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FIXED POINTS OF BOUNDARY-PRESERVING MAPS
OF SURFACES

ROBERT F. BROWN AND BRIAN J. SANDERSON

Let X be a compact 2-manifold with nonempty boundary dX.
Given a boundary-preserving map / : (X,dX) -* (X,dX), let
MFQ [f] denote the minimum number of fixed points of all boundary-
preserving maps homotopic to / as maps of pairs and let Nd (/) be
the relative Nielsen number of / in the sense of Schirmer [S]. Call
X boundary-Wecken, bW, if MFd[f] = Nd(f) for all boundary-
preserving maps of X, almost bW if MFd[f] - Nd(f) is bounded
for all such / , and totally non-bW otherwise. We show that if the
euler characteristic of X is non-negative, then X is bW. On the
other hand, except for a relatively small number of cases, we demon-
strate that the 2-manifolds of negative euler characteristic are totally
non-bW. For one of the remaining cases, the pants surface P, we use
techniques of transversality theory to examine the fixed point behav-
ior of boundary-preserving maps of P, and show that P is almost
bW.

1. Introduction. Throughout this paper, we will be working in the
setting of compact manifolds. Given a map / : X —• X of a compact
manifold X, we denote the Nielsen number of / by N(f) and let
MF[f] be the minimum number of fixed points of all maps homo-
topic to / . The manifold X is said to be Wecken if MF[f] = N(f)
for all maps / : X -> X. Wecken [W] proved that all «-manifolds are
Wecken for n > 3 and Jiang [J] proved that a 2-manifold is Wecken
if and only if its euler characteristic is non-negative. The interval is
obviously Wecken and it is a classical result that the circle is Wecken.

Now suppose that the manifold X has nonempty boundary dX
and that / is boundary-preserving, that is, / maps dX to itself
so / is a map of pairs / : (X, dX) -> (X, dX). We denote the
relative Nielsen number by Nd(f) and write MFd[f] for the min-
imum number of fixed points of all maps homotopic to / as maps
of pairs. We say that a manifold X with nonempty boundary is
boundary-Wecken, abbreviated bW, if MFd[f] = Nd(f) for all maps
/ : (X, dX) -> (X, dX). It is obvious that the interval is bW and
Schirmer [S] proved that all n-manifolds are bW for n > 4. The
purpose of this paper is to investigate the bW property for boundary-
preserving maps of 2-manifolds. We begin, however, with a remark
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about 3-manifolds. Although all 3-manifolds are Wecken, it is easy to
see that not all of them are bW. To construct a simple example, let X
be a closed 2-manifold of negative euler characteristic. Let g: X -> X
be a map, as in [J], with MF[g] > N(g) and define f:XxI->XxI
by f(x, t) = (g(χ), t1) for x e X and t e I. Then Nd(f) = 2N(g)
since / has no fixed points on the interior of X x / . On the other
hand, a boundary-preserving map of X x / must take each boundary
component to itself, so MF$[f] = 2MF[g] > N$(f). Thus the prop-
erties Wecken and bW are not equivalent in the setting of 3-manifolds
with boundary.

In contrast to 3-manifolds, it is considerably more difficult to find 2-
manifolds with boundary which are not either both Wecken and b W or
neither Wecken nor bW. In §2, we will prove that the 2-manifolds with
boundary that have non-negative euler characteristic: the disc, annu-
lus and Mδbius band, are bW as well as Wecken. In §3, we show that
for many surfaces with negative euler characteristic, the coincidence
of the Wecken and bW properties goes beyond just the absence of
these properties. We call a manifold X totally non-Wecken if, for any
integer m, there is a map fm: X -» X such that MF[fm] - N(fm) >
m. If the manifold X has non-empty boundary, then in the same
way we define X to be totally non-bW if, for any m, there is a
boundary-preserving map fm with MFd[fm] - No(fm) > m. It fol-
lows from a result of Kelly ([K2], Theorem 1.1) that the 2-manifolds
with boundary of negative euler characteristic (with possibly a finite
number of exceptions) not only fail to have the Wecken property
but are in fact totally non-Wecken. In §3, we will show that if X =
S\(D\ U Z>2 U U Dr) is the 2-manifold obtained by removing r > 1
disjoint open discs Dj from a closed 2-manifold S, then X is totally
non-bW if S is not in the following list: sphere, projective plane,
torus, Klein bottle, connected sum of three projective planes. In ad-
dition, the torus minus two or more discs is also totally non-bW.

Thus the possibilities for 2-manifolds with boundary which might
behave differently in terms of the Wecken and the bW properties are
quite limited. In §4, we carry out a detailed analysis of the fixed
point behavior of the homotopy classes of boundary-preserving maps
of one such 2-manifold: the sphere with three open discs removed,
often called the "pants surface" P. We show that although P is
totally non-Wecken, it at least comes very close to the bW property.
For maps f:(P9dP)-+(P,dP), except for a few exceptional cases,
we prove that MFd[f] = Nd(f). For the remaining cases, we can



FIXED POINTS OF SURFACE MAPS 245

show that MFd[f] < Nd(f) + 1 and thus P is almost bW in the
sense that MF^lf] - N^(f) is bounded (by 1) for all / .

