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ANY KNOT COMPLEMENT COVERS
AT MOST ONE KNOT COMPLEMENT

SHICHENG WANG AND YING-QING WU

It follows from Culler, Gordon, Luecke and Shalen’s Cyclic Surgery
Theorem that any knot complement is covered by at most two knot
complements. Gonzales-Acuna and Whitten proved a result on the
other direction: A given knot complement can cover at most finitely
many knot complements. This paper is to show that the best possible
result in this direction holds: A given knot complement can nontriv-
ially cover at most one knot complement. Moreover, if the knot is not
a torus knot, then the covering map is unique up to equivalence.

Given a 3-manifold M, there are generically infinitely many man-
ifolds which cover M . However, if we are restricted to the category
of knot complements, the situation is quite different. It can be shown
(see Lemma 1 and below) that if the complement E(K) of a knot
K is n-fold covered by some knot complement, then the covering is
cyclic, and K admits a cyclic surgery, i.e. a Dehn surgery such that
the fundamental group of the resulting manifold is a cyclic group Z, .
It follows from the Cyclic Surgery Theorem of [CGLS] that if K is
not a torus knot, then there are at most two such coverings. The situ-
ation is also clear if K is a torus knot: By a theorem of Moser [M], a
Dehn surgeryon a (p, g) torus knot T'(p, gq) is a cyclic surgery if and
only if the surgery coefficient is (kpg + 1)/k for some k. Now the
kpq 1 fold cyclic covering of the complement E(K) of K is always
homeomorphic to E(K) itself, with possibly an orientation reversing
homeomorphism. So E(K) is only covered by one knot complement,
although there are infinitely many different covering maps.

In this paper we will study a closely related problem: How many
knot complements are nontrivially covered by a given knot comple-
ment E(K)? The problem was studied by Gonzales-Acuna and Whit-
ten in [GW], where they proved that a knot complement covers at
most finitely many knot complements up to homeomorphism. The
main result of this paper is

THEOREM 1. The complement E(K) of any knot K can nontrivially
cover at most one knot complement E(K') up to homeomorphism.
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REMARK 1. We say two coverings p;, p»: M — N are equivalent
if there is a homeomorphism 4: M — M such that py = p,oh. If
K is a torus knot, then as we have seen above, there are infinitely
many nonequivalent covering maps p: E(K) — E(K). In the proof
of Theorem 1 we will actually show that if K is not a torus knot,
then the degree of the covering map p: E(K) — E(K') is unique. It
follows that p is unique up to equivalence, because a cyclic covering
is determined by its degree if the first homology group of N is cyclic.

REMARK 2. A generalization of Gonzales-Acuna and Whitten’s The-
orem was proved in [W3]: Any aspherical 3-manifold with nonempty
boundary covers only finitely many 3-manifolds.

All notations not defined in the paper are standard, see [G], [H],
[BM], [S] and [T].

DEFINITIONS. Foraknot K in S3, N(K) denotes the regular neigh-
borhood of K; E(K) denotes the knot complement S>3 — Int N(K);
(K, n/r) denotes the 3-manifold obtained by surgery on K with co-
efficient n/r, where n and r are coprime integers; L(n) denotes
a lens space L(n, *). A strong inversion on K is a n-rotation of
S$3 which leaves K invariant and has axis meeting K at exactly two
points. Finally, in this paper the terms cover and covering always
mean nontrivial ones (i.e., of degrees greater than 1).

The first lemma reduces coverings between knot complements to
cyclic coverings. :

LemMA 1. If p: E(K) — E(K,) is a covering between knot comple-
ments, then p is a cyclic covering.

Proof. This is Theorem 1.1 of [GW]. a

LEMMA 2. Suppose f is a nontrivial (i.e. not the identity) periodic
map on a torus T. Then f is isotopic to the identity if and only if f
is fixed point free and orientation preserving.

Proof. Let Ay be the induced matrix of f on H;(T). By 12.4 of
[H], under a suitable basis of H;(T), A, is one of the seven matrices
on p. 123 of [H]. If f is fixed point free and orientation preserving,
then we have det4; = 1, and the Lefschetz number L(f) = 2 -
tr Ay = 0. These conditions force A to be the identity matrix. Hence
f is isotopic to the identity.
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Conversely, if f is isotopic to the identity, then f is orientation
preserving and L(f) = 0. Then it is an elementary fact that f is the
identity or is fixed point free. O

The next lemma is quoted from [W1]. It builds up a connection
between coverings of knot complements and cyclic surgeries on knots.
The first part is also in [GW] with somewhat different proof.

