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SOME APPLICATIONS OF BELL'S THEOREM
TO WEAKLY PSEUDOCONVEX DOMAINS

XIAOJUN HUANG

In this paper, we study some problems of holomorphic maps in
weakly pseudoconvex domains. For example, we consider the bound-
ary version of the rigidity properties both for automorphisms and for
self-holomorphic maps, the existence of the interior fixed points for
some automorphisms, and the minimal property of the rank of the
Levi form at boundary orbit accumulation points of the automorphism
groups.

0. Introduction. Suppose Ω is a bounded domain in Cn, and σn

(n = 1, 2, . . . ) , σ € Aut(Ω). It is a classical theorem of Cartan
which states that if σn converges to σ pointwise, then σn —• σ in the
topology of C°°(K) for any K mΩ.

A natural question to ask is under what circumstances one can con-
clude furthermore that σn —• σ in C°°(Ω).

Greene-Krantz [4] solved this problem affirmatively for Ω strongly
pseudoconvex by using Fefferman's work on the asymptotic expan-
sion of Bergman kernel function. More recently, Bell [2] proved the
following

THEOREM (Bell). Let Ω be a bounded pseudoconvex domain of fi-
nite type [in the sense of D'angelό), and let σn, σ e Aut(Ω) be such
that σn —• σ on compacta. Then σn —• σ in C°°(Ω). Moreover, if
σn —> P € 9Ω (i.e., {σn} converges to the constant map c(z) = p on
compacta), and if σ~ι -» q e <9Ω, then σn —• p in C°°(Ω - {q}).

As noted in Bell's paper, the first part of this theorem is actually
valid for pseudoconvex domains which satisfy condition R. It would
be very interesting to extend it to all smooth pseudoconvex domains.
However, in this paper, we are only concerned with some applications
of this important result and their related developments. For example,
the following kinds of problems will be studied:

(A) The boundary version of the rigidity theorem. A fundamental
theorem of Cartan says that if Ω is a bounded domain in Cn , p e Ω,
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and if /eHol(Ω, Ω), so that f(z) = z + o(\z-p\) (as z->/?), then
/sid.

In general, when p e dΩ, the result may not be true. But with
some extra-conditions, Krantz [6] could prove the following:

THEOREM (Krantz). Suppose that Ω is a strongly pseudoconvex do-
main not biholomorphic to the ball Let σ e Aut(Ω), and let p e dΩ,.
If σ(z) = z + o(\z—p\) (z —• p) , ίΛe« σ = id.

Our first theorem is a generalization of the above one.

THEOREM 1. Suppose that Ω is a bounded pseudoconvex domain
satisfying condition R, and suppose that σ e Aut(Ω), p e dΩ. If σ
is elliptic and satisfies σ(z) = z + o(\z - p\), then σ = id.

(B) The fixed points of an automorphism. From the Brouwer fixed
point theorem, any continuous self map of a closed domain diffeo-
morphic to the closed ball must have a fixed point. Usually we cannot
guarantee that the fixed points have to be interior points even if the
map is a holomorphic automorphism. What we may hope is that
when the map has some compactness properties, then this should be
the case. In fact, Ma [9] proved the following beautiful result:

THEOREM (Ma). Suppose Ω is a strongly pseudoconvex domain not
biholomorphic to but diffeomorphic to the ball Then every σ e Aut(Ω)
fixes a point in Ω.

The second thing we want to do in this paper is to combine Bell's
theorem and Ma's idea to prove the following:

THEOREM 2. Suppose Ω is a pseudoconvex domain satisfying con-
dition R such that Ω is diffeomorphic to the closed ball If σ e Aut(Ω)
is elliptic, then it must have an interior fixed point.

(C) The rank of the Levi form at the boundary accumulation point
of the automorphism group. The current state of the theory in several
complex variables indicates that most of the bounded domains in Cn

have compact or even trivial automorphism groups. When Aut(Ω) is
non-compact, the complex structure on Ω should be determined by
its properties near boundary orbit accumulation points. The famous
Wong-Rosay theorem ([7]) asserts that if the rank of the Levi form of
Ω attains the maximal value n - 1 at some boundary accumulation
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point, then Ω has the same complex structure as the unit ball. Our
philosophy is that the boundary orbit accumulation point should be
the worst point in some sense. Along these lines, we will prove the
following:

THEOREM 4. Let Ω be a bounded pseudoconvex domain of finite
type in Cn and let p edΩ be a boundary orbit accumulation point of
Aut(Ω). Then either

(a) the rank of the Leviform at p is minimal over dΩ; or
(b) there exists only one point PQEΘΩ where the rank of Leviform

is less than that at p. In this case, po is an orbit accumulation point
and the common fixed point of Aut(Ω).