The techniques employed in §4 are of independent interest. In many
of the proofs, our approach is to use methods of transversality theory
to show that a map of the type being considered can be homotoped
to one that is in a convenient standard form. It is then possible to
describe explicit constructions for further homotoping the map, to
one with only the relative Nielsen number of fixed points.

We demonstrate in §4 that the Wecken and bW properties are not
identical in the 2-manifold setting, but we do not succeed in character-
izing the bW property for all 2-manifolds with boundary. Therefore,
in §5 we discuss the problems that remain.

2. Disc, annulus and Mδbius band. Throughout the paper, given a
boundary-preserving map f: (X, dX) -+ (X, dX) of a surface, we
will denote the restriction of / to the boundary by / : dX -+ dX.

In this section, we show that the three surfaces with boundary that
have non-negative euler characteristic, that is, the ones listed in the
title of the section, are bW.

(a) The disc. We view the disc D as the unit disc in the com-
plex plane with boundary dD = C. For a boundary-preserving map
/ : (D, C) -> (D, C), if / is of degree d Φ 1, then it is homotopic to
the map φd: C -» C given by ψd(z) = zd if d >0 and ψd(z) = z|ί3?l

if d < 0. The map φd is of degree d and has \d - 1| fixed points.
Then / is homotopic to a map g: (D, C) —> (D, C) whose restric-
tion to C is (pd and that has no fixed points in the interior of the
disc. (See §2 of [BG].) Since N(f) < Nd(f), we have shown that
MFQ\J\ = Nd(f) when d Φ 1. In the case d — 1, it is easy to see
that / may be homotoped to a map with Nβ(f) = 1 fixed point.

(b) The annulus. Write the boundary of the annulus A as dA —
Co U C\ where the Q are circles. For a map / : (A, dA) -* (A, dA),
denote the restriction of / to Q in the form fi: C, -+ Cz#.

LEMMA 2.1. If f ' , g: (A, dA) -» (A, dA) are maps such that
f,~g\dA -+ dA are homotopic, then f and g are homotopic as
maps of pairs.

Proof. Let Σ be the "spindle-shaped" subset of A x / defined by
Σ = (A x {0, 1 })U(C0 x / ) . By hypothesis, there is a homotopy between
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fo and go. Since Σ is a strong deformation retract of Ax I, there is
an extension of that homotopy to a homotopy H: Ax I —> A between
/ and g. Of course, H might not take C\x I to C 1 # . Therefore,
we let T be the subset of A x I x / defined by

T = (AxIx {0}) u (Σ x /) U (Ci x / x /) .

Let r: Ax I -+ A be a strong deformation retraction of A onto C{#.
A map from T to A may be defined by letting it be H on Axlx {0}
and on each level of Σ x / , and on C\ x I x I it is the composition
r((H\C\ x I) x 1/). By the Homotopy Extension Theorem, this map
extends to a map Γ: A xlxl —• A. The restriction o f Γ to Axlx{\]
is a homotopy between / and g as maps of pairs. D

THEOREM 2.2. The annulus is bW.

Proof. Let po : A = Q x / —> Q be projection and note that pof
may be viewed as a homotopy between poΛ and pof\, so choosing
orientations of the Q to agree with a chosen orientation of A, the
maps ^o : Co —• Co# and f\: C\ —• C^ are of the same degree, call it
rf and assume forjiow that d Φ 1. If (0#, 1#) = (0, 1), it follows
that Nd(f) > N(f) = 2|</ - 1|. We let g(z, t) = (φd(z),t2) for
(z, ί) G C x / , for φj as in part (a), then g has 2|df - 1| fixed
points for any value of d. The fact that g is homotopic to / as
a map of pairs follows from the lemma. If (0#, 1#) = (1,0) , then
N(f) = 0 so Nd(f) = N(f) = \d - 1| and in this case we define
g(z, 0 = (φdjz), 1 - ί ) . If (0#, 1#) = (j, 7), j either 0 or 1, then
Nd(f) > N(f) = iV(/7 ) = |rf - 1| and lett ing^(z, ί) = (φd(z), Jh
we see that g has iV^(/) fixed points. Since ~g is homotopic to / ,
the lemma completes the argument. The case d = 1 is left to the
reader. D

(c) The Mόbius band. We denote the Mόbius band by M and pic-
ture it as a triangle with vertices vo> v\ and v^, with the edges ori-
ented as [vo, V\] [v\, vι] and [VQ, V2] Identify [VQ, V\] to [v\, Vι]
and call the corresponding embedded curve a. After identification,
the edge [VQ , V2] is a curve we call b. We have given M the structure
of a cell complex with 1-skeleton aub. In the proof of the lemma
that follows, we continue to use the maps φd: C -> C and we need
the obvious maps α, b: Sι —• M. These maps and their homotopy
classes will be based.
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The key to the proof that the Mόbius band is bW is the following
result, which establishes for the Mόbius band the property that Lemma
2.1 gives us for the annulus.

LEMMA 2.3. If f, g: (M, dM) -> (M, dM) are maps such that
/ , ~g: dM —• dM are homotopic, then f and g are homotopic as
maps of pairs.