LEMMA 3. Let K be a nontrivial knot. _

() If E(K ) is n-fold cyclic covered by E(K) for some knot K, then
ni (K, nfr) =

2)If (K, n/r) , then E(K) is n-fold cyclic covered by E(K)
for some knot K .

(3) If K is not a torus knot, then r =1 in (1) and (2).

Proof. (1) If E (12 ) — E(K) is an n-fold cyclic covering, then the

action of deck transformation group IT = (t]t" = 1) on E(k) is
orientation preserving and fixed point free. Let T = 8(N(K)). Then
7|1, the restriction of 7 on T, is an orientation preserving and fixed
point free periodic map. By Lemma 2, 7|7 is isotopic to the identity.
In particular it sends meridian to meridian. So we can use the standard
disk extention to extend 7|7 over the solid torus N(k) in a penodlc
way, getting an action of I1 on S3 which has no fixed point in S3—
As the action is cychc and orientation preservmg, the fixed point set
of II is either K or the empty set. Now K is knotted because K is,
so by Smith Conjecture it cannot be the fixed point set of II. Hence
IT acts freely on S3 = E(K) U N(K), and

S3/T1 = (E(K)/IT) U (N(K)/IT) = E(K)U (S' x D?) = (K, n/r)

where the surgery coefficient is of the form n/r because I[1=27,.

(2) If (K, n/r) = L(n), then we have an n-fold cyclic covering
q: S* — L(N). the meridian m of K represents a generator of
H\((K,n/r)) =mn((K,n/r)) =Zy,; so qg~'(m) is connected. It im-
plies that ¢~ !(N(K)) is a single solid torus. Let K be the central
curve of ¢g~!(N(K)). Then g~!(N(K)) is a regular neighborhood of
K, and g restricting to E(K) = 83 — ¢~ !(N(K)) is a cyclic covering
onto E(K).

(3) follows from [CGLS]. O

By a hyperbolic structure (or metric) we mean one which is complete
and has finite volume. A hyperbolic 3-manifold M is a manifold
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whose interior admits such a hyperbolic structure. We use M, to
denote Int M together with a given hyperbolic metric p.

LEMMA 4. Let h be a map on a hyperbolic 3-manifold M,. Then
the following two statements are equivalent:

(1) h is conjugate to an isometry on M, ;

(2) there exists a hyperbolic metric py on M under which h is an
isometry.

Proof. Suppose g is a self-homeomorphism of M such that ghg!
is an isometry on M,. Let p; = g*p be defined by pi(x,y) =
p(g(x), g(y)) forall x,y e M. Then we have

pi(h(x), h(¥)) = p(gh(x)k, gh(y)) = p(ghg~'g(x), ghg™'g(y))
= p(g(x), &) = p1(x,¥);

i.e., h is an isometry on M, .

Conversely, suppose (2) is true. By Mostow’s Rigidity Theorem [T,
5.7.2], id: my(M)) — m1(M)) can be realized by a unique isometry
g: My, — M, . So we have

p(x,y) =pi(g(x), &) = p1(hg(x), hg(y))
=p(g'hg(x), g7 hg(y));
i.e., g7lhg is an isometry on M, . 0

The next two lemmas are used to prove Theorem 1 for hyperbolic
knots.

LEMMA 5. Suppose E = E(K) is hyperbolic, and 1, = (1,1} = 1)
and II, = (13]td = 1) act freely on E. Then there is a hyperbolic
metric p on IntE and a homeomorphism g on E such that G =
(t1, gt2&~Y) is a finite abelian group.

Proof. Let p;: E — E/II; be the covering map. Since E is hyper-
bolic, E/II; is homotopic to a hyperbolic manifold [T, 6.7.3]. Since
E/T1; is a P2-irreducible 3-manifold (by [MSY, Theorem 3]) with a
torus boundary component, it is a Haken manifold. So E/II; itself
admits a hyperbolic structure. For any given hyperbolic metric 7 on
E/11;, let p; = p;p be the pullback metric on E. Then 7; is an
isometry on E, .

Now fix a metric p; on E under which 7; is an isometry. We have
just shown that 7, is an isometry under certain hyperbolic metric.
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So by Lemma 4 it is conjugate to an isometry with respect to p;;
i.e., there is a homeomorphism g such that gt,g~! is an isometry
on E, . Thus G = (11, g7t2g~ 1) is a group of isometries. By the
Mostow-Thurston Theorem [T, 5.7.4], G is a finite group.

