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REFLEXIVITY OF SUBNORMAL OPERATORS

JOHN E. MCCARTHY

Dedicated to Donald Sarason, in admiration of the range of his pioneering work

We give a new proof that subnormal operators are reflexive. We
extend this to certain subnormal n-tuples. We give the first complete
proof that a pair of doubly commuting isometries is reflexive.

0. Introduction. Let A be a weakly closed algebra of bounded linear
operators on a Hubert space %?. Its lattice, Lat(^4), is the set of all
closed subspaces of %f that are left invariant by every element of A.
The set of operators that leave invariant every space in Lat(A) is de-
noted AlgLat(^). The algebra A is called reflexive if A = AlgLat(^).
An operator (or set of operators) T is called reflexive if the weakly
closed unital algebra it generates, W(T), is reflexive.

D. Sarason proved that normal operators are reflexive, and that
so are analytic Toeplitz operators [Sal]. R. Olin and J. Thomson
extended this result in 1979 to prove that all subnormal operators (i.e.
restrictions of normal operators to invariant subspaces) are reflexive
[OT]. Whilst their original proof has been somewhat simplified since
then [Thl], [Th2], [Col], to date all proofs have relied on an elaborate
construction of "full analytic subspaces". We show that Thomson's
work on bounded point evaluations [Th3] allows a much simpler proof
(Theorem 1).

An n-tuple of operators N = (N\, . . . , Nn) is called normal if
each Ni is normal, and N(Nj = NjNt for all i,j. The TZ-tuple
S = (S\, . . . , Sn) of operators on %? is called subnormal if there is a
Hubert space X containing %f, and a normal n-tuple (N\, . . . , Nn)
on Jf, such that each Ni leaves %? invariant, and N^# = 5/. Just
as in the cyclic case, a subnormal n-tuple is reflexive if its restriction
to every cyclic subspace is. Moreover, any cyclic subnormal tf-tuple is
unitarily equivalent to {MZχ, . . . , AfzJ on P2(μ) for some compactly
supported measure μ on Cn (see §2). So studying reflexivity reduces
to studying the spaces P2(μ) and the n-tuple Sμ of multiplication by
the variables.

A point λ in C is called a bounded point evaluation for P2(μ) if the
functional of evaluating at λ, defined on the polynomials, is bounded
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on the space P2(μ). If λ is a bounded point evaluation, then there is a
function kλ such that p(λ) = / pkχ dμ. Integration against this kernel
function gives a well-defined meaning for f(λ) for any function / in
P2(μ), and we shall use this without further comment (this is a direct
generalization of the usual practice of thinking of functions in the
Hardy space H2 both as functions on the unit circle with vanishing
negative Fourier coefficients, and as analytic functions on the unit
disk). The point λ in C is called an analytic bounded point evaluation
for P2{μ) if λ is in the interior of the bounded point evaluations, and
for each / in P2(μ), the function sending ζ to / fkζ dμ is analytic
in a neighbourhood of λ.

The most important result about single subnormal operators since S.
Brown's proof of the existence of invariant subspaces [Br] was Thom-
son's proof of the existence of analytic bounded point evaluations
[Th3]. He showed that if Sμ is pure, all the bounded point eval-
uations are analytic bounded point evaluations, and that the kernel
functions kλ span P2(μ). We shall use this as one of the pillars of
our proof of reflexivity of single subnormal operators.

The second pillar is the structure of A(S), the weak-star (i.e.
σ-weakly) closed algebra generated by the subnormal operator 5 .
Conway and Olin [CO] showed that this algebra is isometrically iso-
morphic and weak-star homeomorphic to P°°(μ), the weak-star clo-
sure of the polynomials in L°°(μ), where μ is the scalar spectral mea-
sure for the minimal normal extension of S. Sarason has shown [Sa2]
that P°°(μ) consists of an L°° summand plus the space of bounded
analytic functions on the interior of a certain set Σ(μ), called the
Sarason hull.

The third pillar is that the algebra A(S) is elementary, (also called
Ai) i.e. if L is a weak-star continuous linear functional on A(S),
then there are vectors x and y such that L(p(S)) = ((S)x, y) for
any polynomial p. This idea first surfaced in [Br], and was proved in
general in [OT]. The proof was refined in [Th2], and the state-of-the-
art proof is in [BC]. One of the consequences is that A(S) = W(S).
See [Col] for an exposition of all these results.

