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COMMUTATIVITY OF SELFADJOINT OPERATORS

MlTSURU UCHIYAMA

Nonnegative bounded operators A and B on a Hubert space ^
commute if ABn+BnA > 0 for n = 1, 3, . . . , , or if etA < etA+sB <
etA+s\\B\\ f o r e v e r y 5 j ί > 0 .

In this paper A and B represent (not necessarily bounded) self-
adjoint operators with spectral families {Eλ} and {Fλ} , respectively,
on a Hubert space %?. We study some conditions which imply that
A and B commute.

1. In general, AB + BA is not necessarily nonnegative for some
nonnegative operators A and B (cf. [3]).

THEOREM 1. Let A and B be nonnegative and bounded operators.
Then AB = BA if and only if

0<ABn+BnA forn= 1 , 2 , . . . .

To prove this theorem, we need the following:

LEMMA. If a projection P satisfies 0 < AP + PA, then AP = PA.

Proof. For arbitrary vectors x e P%?, y G (1 - P)β?, and arbitrary
complex numbers s and t, we have

0 < ((AP +PA)(tx + sy), (tx + sy))

= 2\t\2(Ax, JC) + 2 Re ίs(Ax, y),

from which it follows that 0 = (Ax, y). Thus we get AP = PA.

Proof of Theorem 1. The "only i f part is clear, so we show the " i f
part. We may assume that ||1?|| < 1, which means 0 < B < 1. Since
0 < ABn + BnA, we get

(1) 0 < A exp(tB) + exp(tB)A for every t > 0,

from which it follows that

0 < exp(-*jB)Λί + A exp(-tB).
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Thus (1) is valid for -oo < t < oo. Since 0 < Atxp(tB)exp(sB) +
exp(sB) exp(tB)A for -oo < s, t < oo, we have

0 < exp(-sB)A exρ(tB) + exp(tB)A exp(-sB).

By the Laplace transform relation

/•oo

(2) / sn-ιexp(-λs)εxp(-sB)ds = (n-l)\(B + λ)-n f o r Λ > 0 ,
Jo

we obtain

0 < (B + λ)~nA exp(tB) + exp(tB)A(B + λ)~n for λ > 0,

which implies that

0 < A Qxp(tB)(B + λ)n + (B + A)rt exp(ί5)^.

Since A and 5 are continuous, by letting λ —• 0, we get

0 < ̂  exp{tB)Bn + Bn exp(tB)A

= ABn exp(ίB) + cxp(tB)BnA for - oo < t < oo.

It is easy to show that

0 < exp(-ί(7 - B))ABn + BnA exp(-ί(7 - fc)) for t > 0,

from which, using (2) again, we obtain

0<ABn(l -B)m + (l -B)mBnA for m, n = 0, 1, 2, . . . .

By Bernstein's theorem, each polynomial p(x) which is positive on
the interval [0, 1] is a linear combination of polynomials of the form
xn(l - x)m with real nonnegative coefficients. Thus we have

0<Ap(B)+p(B)A.

For each continuous function f(x) which is > 0 on [0,1] we can
select a sequence of polynomials as above which uniformly converges
to f{x). Therefore we have

0<Af(B) + f(B)A.

It is easy to show that the latter inequality holds for any continuous
function f(x) which is > 0 on [0,1], and hence that 0 < AFλ +
FχA, where {7^} is the spectral family corresponding to b . From the
lemma we obtain AFχ = FχA and hence AB — BA. This concludes
the proof.
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C O R O L L A R Y 2. Let A and B be nonnegative bounded operators.
Then AB = BA if A 2 < (A + tB)2 for every t>0 and n = 1 , 2 , . . . .

Proof. From the assumption, it follows that

0 < (ABn + BnA) + tB2n for t > 0.

Letting t -> 0, we get 0 < ABn + BnA.

COROLLARY 3. Let 0 < A and 0 < B. Suppose B is bounded.
Then BA c AB if for n = 1, 2, . . . ,

(3) B&(A)c&(A) and 0 <((ABn + BnA)x, x)

for every x G 3ί{A).

Proof. For / > 0, (t + A)~ι is bounded and nonnegative. From
(3) it follows that 0 < (t + A)~ιBn + Bn(t + A~{), which implies
(t + A)~ιB = B(t + A)-1 and hence BAcAB.

COROLLARY 4. Let A be unbounded selfadjoint, and let B be self-
adjoint and bounded from below. Then EλFμ = FμEχ for every λ, μ
if 0 < exp(^4) exp(-nB) + exp(-nB) exρ(^4) for n = 1,2, ..., where
the inequality should be interpreted like (3).