The paper is organized as follows: §1 is devoted to the detailed
proofs of the above theorems. A boundary version of the classical
Caratheodory-Cartan-Kaup-Wu theorem is also studied. Section 2
gives possible extensions of the previous theorems to more general
situations. Some further questions are presented.

Most of the notation in this paper is adapted from [2], [7], and [10].

1. Detailed proofs of theorems in §0 In this section, the symbol Ω
will denote a bounded C°° pseudoconvex domain in Cn satisfying
condition R.

DEFINITION 1. An element σ e Aut(Ω) is called elliptic if the closed
subgroup of Aut(Ω) generated by σ is compact.

DEFINITION 2. A point p e dΩ is called a point of uniqueness if
for every elliptic element σ e Aut(Ω) satisfying σ(z) = z + o(\z -p\)
(z -* p), we can deduce σ = id.

REMARKS (1.a). From the definition, when Aut(Ω) is compact then
every automorphism is elliptic. It is also easy to see that when σ has
an interior fixed point, then it must be elliptic, and that σ is not
elliptic if and only if σnk —• dΩ (i.e., {σnk} compactly diverges).

(l.b) The following example (due to S. Krantz for the case of
spheres) shows that we cannot expect, in general, that the uniqueness
theorem holds for all automorphisms.

Let

if (mi, . . . , mn)

9...,zn9ω):lmω + \zι \2m> + + \zn |2m« < 0}.
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It is biholomorphic to the egg domain

E(mΪ9 ... , mn)

= {(Zι, ... , zn9ω): \ω\2 + \zx\
2^ + ... + |z Λ | 2 w - < 0}

by a rational map / . Define σo £ Aut(//) by

, . . . , z π , ω )

The σo(O) = 0, έ/σ0 = id at 0, a φ id. Let σ = foσ0of~ι e Aat{E),
and denote by p = /~1(0) e<9£\ Then a = z-ho(|z-p|),but σ φ id.

LEMMA. Suppose H c Aut(Ω) w α compact subgroup. Then the
map DaL: i ί x Ω - > C " , defined by DaL(σ, z) = daσ/daz(z) for
any multi-index a, is continuous.

Proof. Let σn -» σ, zrt —> z . By Bell's theorem σn -± σ in C°°(Ω).
Hence for a fixed, Sup |Z)αorπ - Daσ\ ~> 0 (as w -> oo), where Da =
da/daz. Noting that σ € C°°(Ω), we have

\D«L(σn, zπ) - Z)αL(σ, z)| = |i)ασw(zw) - D<*σ(z)\

< \D*σn(zn) - Z)ασ(zw)| + |i)ασ(z r t) - i) α σ(z) | ~> 0,

as n —• oo. G

Let /: # x Ω x Cw x Cn -* C be defined by /(σ, z, JΓ, 7) =
= Y,Da*L{σ9z)DaiL{σ,z)xiyi9 where αf =

(0, ... , ( M , 0, . . . , 0), X = (JC, ) , Γ = CVf). For any differential
operator T) with respect to variables z, X, 7 , by the above lemma,
5(7) depends continuously on σ, z, X, Y. Let dμ be the Haar
measure on H. By an elementary argument, it follows that

= ί I(σ,z9X,Y)dμ(σ)
JH

depends smoothly on z, X, Y. Obviously, gz( , •) defines a smooth
Riemannian metric on Ω, which is invariant under H.

Similarly, let p be a smooth function on Ω, and let p*: H x Ω -+ C
by />*(<?, z) = p(σ(z)). Then for any differential operator D with
respect to z, Dρ(σ(z)) depends continuously on σ and z. Hence

Λ(z)= / p*(σ9z)dμ(σ)
JH

is smooth on Ω and invariant under H.
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We may now use the ideas in [7] and [9] to complete the proof of
Theorem 1 and Theorem 2.