Proof. We allow confusion between maps and homotopy classes.
Noting that aφ2 = b, we have arxb = φ2. By hypothesis, the maps
fb and gb are homotopic, so they are of the same degree, call it d.
Then fb = gb = bφd. For the maps fa and ga we can find maps
K(f),K(g): Sι -> Sι such that fa = aK{f) and ga = aK{g).
Therefore, up to homotopy, we may write

ΨiΨd = Λ ' 1 * ^ = 0" 1 /* = K{f)a~ιb = K{f)a-χaφ2 = K(f)φ2

which implies that K(f) is of degree d. But the same argument works
for g as well, so K(g) is also of degree d and we conclude that fa
and gα are (based) homotopic. Thus / and g are homotopic on the
one-skeleton aub of M . But π2(M) = 0 so / and g are in fact
homotopic as maps of (M, dM). D

THEOREM 2.4. The Mόbius band is bW.

Proof. For each integer d, we will exhibit a map fd: (M, dM) —>
(M, 9M) such that fd\dM —> <9Λf is of degree <i and ^ has
Nd(fd) fixed points. This will prove the theorem since, given a map
/ : (Af, dAf) -^ (M, dAf) and letting έί be the degree of / , then
Lemma 2.3 implies that / is homotopic to that fd as a map of pairs
and it further follows from [S] that Nd(f) = Nd(fd). If d is an even
integer, we write d = Ik. The maps a, b: Sι —> M orient the curves
fl^1) and έ(5 1) which we abbreviate as a and έ, respectively, and
it makes sense to define φk; a -> b. We can further retract Af onto
α in such a way as to identify the restriction of the retraction r to
dM = b with ψ-2' b —> a. We define fd = ψ\j and note that the
restriction of fd to b is ^ . Since fd maps Af onto dM, we see
that // has |*/—1| = N(fd) = Nd(fd) fixed points, as required. When
d is odd, we need slightly different constructions of fd depending on
whether d is positive or negative. The case d = 1 is easily dealt with
by taking fd to be a fixed point free map. For the case d = 2k +1 > 1,
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FIGURE 1

we let fd be the 2k + 1-fold covering map; pictured in Figure 1 for
the case k = 3 .

The left-hand rectangle is stretched over the entire Mobius band
and the left-hand edge perturbed slightly so that there are only two
fixed points, as indicated in the figure, where those points reappear
on the right side in the reversed order. The next rectangle is flipped
over as well as stretched over M, so it has only the single fixed point
indicated. The third rectangle behaves like the first one: there is a
vertical interval of fixed points which can be reduced to two by a
perturbation of the interior of the interval. Continuing in this way, we
obtain the map fd = fik+\ with 2k fixed points in dM and k fixed
points in the interior of M. Since both fd and fd are generically d-
to-one maps, they are of degree d and so N(fd) = N(fd) = \d - 1| =
2k. It is clear from the construction that when two fixed points lie in
the same rectangle, they are Nielsen equivalent, so at most k of the
fixed point classes of fd are represented on dM and therefore each of
the k fixed points on the interior of M must be a different essential
fixed point class of fd. We conclude that Nd(fd) = 3k and therefore
fd has the required properties in this case. Finally we suppose that
d = 1 -2k where k > 1 and we define fd as a |1—2fc| -fold cover. The
definition is similar to that of the last case, except that each rectangle
is reflected about a vertical line segment dividing it in half before it
is mapped to M. For the left-most rectangle this reverses the points
at the "corners" that were fixed in the previous case and instead we
have a fixed point at the center of the interval, as indicated. Now,
since the top segment of that rectangle is reversed before mapping to
the top of M, it must contain a fixed point. The bottom segment also
must contain a fixed point, which is obviously in the same fixed point
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FIGURE 2

class as the one on the top. In the next rectangle the top and bottom
segments are still reversed, so we have just a single fixed point, as in
the case when d was positive. As Figure 2 shows us in the k = 4 case,
there are thus 2k fixed points on <9M_and another k fixed points in
the interior. Since again N(fd) = N(fd) = \d - 1| = 2k and there
are at most k fixed point classes of fy appearing in dM we have

= 3k in this case also. D

3. Totally non-bW surfaces.

THEOREM 3.1. Let X be the surface obtained in one of the following
ways: (i) deleting r > 2 open discs from the torus, (ii) deleting r > 1
open discs from the connected sum of two or more tori, (iii) deleting
r > 1 open discs from the connected sum of four or more projective
planes. Given an integer m > \ there exists a map f: (X, dX) ->
(X, dX) such that Nd(f) = r and MFd[f] > 2m. Therefore, X is
totally non-bW.