It remains to show that G is abelian. Let E, be the submani-
fold of Int E consisting of points contained in some hyperbolic ball
of radius &. Choose ¢ small enough so that E; is homeomorphic
to E (see 5.10.2 and 5.11.1 of [T]). Since the elements of G are
isometries on E, E. is invariant under the G action. Especially,
T = OFE, is invariant under the G action. As 7{|r and 7,|r are
fixed point free orientation preserving periodic maps on 7, they both
induce the identity map on 7{(7") by Lemma 2. Thus every element
in G induces identity on 7;(7"). Again by Lemma 2, except the iden-
tity, every element in G|y is a fixed point free orientation preserving
periodic map. In other words, G| is a free action. So we can con-
sider T as a covering space over 7/(G|r), and G|r as the covering
transformation group. Since 7'/(G|r) is a torus, the quotient group
Glr = n (T /(G|1))/7(T) is abelian. O

LEMMA 6. If a non-torus knot K admits a symmetry which is not a
strong inversion, then E(K) cannot be covered by a knot complement.

Proof. In [WZ], Wang and Zhou proved that if a non-torus knot K
admits a symmetry which is not a strong inversion, then there is no
cyclic surgery on K. Lemma 6 then follows from Lemma 3(2). O

We use K(p, q) to denote the (p, g)-torus knot, and K(p, q; r, s)
to denote the (r, s)-cable of K(p, g). Without loss of generality we
may assume p > g > 0 (otherwise change the orientation of S3).
The next two lemmas are used to prove the theorem for satellite knots.
Recall that (K, n) denotes the manifold obtained from S>3 by Dehn
surgery on K with slope n.

LEMMA 7. Suppose K is a satellite knot. Then (K, n) is a lens
space ifand only if K=K(p,q;2,2pq+1) and n=4pg+1.

Proof. This is a result of Bleiler-Litherland [BL] and Wu [Wu]. O

Let M be the complement of K(p, q; 2, 2pq + 1), let N be the
complement of K(p, ¢q; 2, 2pq —1). Denote by M the 4pg+1 fold
cyclic covering of M, and by N the 4pg — 1 fold covering of N.
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LEMMA 8. M is not homeomorphic to N.

Proof. Let T be a torus which divides M into two maximal Seifert
pieces M; and M,,where M| = E(k(p, q)), and M, is a cable space
C(2, 2pg+1) (seee.g. [G] for definition of cable spaces). Consider T’
as the boundary of the knot complement Af; . Choose a pair of simple
closed curves m and / on T so that they represent the homology of
the standard meridian-longitude pair of K(p, q) (rather than that of
K(p,q:2,2p9+1).

Denote by 7, [, M1 , My, T the lifting (preimage) of m, [, M,
M, , T, respectively. It is easy to show that if ¢ is a simple closed
curve in M representing an element k in Z = H M, then its lifting
¢ in an n-fold cyclic covering M of M has gcd(k, n) components.
Since homologically 7 is 2 times a meridian of K(p, q; 2, 2pg+1)
and s1nce 2 is coprime with 4pg + 1, M is connected. Espemally,
M1 , MZ , T are all connected. Since / is null-homologous, [ consists
of 4pg+1 parallel simple closed curves. Let I’ be one of these curves.
Then [/] = (4pq + 1)[I']. Note that 7= intersects / transversely at
4pg+1 points (because m intersects / at one point), so 77 intersects
I' exactly once. Thus the simple closed curves 7z and /' generate
H(T).

It is well known that Seifert fibrations of both M; and M, are
unique up to isotopy (see Theorem 3.9 of [S] and its refinement). Let
a; be the simple closed curve on 7T representing a fiber of AM;. One
can check that [a;] = pg[m]+[!], and [ay] = (2pg + 1)[m]+2[/]. Let
@; be the lift of «;. Since both pg and 2pg + 1 are coprime with
4pq + 1, the &;’s are connected; so each &; is a fiber of the lifted
fibration of A;. We have

[61] = pal] + [I] = pglm] + (4pgq + D[],
[62] = (2pg + D[Mm] + 2[1] = (2pq + 1)[m] + 2(4pgq + D[I'].