Proof of Theorem 1. Let σ e Aut(Ω) be elliptic, and let H be
the compact subgroup generated by σ. Then σ is an isometry of
the Riemannian metric gz . Denote by v the outward normal vector
to dΩ at /?, and define Uε = {ω e TpΩ\(v, ω) < -e} for some
small ε > 0. By differential equations, we may find a δ > 0 so that
for any ω e Uε there exists a unique geodesic λω(t) (0 < t < δ)
with λω(0) = p, and λ'ω(0) = ω. Furthermore, the set of all such
geodesies fills out an open subset K of Ω. Since σ is an isometry,
it sends geodesies to geodesies. From dpσ — id, we may conclude
that σ\u = id in U. Hence σ — id by the uniqueness property of
holomorphic functions. D

Proof of Theorem 2. Let p(z) be a smooth defining function of
Ω. Then we claim that h(z) is still a defining function. Obviously
λ(z) < 0 if z e Ω, h(z) = 0 if z e dΩ. For any p e dΩ and
outward vector vp , since dpσ(up) is still an outward vector and since
up(p(z)) > 0, up(h(z)) must not vanish. Now by Morse theory, for
δ > 0 small enough, hz\ — {z e Ω\h(z) < -δ} is diffeomorphic to
Ω, hence diίfeomorphic to the closed ball. Note that σ sends /z~] to
itself; hence by the Brouwer fixed point theorem, σ has a fixed point
inside hz\ . •

REMARKS (2.a). When Ω has a non-compact automorphism group
and has a finite type boundary, then from Greene-Krantz [3], Ω is
diffeomorphic to the ball. So, in case σ e Aut(Ω) is elliptic, it must
have an interior fixed point. In other words, σ e Aut(Ω) has no
interior fixed point if and only if σnk —• dΩ for some {nk} .

(2.b) From Theorem 1, every boundary point of Ω is a point of
uniqueness.

(2.c) Although the example in (l.b) shows that the uniqueness the-
orem may fail for nonelliptic elements, we may still use the direct
characterization of the automorphism groups of egg domains to con-
clude the following:

PROPOSITION 1. Let E{mx, . . . , mn) be the egg domain in C"+ 1

defined as in (l.b). If σ e Aut(£'), and if p e dE is so that σ{z) =
z + o((z - I)2) as z —• p, then σ(z) = z.
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However, the situation is quite subtle when we deal with holomor-
phic maps instead of automorphisms. We will come back to this prob-
lem in the next section.

The following result is the boundary version of the Caratheodory-
Cartan-Kaup-Wu theorem.

THEOREM 3. Suppose that Ω has a finite type boundary, p e dΩ,
σ G Aut(Ω), and suppose that σ{p) =p.

(a) If σ is elliptic, then all the eigenvalues of dpσ have modulus 1,
and in this case there is a linear change of coordinates so that dpσ is
diagonal.

(b) If σ is not elliptic, then σ cannot have more than two fixed point;
and in case σ has exactly two fixed points, the modulus of eigenvalues
of dpσ are either all > 1 or all < 1.

Proof, (a) The argument is very similar to the classical one. For ex-
ample, let ζ e Cn not equal to 0, and let λ e C be such that dpσ(ξ) =
λξ. Choose σnk-+τe Aut(Ω) in C°°(Ω). Since dpσ

nk{ξ) = λnkξ -+
dpτ(ξ)φ0, \λ\ must be 1.

(b) Noting that Ω is taut and that there is no nontrivial analytic
variety in <9Ω, we may assume, by Bell's theorem, that σw* —• q$ e
dΩ, in C°°(Ω - {ft}), and σ~nk -+ qλ in C°°(Ω-{q0}) for some
subsequence {n^}. Suppose that the first assertion of (b) is false.
Then σ has two more fixed points PQ , p\ (besides p). Without loss
of generality, assume that PQ Φ q§\ then ft = limσ~^(po) = Po
Hence qo = limσΛ*(p) = \imσnk(pι), and consequently p =P\. That
is a contradiction! Now suppose that σ has only two fixed points p
and r. Then, by the above discussion, we can still see that p Φ qo
or p Φ q\. Say p φ q§\ then p e Ω - {#o} and hence dpσ~nk -* 0.
Now the argument in (a) indicates that, in this case, the modulus of
the eigenvalues must be strictly bigger than 1. Similarly, if r Φ qQ,
then the modulus of the eigenvalues will be strictly less that 1. D

REMARKS (3.a). If the σ in Theorem 3 (b) has only one fixed point
p, then the eigenvalues of dpσ may have modulus 1 as we saw in
(l.b) (actually in that case, dpσ is the identical map).