Proof. We first construct a map f: X —• X. The surface X can be
projected onto the plane as shown in Figure 3 (see next page). In case
(i) the broken handle is not present. In the other cases it is present and
may be twisted, and there may be additional handles, some of which
may be twisted, attached to the dotted region in the figure. Assume
for now that we are in case (ii) or (iii). Then #X = CuCiU U Cr_i
where C denotes the "outside" boundary component. The loop a
intersects each C, for j = 1, . . . , r - 1 in a point Xj. There is a
"pants surface" P (disc with two holes) imbedded in X, containing
the loops a and β with part of a on the boundary of P, as indicated
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by the dashed lines in the figure. Let p: X -+ a be a retraction such
that the loop β is taken to an arc in α and p(Cj) = Xj. Define a
map η: a —• a U β in the following way. Send the arc in a from
Xo to X\ to itself by the identity map. Then send the rest of a to
aUβ so that, as an element of π\ (X, Xo), we have a sent to the word
[β, α]w/?α, where [/?, α] denotes the commutator βaβ~ιa~ι. Let
/ ' = π//>: X -> X, where / is the inclusion of aU β in X . By the
commutativity property of the Nielsen number, N(f) = N(p(iη)) = 0
since />(/>/): α "^ α ^s °f degree one.

The map f: X -> JSΓ is not boundary-preserving because the bound-
ary component C does not go into dX, so we must next modify the
definition to obtain this property. We note that ρ\C: C —• X, the re-
striction of the retraction to C, is an inessential map. To demonstrate
this fact, choose a point x* on a that lies in the handle through which
a passes. Then (p\C)~ι(x*) consists of two points on the boundary
of the handle, and ρ\C is of opposite degrees at these points, so the
degree of p\C is zero. We conclude that f\C = iηp\C is also inessen-
tial. Therefore, there is a homotopy of f\C to a constant map taking
C to a point xr and thus a homotopy of the restriction of / ' to dX
to a map taking each boundary component to a point Xj, for j =
1, . . . , r, on that component. By the Homotopy Extension Theorem,
therefore, we can produce a map / : (X, dX) -+ (X, dX) homotopic
to / ' . Since N(f) = iV(/0 = 0, it follows that Nd(f) = iV(/) = r.

We will show that MF[f] = 2m and since clearly MFd[f] >
MF[f] = MF[f], this will complete the proof of Theorem 3.1. The
map Z7 was defined so that its restriction to the pants f\P: P -* P is
the map gm of Corollary 1.2 of [Kl] which, according to that result,
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has the property MF[gm] = 2m. Since P is a retract of X, the
inclusion i: P -> X induces a monomorphism of the fundamental
groups. The map / ' was constructed so that its image is a u β, a
subset of P. We clearly have that i{f'\P) = /'/, so the hypotheses
of Theorem 1.1 of [K2] are satisfied, and we conclude that MF[f] =
MF[f'\P] = 2m. In case (i), there are only three handles, denoted
in Figure 3 by ζ\, £2 > £3 > and there are r - 2 curves C, because
the handle £3 determines a boundary component. Since /'(/?) is
contractible, we may still homotope f to a boundary preserving map
and complete the proof as in the other cases. D

4. The pants surface. Let P denote the disc with two holes, known
informally as the "pants surface". It was proved in [Kl] that P is
totally non-Wecken: for any integer m > 1 there is a map fm: P —> P
such that MF[fm] - N(fm) > m. In this section, we will show that
with respect to the fixed point theory of boundary-preserving maps,
the surface P behaves very differently: MFd[f] - iV#(/) < 1 for any
map / : ( P , d P ) - ( P , d P ) .

The components of its boundary, dP, are written as Q , C\,
and C2. For a map / : (P9dP) —• (P,dP), we continue to write
fj: C, —> Cj* for the restriction of / to each boundary component,
just as we did for maps of the annulus.

Assume that P is embedded in the plane so that C\ and C2 are
contained in the bounded component of the complement of Q .
Choose a clockwise orientation for C\ and C2 and a counterclock-
wise orientation for Co. Select a base point XQ e Q and arcs ω ; for
j = 1,2, each with one endpoint at xo and the other at a point Xj
in C/, see Figure 4 on next page.

Define loops σ7 at Xo by 0)* = cύjCjCoj1 then we may view
πi(P, Xo) as the free group generated by [σi] and [σ2]. Set [σo] =
[Co] and note that [σi][σ2] = [tfb]"1 ^n πι(P> χo) •

PROPOSITION 4.1. Suppose f: ( P , dP) —• ( P , # P ) w α map

/ 7 is essential for all j = 0 , 1 , 2 . // g : ( P , a P ) -+ ( P , 5 P )

w homotopic to f as a map from P to itself and ~g\ dP ^ dP is
homotopic to f, then g is homotopic to f as a map of pairs.

Proof Let H^~1^: P x / —• P be a homotopy between / and g,
the existence of which is given by hypothesis. We will construct ho-
motopies Hlj] for j = 0, 1, 2 between / and g such that H[j]

maps Ci x / into C # for all / < j and therefore 7/[2ί will be the
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FIGURE 4

