful for our work is a transformation due to F.J.W. Whipple
[14; p. 537, eq. (10.1)]. If one of z and n is a nonnegative integer,
then

a,b, -z,-n\
(2.4) 43 ,

Γ(v + z + n)Γ(w + z + n)Γ(v)Γ(w)
Γ(v + z)Γ(v + n)T{w + n)T{w + z)

u - a, u - 6, - z , - n ; 1
\\-v - z-n, \-w - z-n,u

We note in passing that (2.4) specialized to a = α/2, 6 = (α + l ) / 2 ,

z = - j 8 - i / , / ι = i / , v = ( j ί + l)/2 , w = (β + 2)/2 , w = a yields

(2.5) 4F

β

-^- (by (2.2)).

Thus (2.3) is an immediate consequence of (2.2) and (2.4).

LEMMA 1. Let a be a positive integer, then

(b + z) (~z)
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Proof. We begin by considering (2.2) when a = —a a negative
integer. The index of summation j runs from 0 to n (when j >
n all terms = 0 ) . Furthermore, the terms with α/2 < j < a are
all identically zero. For n > j > a there are cancelling zeros in
numerator and denominator.

Thus by (2.2)

a)n

(b)n

- α ) ( 2 - α ) • • • ( - ! ) . (1) (2) •

Now

2

(-l) Q a!(α + 27 - 1)!(& + n)j+a(-n)J+a

n)a(-n)a y ? {<x)ij{b + n + «)j(-» + «)7

(*)2« ^ 7!(* + 2o)2j(α+l)_,

») α (-n) α ^ /" f , ^y1, * + 2α + (« - α) , -(/ι - α) 1

(b)2a

n)a(-n)g (b + a)n-a

(b)2a

Hence

(*) (6)

which is precisely (2.6) when z is any positive integer, n . However,
both sides of (2.6) are polynomials in z of degree at most a, and
since they agree for all positive integral z we see that (2.6) holds for
all real z. α
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LEMMA 2. Let a be a nonnegative integer, then

(2.8) 4^3 [ ψ,ψ,-a J

(ft + 2z)(ft +

. In parallel with Lemma 1, we begin by considering (2.3)
with a = -a a negative integer. If j is the index of summation in
the 4F3, then the nonzero terms of the sum occur for 0 < j < a/2
and a < j <n. If we call the two resulting sums T\ and Ti, then

( 2 9 ) {b+\)ψ Tl + Tl

Now

τ =

2 β(b+l)2j(-a)a(l)j-a-i

(1)27+0+1 (b + n)j+a+ι(-n)j+a+ι

£+2cH-3 b+2a+4

a+ ί)n-a-l

(b + l)n_!(6 + l ) 2 α + 2 (* + lot + 3)n-a-2(b + 2ή)

(-n)a+ι

(by (2.3))

(b+l)a(b

Hence

^ ' ^ i f Γ ± ιs~r-** f^.

2 ' 2 '

(ft + α+ !)„
(ft+l)n_i(ft + 2n) (ft+l)β(ft

(ft + l)β(ft + 2») (ft+l)β(ft

which is (2.8) when z is any positive integer. Since (2.8) is an iden-
tity of rational functions in z, the result in full generality follows
immediately. D
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3. The main theorem. Our proof of Theorem 1 relies on the follow-
ing binomial coefficient summations.

LEMMA 3. For integers ί, j > 0

(y-x) fy-x + i-k
{3Λ) 2 t o { y - x + i~k)^ 2i~2k J^ 2k-j

+ j + 2x\ (i + j + 2y
2i-j J^\ 2i-j

(3 2) ^ y _ x + i-k) V, 2/ - 2fc + 1 J V 2k-j

= { 2/ -7 + 1 )~\2i-j+l)'

Proof. We note that the only nonzero terms on the left-hand side of
(3.1) occur for i > k > j/2. Consequently, if j > 2/ then both sides
of (3.1) are zero. Hence we may assume 2/ > j .

Therefore

Γ"ί (y ~ x + i - k) ^ 2i-2k ) V 2k - j

~ Γ ^ (y - x + k) ^ 2A: / V 2i- j -2k /

= 2 (/ + 7 + x + y>i V" (y-χ)fc(-y + ^)A:(-2/

- 2 (̂  + ^ + X + Λ F Γ ^ ~ x ' ~^ + -̂ ' ~z + ί ' ~z + ^T" ' 1 1
V 2 ι - 7 ^ 4 3 L ^ , - / - 7 - - x : - J , 2 7 - / + x + } ; + l J

0 /i + 7 + ̂  + y\

Γ(i + ;' + Λ; + y + l/2)Γ(2ι - 7)Γ(2; - ί + x + y + l)Γ(l/2)
X Γ(3j/2 + x + y+ l)Γ(l/2 + i - j/2)Γ(3j/2 + x + y+ l/2)Γ(i - y/2)

(by (2.4))

_ /i + 7 + x + ̂  Γ(t + j + JC + j ; + l/2)Γ(2j - / + x + y + i)22 l + 2-'+ 2 x + 2y