(3.b) Let D be the unit disc in C, and let σ e Aut(D) defined by
σ(z) = ( z - α ) / ( l - α z ) with α e ( - l , l )-{0} . Then σ has two fixed
points 1 and — 1, and d\β = (1 +λ)/(l —λ). So a suitable choice of
λ can make d\σ any number different from — 1 , 1 .

(3.c) As a consequence of this theorem, every σ e Aut(Ω) with
three distinct fixed points on dΩ must be elliptic. Hence the proof
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of the following generalized Hayden-Suffridge theorem [8] becomes a
direct application of Theorem 2.

PROPOSITION 2. Suppose that Ω is diffeomorphic to the closed ball
and has a finite type boundary. Ifσe Aut(Ω) fixes three distinct points
of dΩ, then σ fixes a point of Ω.

Denote the rank of the Levi form at z e dΩ by r(z). The following
facts are obvious.

(1) r(-) as a function on dΩ is lower-semicontinuous; i.e., if zn -»
z, then lim r(zΛ) > r(z).

(2) r(—) is invariant under the automorphism group, i.e., for every
σ e Aut(Ω), r(σ(z)) = r(z).

Proof of Theorem 4. Let p as in the theorem. Without loss of
generality, we may choose a series of automorphisms {σn} so that
&n -* P, and σ~ι —• <?. If /?o £ <9Ω with r(/?o) < r(p), then we
claim that po = ^ Actually if that is not the case, by Bell's theorem,
ffn(Po) -* Z7? a n ( i hence r(p) < ϊίϊnr(σrt(po)) = KΛ)) Contradiction!
So when r(p) is not minimal, po is the only boundary point with
r(po) < r(p) and in this instance, by the above fact (2), po has to be
the fixed point of Aut(Ω). α

REMARK (4.a). If we further assume that Ω is circular in Theorem
4, then (a) is clearly the only possible case; namely, for every boundary
accumulation point p of the orbits of Aut(Ω), r(p) is minimal over
dΩ.

2. Some related problems. 1. As we noted in (2.c), the analogue
of Theorem 1 for general self-holomorphic maps may be much more
complicated. In fact, it was only after the recent work of Burns-Krantz
that the situations for strongly pseudoconvex cases were clarified.

THEOREM (Burns-Krantz [3]). Let φ: Ω —• Ω be a holomorphic map
from the strongly pseudoconvex domain Ω to itself and let p edΩ so
that

φ(z) = z + o((z-pγ)
as z —• p. Then φ(z) = z.

However, for the weakly pseudoconvex domains, our knowledge is
almost nonexistent except for the following conjecture proposed by
Burns-Krantz:
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Conjecture. Let Ω be a pseudoconvex domain of finite type in Cn ,
and let p edQ. Then there exists a number mp depending only on
the geometric property <9Ω at p so that for every / e Hol(Ω, Ω), if
f(z) = z + o({z -p)mp) as z ->/?, then f(z) = z.

The next theorem is a verification of this conjecture for egg domains.
Unfortunately, it does not seem that the method in the following dis-
cussion can be extended to the general cases (see also the discussion
in the §7 of [3]).

T H E O R E M 5. Let Em = {{zx, z2): \zχ\2 + \z2\
2m < 1} be the egg

domain in C 2 , and let f e H o l ( £ m , Em) so that

f(z) = z + o(\z-ϊ\3m) asz^ί

(where Γ = (1, 0), m is a nature number). Then f must be the
identical map.

The key point of the proof is to push Em to the ball B by the stan-
dard covering map π: Em —> B, defined by π(z\, z2) = (z\, zψ),
then to the Siegel domain H = {(z\, z2)\Rczι > \z2\2} by the bi-
holomoφhism Ψ: B -> H 9 defined by

where we have a lot of tools to work with.
Before turning to the proof, let us observe the following facts and

notation:
(a) Ψ is a biholomorphism which sends the point 1 e dEm to the

infinity of the Siegel domain H.
(b) For every point b = (b\9 b2) € 8H9 the dilation φb defined by

<Pb(zi > zi) = (zι + 2z2b2 + b\, z2 + b2) is an automorphism of H.
(c) For every point a e D = {τ € C| |τ | < 1}, define Da = {τ e

C| | τ | 2 + |α | 2 | l - τ | 2 < 1}, which is still a disc and hence has a smooth
boundary. Define the map j a € Hol(Z>β, C

2) by

Then it is easy to check that j a is actually a proper holomorphic
embedding from Da to Em .