required homotopy of pairs. Thus we assume H^~^ has been con-
structed and let η: Cj x / -» P be the restriction of /ft J-i]. Choose
an arc a in P that meets dP only in its endpoints, one in each com-
ponent of dP other than C.#. Noting that, by hypothesis, / and g
map Cj to C #, we make η transverse to arelCj x {0, 1} so that
η~ι(a) is a union of simple closed curves in the interior of Cj x I.
Imbed Cj x / in the plane so that Cj x {0} lies in the bounded com-
ponent of the complement of C} x {1}. Let K be a component of
η~ι(a) then, by the Schόnflies Theorem, the closure of one of the
components of the complement of K is a disc D. If D contained
Cj x {0}, then K and Cj x {0} would bound an annulus and η\K
and η\(Cj x {0}) = f\Cj = // would be homotopic. But η(K) is
contained in the arc a whereas, by hypothesis, fj is an essential map
of Cj onto_C^_, which is freely homotopic, and therefore conjugate
in π\ (i^, XQ) , to a nontrivial element of that group. We conclude that
D does not contain Cj x {0} but instead lies entirely in Cj x I and
thus K is inessential. Since η~~ι(a) is a union of inessential simple
closed curves, we may use an innermost circle argument to homotope
η (rel C/x{0, 1}) so that the image is disjoint from a. Furthermore,
since C .# is a strong deformation retract of P\a, we have a homotopy
h: Cj x I x I -» P between η and a map that takes Cj x I to C #.
Let T be the subset ofPxIxI which is the union ofPxIx {0},
P x {0, 1} x / and all Q x / x / for / < 7 . Define a map from T to
P to be tftf-1! on P x / x {0} and Q x / x {ί} for all ί, for i<j9
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to be / and g on P x {0} x {t} and P x {1} x {t}, respectively, for
all t, and to be h on CjXlxI. Extend the map to Γ: Pxlxl -+ P
by the Homotopy Extension Theorem and the required homotopy is
the restriction of Γ to P x / x { l } (compare Lemma 2.1). D

REMARK. Proposition 4.1 is false if the fj are not essential. Con-
sider maps which are constant on each component of d C, constant
outside collars of Q and C\ and constant on each parallel circle
within the collars. The images of two such maps / and g are illus-
trated in Figure 5 where f(P) = aub, g(P) = buc and both / and
g preserve boundary components. These maps are clearly homotopic.
Suppose they were homotopic as maps of pairs. From now on we only
consider / and g on a U b. We can assume that / is the identity
on a\Jb and g is the identity on b, and g(a) = c. Now change
g, by a homotopy, so that g is given by b ι-> b, a ι-> C2^. Let
H: f ~ g on tfϋ6. The track of X2 under this homotopy is a loop
in C2. Now the loop once around C2 is homotopic in P to the loop
given by bC^~ιb~ιaC^ιa~1 so we can get a homotopy rel X2 between
a modification of the identity given by:

b^(bC-ιb-ιaC^xa~ι)kb for some k

and the map g given by a H-> C2<2, b *-* b. Now this homotopy can
be assumed to take place in Co U a u δ u Q since this space is a strong
deformation retract of P. By collapsing 6 u C\ and looking at the
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maps on a we see that k = 1, but by collapsing a u Q and looking
at the maps on b we get k = 0.

Given a map / : (P, <9P) - » ( P , <9P), we can homotope / as a map
of pairs so that f(xj) = Xj* for 7 = 0, 1, 2. The maps /}: C, —> C.#
are of degrees dj with respect to the given orientations.

LEMMA 4.2. Let fπ: π\(P, XQ) -* ^ i ( ^ ? ^0) ^ induced by a map
f: (P, 0P) -^ (P, dP). ΓACT /π[σ7] is conjugate to [σf]

dj, for j =
0 , 1 , 2 .

Proof. Since /) is of degree dj, then

[ωff(Cj)ωy] = [ωf(Cf)
dJω-1]

in π i (P, XQ) » and therefore

= [f(ωj)ω-ι][σf]
d

J[ωff(ωj1)]. D

For a map / : (P, 0P) -+ (P, 0P), let Imd(f) denote the number of
components of dP that contain points of f(dP).

LEMMA 4.3. Let f: (P, 5P) ~> (P, 9P) be a map such that Imd(f)
= 3 ί/z£ft α// the maps fj: C 7 -> C #, ̂ o r 7 = 0 , 1 , 2 , a r e 0/ίAe ^ a m e
degree, d.

Proof. We can make P into a 2-sphere by attaching discs Dj along
the boundary components Cj. The map / then extends to a map
g: S2 —• *S2 by using the fact that each Z>7 is a cone on Cy. After an
excision we see that the induced homomoφhism g*: Hι(Dj, Cj) ->
HiiDj*, Cj*) is given by multiplication by deg(#). The homomor-
phism extends to a homomorphism of exact sequences of pairs. From
this we see that deg(g) = deg(/)). α

LEMMA 4.4. Let f: (P, dP) -+ (P, dP) be a map such that
= 3; then \d\<\.
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FIGURE 6

Proof. We may assume without loss of generality that / maps each
Cj to itself and that each fj can be identified with a map φ^ from
§2. By the preceding lemma, the degree d is the same for all j . Let
a and b be arcs connecting C\ to C2 and C^ to Q , respectively,
and make / transverse to a u b. (See Figure 6.) Now assume that
\d\>2.