Proof. Clearly exp(-2?) is bounded and nonnegative. Since
exp(-n£) = {exp(-£)}rt (cf. §128 of [9]), we have

exp(-l?) exρ(^) c exp(̂ 4) exp(-2?).

Since the spectral family corresponding to exρ(^ί) is {£i0g/}o</<oo>
exp(-2?) and Eλ commute. Thus we get EλFμ = FμEχ.

For a C*-algebra J / , Ogasawara [7] showed that J / is abelian if
the condition 0 <a <b, a, b es/ implies a2 <b2. In other words,
j / is abelian if 0 < ab + ba for every 0 < a, b e s/. Clearly
Theorem 1 and Corollary 2 are true for nonnegative a, b in J / .
Consequently we can consider them to be extensions of Ogasawara's
theorem.

2. Let us recall that if A and B are unbounded, then A<B means
that Sf{Bχl2) c 2J{Aχl2) and \\Aι/2x\\ < \\Bλl2x\\ for xeSf(Bx'2).
We have

(4) 0<A<B=^0<B~l <A~l.
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PROPOSITION 5. Let A and B be bounded from below, and suppose
A> -ζ, B > -ζ. Then the following are equivalent:

(a) (A + ζ ) n < (B + ζ ) n for every n= 1 , 2 , . . . .
(b) Fλ<Eλ for every λ.
(c) Qxp(tA) < exp(tB) for every t > 0.
(d) exp(-tB) < exp(-tA) for every t>0.

Proof. Olson [8] (cf. [12]) showed that (a) and (b) are equivalent if
A and B are bounded and ζ = 0. We can easily apply his proof to
this case. To show (a) => (d), we need the following (cf. Chap. 9 of
[5]):

(5) cxp(-tA) = lim (/ + t/mA)-m.
m—•oo

If m > tζ, then each term in the right side is positive and bounded.
From (a) we get

(1 + t/mA)-m > (1 + t/mB)-m for m>tζ.

By using (5) we have (d). We show (d) => (a). Since (d) is equivalent
to

from (2) it follows that

(B + ζ + λ)-n<(A + ζ + λ)~n f o r λ > 0 , n = l , 2 , . . . .

Thus for x e 9)\{A + ζ)~n/2) we have

\\(B + ζ + λ)-nl2x\\ < \\{A + ζ + λ)-nl2x\\ <\\{A + ζ)-nl2x\\.

By using Fatou's lemma we obtain

| | (5 + ζ)-n/2χ\\ < lim \\(B + ζ 4- λ)-n'2x\\ <\\{A + ζynl2x\\,

that is, (B + ζ)~n < (A 4- ζ)~n . Taking their inverses, we obtain (a).
Now we have only to show (c) <* (d). But since

/ = exp(tA) exρ(-tA) D exp(-M) exp(tA)

(cf. §128 of [9]), Qxp(tA) is the inverse of exp(—ί-4) by (4) we obtain
it. This concludes the proof.

THEOREM 6. Let A and B be unbounded selfadjoint operators with
spectral families {Eλ} and {Fλ}, respectively. Then the following are
equivalent:

(b) Fλ < Eλ for every λ.
(c) e x p ( M ) < εxp(tB) for every t>0.
(d) cxp(-tB) < exp(-tA) for every t>0.
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Proof, (b) implies that for every μ > 0, F\ogμ < E\ogμ. Since
these operators are the spectral families corresponding to exp(J9) and
exp(^4), respectively, by Proposition 5 we obtain

(6) 0 < (exp(A))n < (exp(B))n for n = 1, 2, . . . .

To see that the above inequalities hold for all t > 0, we use Heinz's
inequality [6]. Since exp(tA) = (exp(-4))', we have (c). Conversely,
(c) implies (6). By using Proposition 5 again, we arrive at (b). (c) <Φ
(d) is obvious. This concludes the proof.

THEOREM 7. Let A be a (not necessarily bounded) selfadjoint oper-
ator. Let X be a bounded operator which is nonnegative. If there is a
real number a> \\X\\ such that

(7) exp(tA) < exp(t(A + εX)) < exp(t(A + εal)) for every t, ε > 0,

then XAcAX.

Proof. Set B = A + εX. Then B is selfadjoint and 3f{B) = 3f(A).
Now let us denote the spectral families corresponding A and B by
E{λ) and F(λ), respectively. From Theorem 6, it follows that

E(λ - ea) < F(λ) < E(λ) for - oo < λ < oo.