(-2/ - 2; - 2JC - 2 J O 2 I W (-2/ - 2; - 2x - 2y)2i_J f

(by Lemma 1 and Gauss's duplication formula [5; p. 5, eq. (15)])

2x\(i + + 2x\ // + 7 + 2y\

V 2/ - j ) \ 2i - j )

as desired for (3.1).
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For (3.2) again we obtain zero equals zero unless 2/ > j . Hence

(3.4) > ( ] ( I
££(y-x + i-k)\2i-2k+l'\ 2k - j /

_ γ-> (2x - 2y + 1) /y - x + k\ ή - k + j + x + y\
{y-x + k) \ 2k+\ ) \ 2i-j-2k )

k=0

x Λ I 2 *1 _ X_ yL l 2 ' + V - / + 1

χ Γ(2i -j+ l)Γ(ι + j + x + y+ 1/2)Γ(3/2)Γ(2; - ί + x + y

Γ(ί - £ + |)Γ(ι - ί + 1)Γ(^ +x +y + 1)Γ(^ + x +y + i)

'T-T:^."-i;;.-'/-+>*;;'.-;lV;Ί
Γ(i + y + x + y + ^ ) 2

2 '+ 2 ^^+^Γ(2y - < + x + y + 1)

- 2x - l)(-2i - 2) - 2x - 2y)2i_j

(2y -2x- l)(-2ι - 2; - 2x - 2y)2i_j

= /ι + j + 2x + ί\ _ /i + j + 2y\
V 2 / - J + 1 / V 2 / - 7 + 1 /

Proof of Theorem 1. We define five matrices

(3.6) μn(x9y

(3.7) ^ , y ) = ^ 2 rn+j+x + i
x+l-y W 2/ - 7 + 1

~ X + ΐ ~ j

2i-2j



(3.9) σn{x,y) =

DETERMINANT IDENTITIES

y-x + i-j

,-χ + i-j) \2i-2j+l

Clearly

(3.10) mn(x) = det(Mn(x)),

(3.11) Mn(x, y) = dei(μn(x, y)),

(3.12) Nn(x,y)--

(3.13) det(τn(x,y)) = 2n,

and

(3.14)

Equations (3.10)-(3.12) are restatements of (1.1), (1.4) and (1.5),
while (3.13) and (3.14) are obvious since each matrix in question is
lower triangular.

Now

(3.15) τn(x,y)Mn(x+y)

l(y - x) /y - x + i - k\/k + j + x + y\x) /y - x + i - k\/k + j + x
(y-χ + i-k)\ 2i-2k J\ 2k-j J

I 0<i,j<n-l

( (i + j + 2x\ /-i + j + 2y\\
= ( . ) + ( . . . ) by Lemma 3, eq. 3.1

\\ 2ι-j J V 2i-j 'Jo<ij<n-ι
= μn(2x,2y).

Hence by (3.15) and (1.1)

Mn(x, y) = det(μn(x, y))

\
n-\

= I I Δ2iζ\X
k=0

which proves the first part of (1.6).
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Similarly

(3.16) σn(x,y)Mn(x + y)

^ 2 ,y - x + j - ic\/k + j + x + y\

J )2k - j )k=°
2 f/i + j+ 2x+l\ _ /i + j + 2

(2x-2y+l)\\ 2/-7 + 1 J \2i - j +
(by Lemma 3, eq. (3.2))

Therefore by (3.16) and (1.1)

Nn(x 9 y) = dεt(vn(x, y))

/ i - l

4. Applications to the T.S S.C.P.P. conjecture. We shall consider in
this section a few instances of the results we have obtained . We begin
with a rather odd determinant for generalized harmonic numbers.

COROLLARY 1. Let Hn(x) = £^L 0 ^ j , then

(4.1) det {[l*Jϊ
\\Zl - J +

k=Q

Proof. From (1.5) and (1.6) with x replaced by x - 1 we find

(4.2)
\χ-y\\2l-J +

A2k(x

Now let y —»• x , and we obtain

A:=0
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Identity (4.1) is merely (4.3) after the differentiation has been com-
pleted. D

In [8], Mills, Robbins and Rumsey define "a totally symmetric plane
partition of size n (to be) a plane partition whose three-dimensional
Ferrers graph is contained in the box

and which is mapped to itself under all permtutations of the coor-
dinate axes. The complement of the Ferrers graph of such a plane
partition (that is, the set of lattice points in the box Xn that do not
belong to the Ferrers graph) is again totally symmetric when viewed
from the vantage point of the vertex (Λ + 1,JZ + 1,Λ + 1 ) . A totally
symmetric plane partition is self complementary if it is congruent (in
the geometrical sense) to its complement. This cannot occur unless
n = 2m is even".

If we define An by the recurrence (4.6), then Mills et al. [8] con-
jecture that An is the total number of TSSCPP's in X2n .

In [12], J. Stembridge essentially proved that the TSSCPP conjecture
reduces to the following result (the details of Stembridge's result and
its equivalence to the following are provided in [2; Sec. 2]). It should
be noted that our proof of Corollary 2 in the final analysis relies on
(1.1) and thus is quite different from the proof of the T.S.S.C.P.P.
Conjecture given in [2].