By transversality, f~ι(a) contains \d\ arcs connecting a point of
C\ to a point of C2 let αi and aι be any two of them. Let xa and
fy be the intersection of Cι with a and 6, respectively. The \d\
points of f2l(xa) alternate with the \d\ points of f^to) The arcs
a 1 and 0:2 together with properly chosen arcs of C\ and C2 bound
a region Ω in P. Let x e C2 be a point of /^(Xb) that i s o n th e

boundary of Ω; then there is an arc /? of f~ι(b) connecting x to
a point of Q . The arc β must contain points of Ω, yet Q is in
the unbounded complementary domain of Ω, so the Jordan Curve
Theorem implies, since β is contained in P, that β must intersect
a\ or c*2, and that is impossible since a and ft are disjoint. We
conclude that \d\ < 1. •

LEMMA 4.5. // / : (P, dP) -+ (P, 0P) is α map wiίA
and dφO, then MFd[f] = Nd(f).

= 3

Proof. We claim that the homomorphism fπ: n\(P, xo)—>π\(P, x0*)
induced by / is an isomorphism, and furthermore that there is a
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homeomorphism h: P —• P that induces fπ. Assume first that /
maps Cj to itself, for j = 0, 1, 2, and that d = 1. By Lemma
4.2, we may write fπ[σ{] = a[σ{\oΓι, and fπ[σ2] = β[σ2]β~ι. We
may assume that these expressions have been reduced in the group
π\(P9xo). Certainly we have fπ[σo]~ι = [^o]"1 Recalling that

1

9 we see that

Therefore, the left-hand side must reduce and since we assumed the
conjugations were already reduced, we conclude that a — β. But
the only word in π\(P, XQ) that is reduced when conjugated with
both generators is the identity, so fπ is the identity isomorphism,
which is induced by a homeomorphism, the identity. Now let / retain
only the property that d = 1, then there is an orientation-preserving
homeomorphism θ of P such that θf takes each component of
dP to itself. By the first part of the proof, θπfπ is the identity and
thus fπ = (θπ)~ι = {θ~ι)π so fπ is an isomorphism induced by a
homeomorphism, h = θ~ι. For the case that d = - 1 , we need only
choose θ to be orientation-reversing, and this will complete the proof
of the claim. The homeomorphism h is homotopic to / because P
is a K(π, 1). By Lemma 4.2, we see that h must take C\ and C2 to
the same components of dP as / does. Recalling that the fj are all
essential, we see that the hypotheses of Proposition 4.1 are satisfied
and therefore h is homotopic to / as a map of pairs. By Theorem
5.1 of [JG], the homeomorphism h is isotopic to a homeomorphism
with exactly Nd(h) = Nd(f) fixed points. D

LEMMA 4.6. Let f: (P , dP) -> (P, dP) be a map with lmd{f) =
2. Of the maps fj : Cj —• C #, the sum of the degrees of the two that
map to the same component of dP is zero and the remaining map is
inessential

Proof. Let Cf be the component of d P to which one boundary
component, Q , is mapped by / . Then if we attach discs Dt to
the domain and Df to the range we have a map of an annulus to
an annulus and the first part follows—project the image annulus to
a circle. If as in the proof of 4.3 we extend to a map g of a 2-
sphere then we can see that g has degree zero, since g is not onto.
The result now follows by computing the degree in two ways—look at
inverse images of the two discs which are in the image of g. D
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Suppose that / : (P, dP) -> (P, dP) is a map. When we want to
be specific as to where boundary components go, we will say that /
is of type (0#, 1#, 2#) to mean that fj: Cj -» C;# for j = 0, 1, 2.
Call / boundary inessential if / is null homotopic on each boundary
component.

Now suppose Im$(/) = 2 and / is not boundary inessential. Sup-
pose im(/) Π CQ = 0, and / ( Q ) = Ci then up to numbering of the
components of dP there are three cases to be considered given by
( 1 , 1 , 2 ) , ( 1 , 2 , 1 ) , a n d ( 1 , 2 , 2 ) .

THEOREM 4.7. / / / : (P, dP) -> (P, dP) is a map such that lmd(f)
= 2 and f is not boundary inessential then MFd[f] = Nβ(f).

Proof, Case (1 , 1,2). We will find a homotopy of / to a map
which has no fixed points on the interior of P . Let a be an arc inter-
secting C\ and Cι at X\ and X2 > respectively, and otherwise disjoint
from dP. Let Z = C\ U α U Cι then there is a deformation retrac-
tion r: P -+ Z and we note that r/ is homotopic to / as a map
of pairs. By the Homotopy Extension Theorem we may assume that
/i can be identified with the map φj, that we introduced in §2, with
f(x\) = X\. Furthermore, by the preceding lemma, we may assume
that fι is the constant map at xι. Choose b[ in Q for i = 1, 2
so that bi Φ Xi and choose 63 in the interior of a. We now invoke
the theory of transverse cw complexes of [BRS], Chapter 7. After a
homotopy we can assume that im(/) = Z and / is transverse to Z
in particular this means Y = f~ι{b\ U 62 U 63} is a 1-manifold, and
inverse images of the 1-cells in Z form a trivialised tubular neighour-
hood of Y. The regions between the components of the tubular neigh-
bourhood get mapped to {x\, X2}. After a further homotopy rel dP,
which will eliminate innermost circles, we can assume that Y ap-
pears as in Figure 7 (see next page), except that the loop h is not
in Y.