(d) Denote C+ = {τ e C|Reτ > 0}, and denote by / the first
projection map from C 2 to C, i.e., i(z\, z2) = z\. Then / sends H
to C + .
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Proof of Theorem 5. For every point a e D, set b =
Consider the following compositions of maps:

Then

= (τ, ̂ ( 1 - τ) ι/w) + o((ja(τ) - \γm)

= (τ, α 1/w(l - τ ) 1 ^) + o((τ - I)3), as τ -> Γ;

= (τ + o((τ - I) 3), ( α ^ ί l - τ)ι'm + o((τ - l)3))m)

= (τ + o((τ - I) 3), α(l - τ) + o((τ -

where hi, hi are holomorphic functions in Da with vanishing dif-
ferentials at the boundary point 1

2 j and

ioφboψoπofoja(τ) = — |α|2 -

Let g = ioφboψoπoja, Cj = {z eC\Rez > ε} for every positive
ε, and let Dε

a = ^""^C^) . From the above argument and a direct
computation, it follows immediately that

(a) h = h\- 2ah2 is continuous on Dε

a,
(b) \Je>0D°a= Da ,*nd
(c) R e ( | ± | - |β|2) = e on <9Z)£ except at τ = 1.

Hence, the fact that Re( j±J - |α | 2 + A ( τ ) ) > 0 o n 9Z)^ - {1} means
exactly that Re(Λ(τ)) > -e on dDε

a. By the maximal principle of
harmonic functions and by letting e —• 0 + , we see that Re h > 0.
Since Re/s(0) attains its minimal value 0 at 1, and since ^ff^(l) = 0,
the classic Hopf lemma therefore enforces that h = 0, i.e., h\ = 2ahι -
On the other hand, on dDβ

a,
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So the analogous discussion shows that hi = 0, and consequently,
h\ = 0. Passing to / , this implies that nofoja = πoja, and thereafter
/ ΞΞ id on ja(Da). Finally, noting that \JaeDja(Da) contains a small
neighborhood of the original point of Em, thus by the uniqueness
theorem of holomorphic functions, we now come to the conclusion
that f(z) ΞΞ z. Π

REMARKS (5.a). The above argument can be used word by word to
prove the following:

THEOREM 5'. Let E*{mu . . . , mn) = {(zΪ9..., zn) eCn: \zι\2mι
+ - - + \zn\

2mn < 1} with m\, . . . , mn being positive integers and
1 < mi < - - - < mn. If f e Hol(E*(mi, . . . , mn), E*(m\,..., mn))
satisfies that f(z) = z + o((z - Γ)3m«) as z —> Γ, then f^z.

(5.b) Let Hm = {(zi, z2) € C2 |Rez! > | z 2 | 2 m } , and define the
biholomorphism Ψm: Em -* Hm by sending z to

For any holomorphic function Λ from JEm to C + , we now construct
holomorphic maps fh, / by defining fh(z) = Ψ m (z) + (A(z), 0), and
/ = Ψ " 1 o fh . Obviously, / G Hol(2sm, Em). A direct calculation
shows that /(z) = z + o((z - Γ)2) if and only if Λ(z) = <9(z - f).
However, this kind of h exists in huge numbers; for example, h may
be chosen as k{\ — z\) for any positive k. This indicates that we
do have a lot of holomorphic maps g 's from £ m to itself so that
g{z) =^z,but g(z) = z + o((z- f)2) as z~> f.

2. Let P = {po, 9 Pn} be a set of w + 1 positive integers with
> 1 for j Φ 0. Define

where

I I is the standard euclidean norm, and the sum is taken over those
multi-indices such that
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Let ρ{z) = \z\2 + ΣCa\za\2 - 1, the defining function of DP.
A direct computation indicates that the Levi form of p attains its
minimal value po - 1 at points of S = {(z, w) | | z | = 1}. Since
Aut(Dp) is noncompact and acts transitively on S (that is because
the unitary subgroup of the automorphism group of the ball B =
{z G Cpo| \z\ < 1} acts transitively on S), it follows from (4.a) that

PROPOSITION 3. S is the set of boundary accumulation points of
Aut(i)p) i.e., "the worst points" of dDp are precisely those accumu-
lated by the orbits of Aut(£>/>).

A remarkable fact is that the above domains are essentially the only
known examples of the finite type domains with noncompact auto-
morphism groups. In fact, Bedford-Pincuk's theorem ([1]) asserts that
they are precisely those examples in dimension 2. These lead me to
conjecture that the first part of Theorem 4 can be the only possible
case.
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