COROLLARY 2.

(4.4)

where

(4.5) fly =

and

(4.6) An = [[ , + .,, = o n - l) !(2w-2)!
Ϊ=0

o
2/-i

Σ
s=2ί-/+l

-a ji
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Proof. We define several new matrices:

(4.7) w{n) =

(4.8)

(4.9) v(n)

u(n) =

(where we define the (0, O)-th entry of v(n) to be 1),

(4.10) uι{n) = u{n)

/ I 0 0 0 \
0 1 0 0 •••
0 - 2 1 0 •••

\ 0 0 - 2 1 •••

(4.11) st(n) = {ai

The matrices u and U\ are introduced to perform certain simple
row and column operations. In particular, elementary algebra reveals
that

(4.12) u(n)w(n) = v(n)

and

(4.13) uι(n)st(n)(uϊ(n))τ = v(n).

Finally, if we expand Mn+ι(-2, -1) along the top row we find

(4.14) Mn+ι(-2,-l)

2i-j + lJ \2i-j+l

2j-ι

•

s m c e

A
A-B

= 2 άet(w(n)).
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Consequently, since the determinants of u and U\ are each 1, it
follows from (1.6), (4.12), (4.13) and (4.14) that

(4.15) det(α,7)0</ j<n-ι = det(st(n)) = det(υ(n))

k=\

because setting u = - 3 in (1.2) we find

Mitt Λ ( V\ ί (^ - 2)\(k - l)\ \2

(4.16) A^V={

5. A related identity and another proof of the T.S.S.C.P.P. conjec-
ture. We have not found any related identities for two variables that
are genuinely different from (1.6). However, there is one with one
variable that merits mention. To this end we need the Aj(n) with
odd subscript [1; p. 196]:

7 + 5)7-1

The next formula is implicit in the work of Mills-Robbins-Rumsey
[9]. However, they do not state it so we record it here: Let

In the notation of [9; p. 50], the determinant of Pn(μ) is JRΛ(1 , μ).
This is easily seen by setting x = 1 in their definition of Rn(x, μ) [9;
p. 50] and applying the Chu-Vandermonde summation. Furthermore,
from their Theorems 5 and 7, it is easy to see that

Π n-i

Our final result gives the determinant for
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THEOREM 2.

(5.5) det(Wn(x)) = Π Δ2*_1(2x + 3).
k=\

Proof. We require an auxiliary matrix

ί5 6ϊ S
(5.6) S

(
\ 2 2 i _ 2 j _ l ( i _ j y

Consequently,

(5.7) S"n(x) • Wn{x) = Pn{x + 3/2).

This is easily seen if we introduce

Γ58Ϊ fίi i n _
(5.8) /(i^,^)- 2k -j J>

and note that as an immediate corollary of the Pfaff-Saalschultz sum-
mation [4; p. 9]:

(5.9) / ( / , ; , X) - ( ^

Thus

22'"2ί:"1(/-fc! l U -

5/2\ /x + i + j + 7/2

2/-y ) \ 2i-j )Jo<ij<n-ι

(x + i + j + 3/2
+\ ) + \

3/2),
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as asserted in (5.7). Consequently since d e t ( ^ ( x ) ) = 2n, we see
from (5.7) and (5.3) that

as asserted in Theorem 2. D

We note that Corollary 2 is also derivable from Theorem 2. This is
because from (4.7), (5.4) and (5.5)

n-\

det(w(n)) = det(^_!(O)) = Π 2

k=\

since

_
2k~ύ }~

2/^(2 + 2/^ _ / (3/c+l)!/c!_ / (3/c+l)!/c! \
\(2k)\(2k+\)\)

We also remark that other special values for Wn(x) can be derived
from Theorem 2 besides det(Wn(0)) = A2

n+ι. Namely

det(Wn(-2)) =

d e t ( ^ ( - 3 ) ) = Λ - i Λ ,

where the sequence Hn is defined by Ho = 1,

^2,+i = βn\ I (2n\ Jhn_ = *O_
H2n \n)l \n)' H2n.x 3 ^ γ

The sequences An and Hn occur in a number of unsolved problems
of Mills-Robbins-Rumsey (cf. [11] for a survey of the problems).

6. Conclusion. The problem of enumerating symmetry classes of
plane partitions is considered extensively in [12]. Indeed the identity
(1.1) which we rely on heavily throughout our work was used by Mills
et al. to treat plane partitions in a different symmetry class [9]. G.
Kuperberg [7] has recently prepared an appealing survey of this topic.

Also recently M. Ishikawa [6] has found a nice plane partition the-
oretic interpreation of det(υ(n)) — A% (see (4.9) and (4.15)).

Acknowledgment. Every stage of this work and each theorem and
lemma was found empirically using the symbolic algebra package
AXIOM. While our proofs do not rely on the computer, each of our
discoveries would have been impossible without the flexibility and
power of AXIOM.
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