Since [r], [I'] generates H;(T), we can compute the intersection
number of [&;] and [&,] by

Xoars 1 Pq dpg +1\| _
[a1][az] = det(zpq_i_1 8pq+2>l”4pq+l'

_ Construct in a similar way a decomposing torus T’ which divides
N into N; and N,, and simple closed curves B;, ff, which represent
fibers of 7; and N, respectively. By a similar computation we have

[A11lB2] = 4pg — 1.
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If M and N are homeomorphic, by the Torus Decomposition The-
orem of Jaco-Shalen-Johannson (see [J]) and the uniqueness of fibra-
uon of M (see e.g. [J, Theorem VI.18]), there is a homeomorphlsm
Q: M — N such that o(T) =T and 9(@&;) = Bi, i =1,2, s0
[&1][é2] = [B11[B>]. But this contradicts the above computatlon o

LEMMA 9. Suppose E(K;) — E(K,) is a cyclic covering between
knot complements. If one of the K; is a torus knot K(p, q), then both
E(K;) and E(K,) are homeomorphicto E(K(p, q)), and the covering
degree is rpq £ 1 for some r.

Proof. If K; is a torus knot, then it is a Seifert manifold. Hence
both E(K;) and E(K,) are Seifert manifolds. It implies that both
K; and K, are torus knots (see [J, IX 22]). So we may assume
K2 =K (p s q) .

By the work of Moser [M], #(k(p, q), n/r) is cyclic if and only
if n = rpg+1. Thus E(K;) is an rpq £ 1 fold cyclic cover-
ing of E(k(p, q)). But such a covering space is homeomorphic to
E(K(p, q)), because T(p, q) is a fibered knot with holonomy a pe-
riod map of order pg (see e.g. [R]). O

With Lemma 9 in hand, we need only to prove Theorem 1 for
hyperbolic knots and satellite knots.

Proof of Theorem 1 for hyperbolic knots. Suppose the complement
E(K) of a hyperbolic knot K covers two knot complements E(K;)
and E(K;). By Lemma 1, these coverings are cyclic. Let II; =
(t1]7f = 1) and II, = (15|74 = 1) be the deck transformation groups.
For any homeomorphism g of E(K), E(K)/(t;) is homeomorphic to
E(K)/{gtig~!). So by Lemma 35, after replacing 7, by some g7,g~!
if necessary, we may assume that 7;, 7, and the hyperbolic metric
on E(K) have been chosen so that the action of G = (1, 73) is the
action of a finite abelian group.

Claim. G = (11) = (13).

Otherwise, suppose (7;) = (T13), say, is a proper subgroup of G.
As G is abelian, (r;) is a normal subgroup; so the non-trivial group
G/(ty) acts on E(K)(t;) = E(K;). Since the restriction of G on
OE(K) is a free action, it follows from covering space theory that the
restriction of G/(7;) on AE(K;) is a free action; so the action of
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G/(ty) on E(K)) is not a strong inversion. By Lemma 3 E(K;) ad-
mits a cyclic surgery, but by Lemma 6 it cannot admit such a surgery,
a contradiction. So we have G = (1) = (13) .

Therefore, E(K;) and E(K;,) are homeomorphic. ]

Proof of Theorem 1 for satellite knots. Suppose the complement
E(K) of a satellite knot K covers two non-homeomorphic knot com-
plements E(K;) and E(K,), with degree n; and n; respectively.
By Lemma 3, E(K;) admits a cyclic surgery with coefficient »;/r;.
By Lemma 7, we must have K; = K(p;, ¢;; 2, 2piq; + ¢;) and n; =
4p;q; + ¢;, where ¢; = +£1; so E(K) is a 4p;q; + ¢; fold cyclic cov-
ering of E(K;). Use the notations in the proof of Lemma 8, and
write E(K;) = MP uM? = E(K(p:, 4:)) UCQ2, 2piq) + &), Tt
was implied in the proofs of Lemmas 8 and 9 that the preimage
MY of MY in E(K) is homeomorphic to M itself, while by the
uniqueness of torus decomposition of E(K) we must have M, MY =
M?). Therefore, E(K(pi, q1)) = M" = m{? = E(K(p2, 12)).
is well known that torus knots are determlned by their complements
so we have (p,q1) = (p2,92) = (v, q) for some p, g. Now if
Ki=K(p,q;2,2pq+¢) and K, = K(p, q; 2, 2pg + &) are not
the same, then ¢; = —¢;, and E(K) is a 4pq + ¢ fold covering of
K(p,q;2,2pqg+e) for both ¢ = 1, which is impossible by Lemma
8. O
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