These three results (the existence of analytic bounded point evalu-
ations, the representation of A(S) as P°°(μ), together with Sarason's
description of P°°(μ), and the factoring of weak-star continuous lin-
ear functional) are fundamental to the modern theory of single sub-
normal operators. However, for subnormal tuples the first two results
are in general false, and the validity of the third (whether the σ-weakly
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closed algebra a subnormal tuple generates is elementary) is open. We
can make some progress if we impose (fairly stringent) restrictions,
for example:

THEOREM 4. Let μ be a measure on Cn, and let Ω be the set of
analytic bounded point evaluations for P2(μ). Suppose Ω has poly-
nomially convex closure, and is either (i) strongly pseudoconvex or
(ii) star-shaped. Suppose also that the span of the kernel functions
corresponding to points of £1 is dense in P2(μ). Then Sμ is reflexive.

In §3 we prove that if two isometnes doubly commute then they
are reflexive. An incomplete proof of this is given in [Ptl]. In §4 we
give an example to show that non-commuting isometries need not be
reflexive.

1. Single subnormal operators. The key part of the proof of re-
flexivity for subnormal operators is proving it for pure cyclic subnor-
mal operators. It is well-known that any cyclic subnormal operator is
unitarily equivalent to multiplication by the independent variable on
some space P2(μ), where μ is a compactly supported measure on C.
We shall denote this operator Sμ it is pure (i.e. has no normal sum-
mand) if P2(μ) does not have L2(μ\β) as a summand for any set E
of positive measure. For this, and other basic facts about subnormal
operators, see J. Conway's book [Col].

THEOREM 1. Pure cyclic subnormal operators are reflexive.

Proof. Assume the operator is Sμ for some μ. Let T be in

(i) The kernel functions kχ are eigenvectors of S*, so are left
invariant by T*. Therefore T* commutes with Sμ on each of the
one-dimensional spaces spanned by some kχ, and as their span is
dense, Γ* commutes with S*. Therefore T commutes with Sμ, and
is given by multiplication by some function φ in P2(μ) Π L°°(μ).

(ii) Because A(Sμ) is isometrically isomorphic and weak-star
homeomorphic to P°°(μ), we must show φ is in P°°(μ); this re-
quires showing that φ is analytic on the interior of Σ(μ).

Let / be in P2(μ). The closure of {pf: p a polynomial} is an in-
variant subspace for Sμ, so must be φ invariant. Therefore one can
approximate φf by pnf, where pn are polynomials; but this means
one can approximate φ by pn in L 2 ( | / | 2 μ ) , so φ is in P2(\f\2μ).
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Therefore φ is analytic on the set of analytic bounded point evalua-
tions of P2(\f\2μ), for every / .

(iii) Let λ be an arbitrary point in the interior of Σ(μ). Evalua-
tion at λ is weak-star continuous, so there are functions x and y in
P2(μ) such that p(λ) = J pxydμ. Therefore λ is a bounded point
evaluation for P2(\x\2μ), hence an analytic bounded point evalua-
tion (as SiX*2 is pure if Sμ is); therefore φ is analytic at λ, as
desired. D

To prove that all subnormal operators are reflexive is now fairly
quick. For completeness, we include a proof based on that in Conway
[Col] Theorem VII.8.5; notice that the proof of the previous theorem
allows one to skip completely sections VII.6 and VII.7 in [Col].

THEOREM 2. All subnormal operators are reflexive.

Proof (Conway). (i) First, we show that reflexivity of cyclic subnor-
mals implies it for all subnormals.

Let S be subnormal on %?, with minimal normal extension N,
and let T be in A l g L a t ^ S ) ) . Let x and y be vectors in %" such
that x, y and x + y are all separating vectors for the von Neumann
algebra generated by N. Such vectors are dense in %?.

By hypothesis (and the separating requirement), on the cyclic spaces
generated by x, y and x+y, T agrees with operators in A(S), which
we shall call respectively X, Y and Z . So

T(x + y) = Z(x+y) = Tx + Ty = Xx + Yy.

Therefore

(X - Z)x = {Z- Y)y.

Since this last vector is in both the space generated by x and the space
generated by y, both X and Y must agree on it. Therefore

0 = (X - Y)(X - Z)x = {X- Y){Z - Y)y.

Because both x and y are separating,

0 = (X - Y)(X -Z) = (X- Y)(Z - Y).

Adding then yields that (X - Y)2 = 0, so X = Y.

(ii) For a normal operator TV, the spectral theorem implies that
any operator leaving N 's reducing subspaces invariant must commute
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with it. So parts (ii) and (iii) of the proof of Theorem 1 prove that
cyclic normal operators are reflexive, and hence all normal operators
are.