The arc a is now partitioned into intervals each of which is mapped
into one of the following: Q , Ci, a, X\, xι. Interior fixed points
can now only occur in a. After a homotopy we can assume that
neighbouring circles of Y are not both mapped to 63—they would
represent a "fold" along a. Consider one of the subintervals of a
which is now mapped to a, it will lie between subintervals which are
mapped to {x\, X2}. Change the partition of a so that these three
subintervals are now counted as one and labelled as a if the map
preserves orientation on this amalgamated interval and a~ι otherwise.
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FIGURE 7

Similarly label the remaining intervals by Q or Cjx for / = 1,2.
Reading from x\ to Xι along a we can assume that we get a word
of the form:

The word begins with C"1 because f(x\) = X\, but it may be that
m = 0. Otherwise we may assume all
word could end with C"r+ι

Since ffa) = the
weHowever since / is constant on

may deform the map so that the final Cι term vanishes.
Let h be a loop in P based at X\ and lying in the region outside

the regular neighbourhood, so that f(h) = X\. Over each triple of
intervals of a that corresponds to an expression aC\crx, we deform
that loop based at X\ to the loop hk . We still call our map / , though
its image is now Z u h and its effect on a is now represented by the
word:

The map / has only the fixed point X\ on h since f(h) = X\ and
now the only interval of a that is mapped to a is the one containing
X2, which is stretched over a and thus has a fixed point only at X2 .
Thus / has no fixed points on the interior of P. If d Φ 1, then /
has exactly N(f) fixed points on dP, so certainly MFd[f] = Nd(f).

If d = 1 then /ί has X\ as fixed point. We must modify / so
that it has no fixed points on C\. To do this note that C\ has a collar
neighbourhood N which is mapped to C\. Change / on N, keeping
the outer boundary fixed, and so that / on C\ is a degree one map
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FIGURE 8

without fixed points. There is now only one fixed point in P, namely

Case (1, 2, 1). In this case Y is pictured in Figure 8 and the image
of a is given by a word of the form

which does not have to begin with a C2-term because / is constant
on C\. For h the loop in Figure 8, we here replace a~xC\a by hk

to obtain

There are no fixed points on dP and a single fixed point on a corre-
sponding to the final α" 1 in the word. The map / must have at least
one fixed point because its Lefschetz number is nonzero.

Case (1, 2, 2). There will be no interior fixed points in this case.
The picture for Y is as shown in Figure 9 (see next page). This time
we can assume f(a) = xi. D

THEOREM 4.8. / / / : (P, dP)

map then MFd[f] = Nd(f).
(P,dP) is a boundary inessential

Proof. We use the cw decomposition shown in Figure 4. We can as-
sume that f(dP) c {xo, Xι, x2}. First consider the case lmd(f) = 3.
Up to numbering of the components, there are three cases: (0, 1,2),
(0, 2, 1) and (1, 2, 0). In the case (0, 1, 2), we will show that /
is homotopic as a map of pairs to a map which has no fixed points on
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FIGURE 9

the interior of P. Since ω\ U α>2 U C\ U Cι is a strong deformation
retract of P we can assume that im(/) c (ωi U a>2 U C\ U Cι).

We now make / transverse to the cw complex ctfiUa>2UCiUC2. The
corresponding picture is shown in Figure 10. Any (innermost) outer
circle parallel to Q could be eliminated by a homotopy which replaces
it by a pair of circles—one around C\ and one around C2. The curves
h\, hi are chosen to lie in a region outside the circles which maps to
JCQ . As in the proof of 4.7 the fixed points of / must lie on ω\ U ωι.
The effect of / on ω\ is given by a word in ω\, a>2, C\, C2 . Any
subword of the form ωi C^αλj"1 can be replaced by h* . It is now easy
to see that after this replacement the word represents a map which
has no fixed point on the interior of ω\. Similarly we may use hi to
eliminate the fixed points on ωι. The case (0, 2, 1) can be treated
similarly. For the case ( 1 , 2 , 0 ) after replacement there will still be
an interior fixed point in ω\ coming from the beginning of the word.
This fixed point cannot be eliminated, since the Lefschetz number of
/ is nonzero.

Now suppose that \md(f) = 2. Cases (1, 1,2) and (1, 2, 1) can
be proved as (0, 1,2) and ( 1 , 2 , 0 ) were above, except that for the
(1, 1,2) case we need to switch the labels Q and C\ in Figure 4.
The fixed point in the (1, 2, 1) case is again in ω\ and again the
Lefschetz number is nonzero. For the ( 1 , 2 , 2 ) case there will be
no fixed points in int(P)—switch Q and Cι in Figure 4. Finally
suppose Iτriβ(f) = 1 we can suppose / is of type (0 ,0 ,0) and a
similar argument demonstrates that / can be homotoped to have no
interior fixed points in P. D
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FIGURE 10

THEOREM 4.9. / / / : (P, dP) -> (P, dP) is a map such that lmd{f)
= 3, then MFd[f] = Nd(f).