The above inequalities are equivalent to

c F(λ + εa)^ c E(λ + εά)β? for -oo<λ<oo.

Since BE{λ)& c BF(λ + εa)^ c F(λ + εά)^ c E(λ + εa)J^, we
have XE{λ)β? c E(λ + εa)%?. Since E(λ) is continuous from the
right, we obtain XE{λ)%f c E{λ)& and hence XE(λ) = E(λ)X,
which implies XA c AX. Thus the proof is complete.

COROLLARY 8. Let A and X be nonnegative operators. Suppose X
is bounded. If there is a real number a> \\X\\ such that

(8) An < (A + εX)n < (A + εal)n for every ε > 0 , / ι = l , 2 , . . . ,

then XAcAX.

Proof. It is clear.

For finite matrices or compact operators, we can get better con-
ditions than (7) or (8). From now on, A and B are nonnegative
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finite matrices or compact operators which are represented as A =
Σμi(A)ei ® βι and B = Σμi(B)di Θ dι, where {///(•)} is a decreas-
ing sequence of eigenvalues. It is easy to see that, in this case, the
condition (b) in Proposition 5 is equivalent to

(b') μi{A)<μi(B), and if μ^A) > μj{B), then e{ JL dj .

PROPOSITION 9. Let A be a nonnegative finite matrix. Set δ(A) :=
min{\λ-μ\:λφ μ, λ,μeσp(A)}.

(i) IfO<X<δ(A), and (A + X)n > An for n = 1 ,2 , . . . , ί/ww
= XA.

(ii) 7 / 0 < X < ^ μ ) , and A n > (A - X)n >0 for n= 1 , 2 , . . . ,
= XA.

Proof, (i) Set 5 = 4̂ + X and suppose μi(^4) = ••• = μt{A) >
μi+\{A). Then, by Ky Fan [4] (cf. [10]), we obtain

μi+ϊ(B) < μM{A) + μx{X) < μM(A) + δ{A) < μi(A).

(b') implies {e\, . . . , eι\ J_ {diJr\, di+2, } and hence the subspace
{βi, . . . , βi} = {ί/i, . . . , rf, } reduces 4̂ and 5 . Since the reduced
operator of A is constant, A and 5 commute there. Repeating this
procedure in the same way to the other restrictions of A and B, we
can derive AB = BA, which means AX = XA .

(ii) To prove this in the same way as (i), we need only to start with
the smallest eigenvalue of A. Thus the proof is complete.

COROLLARY 10. Let A be a self adjoint finite matrix which is not
necessarily nonnegative.

(i) 7/0 < X < δ{A)fand exp(tA) < exp(ί(Λ+Λr)) for every t>0,
then AX = XA.

(ii) 7/0 < X < δ(A)fand exp(t(A-X)) < εxp(tA) for every t > 0,
then AX = XA.

Proof, (i) Take a real number ζ > 0 so that A + ζl > 0. From
exp(t(A + ζI)) < exp(t{A + ζI+X)), using Proposition 5.9. AX = XA
follows.

(ii) Take ζ > 0 such that A + ζl - X > 0. Then we can derive
AX = XA.

PROPOSITION 11. Let A and X be nonnegative compact operators.
If An < (A+sX)n for every s>0 and n = 1, 2, . . . , then AX = XA.
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Proof. Suppose μ\(A) = = μj(A) > βi+\{A) as in the proof of
Proposition 7. Let us take s which satisfies s\\X\\ < βi{A) - μi+\{A).
Then the subspace {e\, . . . , e{) reduces A and A + sX, where they
commute. We have only to repeat this procedure to get AXem =
XAem for every m.

Let us end this paper by giving an example. Let A and B be
nonnegative matrices. Set V = {rA + sB + tl r, s, t > 0}. Then

= BA if

(9) exp(^(X + Y)) < ^(exp(X) + exp(Γ)) for every X,YeV,

In fact, take r > 0 such that A < rl < B + rl. Then we have
exp(L4) < exp(t(B + rl)) for every t > 0. From this and (9) it
follows that

(t{B + rl){\ + {\f + • . + {\)n) + t{\)nA) < cxp(t(B + rl)).exp

By Corollary 10(ii), we get AB = BA. This example shows that we
cannot regard exp(j(JT + Y)) as the geometric mean of expX and
exp Y if they do not commute (cf. [1]).
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