Proof. This is immediate from 4.5 and 4.8. D

For / : (P, dP) -> (P, dP) with Im a (/) = 1, we will assume that
dP is mapped to the component C2, with /}: C/ —• C2 of degree
dj with respect to the orientations above. We may in fact assume
that fj = φd, as in §2, and that f(Xj) = Xj*. Of the three maps fj
it cannot happen that one is essential while the others are inessential
since after attaching two discs to the domain of / we would get a null
homotopy in P of the essential map. For two of the fj essential, it
will be sufficient to consider the following cases:

(i) all fj essential, (ii) / 0 and f2 essential, f\ inessential, (iii) / 0

and f\ essential, fι inessential.

THEOREM 4.10. In each of cases (i) and (ii) MFd[f] = Nd(f). In
case (iii) MFd[f]<Nd(f) + l.

Proof We have the arc a, the points bj for j = 1 ,2,3 and let
Z = C\ UαU C2 as in Theorem 4.7. We still assume / maps P to Z
and is transverse to Z , and let Y = f~ι (b\ UZ>2 U&3) We will assume
that innermost circles in Y have been removed wherever possible.
In each of cases (i) and (ii) we will deform / rel the boundary so
that there are no fixed points on int(P) and we can conclude that
MFd[f] = N(f2) = N(f) = Nd(f). Furthermore, in the cases where
it may be that dι = 1, we modify / on C2 so it has no fixed points
there, as in the proof of 4.7.
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FIGURE 11

Case (i). After removing innermost circles, Y has the form of Fig-
ure 11 with no circles in Y, and / now maps all of P to C^, so
there are certainly no fixed points in int(P).

Case (ii). The manifold Y is pictured in Figure 8. As in the proof
of 4.7, we represent the image of a by a word. In the present case, it
has the form

We note that the word does not start with a C2-term because f\ is
inessential in this case. Again as in the proof of 4.7, we deform each
loop of the form a~xC\a to hk and obtain the word

Thus the only possible fixed point on a is at X2 .

Case (iii). We see the form of Y in Figure 7. The word describing
/ on a is this time

CΪaΓιCΊ*aCΪa-ιCΊ* - - aC^a~xCn{a

which does not end in a C2-term because fa is constant. Similar to
the argument in case (ii) of this theorem, we replace terms of the form
aC\a~ι by hk to obtain the word

Recall that the subinterval, at the end of the word, which is mapped
to a is made up of three subintervals. The first goes to X\, the second
to a and the third to Xi. There is thus a collar region around Ci
which maps to Xι. We can change / on the last two subintervals so
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that the x2 region disappears and the only fixed point corresponding
to a in the word is now x2. However, there must be a fixed point x*
on the interval of a that is mapped to a~x. Since f2 is the constant
map, we see that every map / of Case (iii) is homotopic as a map of
pairs to a map with two fixed points, x2 and x*. We will show that
X2 and x* are in the same fixed point class. Let a- be the sub-arc
of a from x\ to x* and a+ be the sub-arc from x* to x2. Let ω
be the path in Z from x* to x2 defined as follows:

ω = aZιaCξa-ιCi2aC2Sa"1 cΓxCn{a

where

k = d(n2 + n4-\ h nr),

the Πj are determined by / , as earlier in the proof of this case, and

d is the degree of f\. Keeping in mind that therefore f(C*J) = C2 "
J

whereas f(C2

j) = x2 and f(alι) = a+C^"1 we have

Substituting the first word of this case for f(ά), we see that f(ω)
is homotopic to ω rel the endpoints, so the fixed points are in the
same class. Of course N(f) = 1 and therefore Nβ(f) = 1. Since our
construction gave a map with two fixed points, we can only claim that
MFd[f] < 2 and therefore in this case that MFd[f] <Nd(f) + l. π

To summarize the results of this section

THEOREM 4.11. If f: (P, dP) -»(P, dP) is a boundary preserving
map of the pants surface, then MFβ[f] < Nd(f) + 1 and therefore P
is almost bW.

5. Conclusion. The obvious question remaining from the preceding
section is whether or not the pants surface P is bW. We think not, in
fact:

Conjecture 1. The disc with two or more discs removed is not bW.

If our conjecture is correct, then P exhibits a new behavior in
Nielsen-Wecken fixed point theory: the difference between the min-
imum number of fixed points in a homotopy class and the Nielsen
number is bounded, but it is not zero. A good candidate for a coun-
terexample to the bW property for P comes from case (iii) of Theo-
rem 4.10. The simplest case corresponds to the word a~ιC\a. It is
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easy to construct similar examples on a disc with more than two holes.

Conjecture 2. The disc with three or more discs removed is almost
bW.

If the disc with three discs removed is almost bW but not bW, it
would be interesting to know whether the bound on MFβ[f] - Nβ(f)
is one, as for the pants, or whether the bound must be greater for
this, in some sense more complicated, surface. Then one could ask
the corresponding question for all these surfaces.

The 2-manifolds with boundary that we have not yet discussed are
the Mδbius band with one or more discs removed, the torus with one
disc removed, the Klein bottle with one or more discs removed and
the surfaces obtained by removing discs from the connected sum of
three copies of the projective plane. Are these surfaces bW, almost
bW or totally non-bW?
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