(iii) To get rid of purity, note that if S = NQ Θ S\ is the decompo-
sition of S into a normal and pure part, and T is in AlgLat(-4(5r)),
then T = To Θ Γi in A(N0) Θ A(S\). Because this last algebra
is elementary, any weak-star continuous functional is of the form
(xo θ x \ ) ® 0>o θy\) - If this annihilates A(S), {y0 ®yχ) is orthogonal
to the subspace generated by A(S)(xo®x\), and hence to T(XQ®X\) .
Therefore T is in A(S), as desired. D

2. Subnormal tuples. Many of the properties of subnormal oper-
ators carry over to subnormal tuples, but as we know of no source
where they are written down, we list some here. The proofs are fairly
straightforward generalizations of the proofs for single subnormal op-
erators, so we shall not include them here. For other properties of
subnormal tuples, see [CS] and [Co2]. We assume in what follows
that S = (S\, . . . , Sn) is a subnormal «-tuple on %?, with minimal
normal extension N on Jf (minimal means that 3£ is the closed
l i n e a r s p a n o f { N * i ι NΪ»ξ : ζ e ^ 9 iΪ9... 9 i n e f i } ) .

There is a measure μ supported on a compact subset K of Cn , and
an isometric isomorphism and weak-star homeomorphism p from
L°°(μ) onto W*(N)9 the von Neumann algebra generated by iV, tak-
ing Ni onto the z'th coordinate function z z . Spatially, N is uni-
tarily equivalent to the n-tuple of multiplication operators Mz :=
{MZχ 9 . . . , Mzn) on L2(μ D) of square-summable functions from K
to D, a Hubert space of possibly varying dimension. If S is cyclic, it
is unitarily equivalent to Sμ, Mz on P2(μ) (this was first observed
in [Ha]). Separating vectors for W*{N) are dense in both 3P and
β? and if x and y are separating vectors, and e > 0, there is some
a, 0 < a < e , such that x + ay is also separating.

If φ in L°°(μ) satisfies p(φ(N))^ C / , w e will write φ(S) for
p(φ(N))\jr it is then true that \\φ(S)\\ = \\φ(N)\\ = \\φ\\oo . From this
it follows that both A(S) and A(N) are naturally isometrically iso-
morphic and weak-star homeomorphic to P°°(μ). If S is cyclic and
T is an operator that commutes with each 5/, then T is multiplica-
tion by some bounded function in P2{μ).

All normal ^-tuples are reflexive. A subnormal rc-tuple is reflexive
if its restriction to every cyclic subspace is reflexive.

It is not known in general whether subnormal tuples are reflexive
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(even when a pair of commuting isometries), or whether weak-star
continuous linear functional on A(S) can be factored as x®y. The
methods of the previous section, relying as they do on analyticity, can
certainly not be applied to general subnormal tuples. To see how bad
these can be, consider the following example.

EXAMPLE. Let X be a compact subset of C. The Banach alge-
bra R(X) 9 the closure in C(X) of the rational functions with poles
off X , is doubly generated, as is well-known; choose one generator
to be the coordinate function z, call the other generator / . Let
i: z *-+ (z9 f(z)) map X onto K, a subset of C 2 . Then i* gives
an isomorphism from P{K) to R(X), and ι** gives an isomorphism
from the measures on X to the measures on K. Moreover, K is
polynomially convex, because the maximal ideal space of P{K) is
ι(X) = K. Thus, P2(μ), for μ a measure on K, is just as bad as
R2(X, v) can be. In particular, there exists a measure μ on a poly-
nomially convex set K such that P2(μ) has no L2 summands, but

(i) the weak-star continuous point evaluations of P°°(μ) have no
interior;

(ii) P2(μ) has no bounded point evaluations at all [Bre].

However, the natural P2(μ) spaces to study are those that do pos-
sess analytic structure. In particular, the obvious measures are volume
and surface-area, and these clearly have analytic bounded point eval-
uations (via the Bergman and Szegό kernels). The difficulty lies in
identifying P°°{μ). Notice that the proof of Theorem 1 yields the
following for cyclic subnormal tuples:

THEOREM 3. Let μ be a measure on Cn, and let Ω be the set of
analytic bounded point evaluations for P2{μ). Suppose

(a) the span of the kernel functions corresponding to points of Ω is
dense in P2(μ)

(b) P\μ) Π H°°(Ω) = P°°(μ).
Then the subnormal n-tuple Sμ is reflexive.

As we said, the difficulty lies in checking (b). Here are two cases
where it holds.

THEOREM 4. Suppose Ω has polynomially convex closure, and is ei-
ther (i) strongly pseudoconvex or (ii) star-shaped. Then, in the previous
theorem, condition (a) implies condition (b).
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Proof, (i) Let / be in P2{μ) ni/°°(Ω). Because Ω is strongly
pseudoconvex, there are functions fj, analytic on a neighborhood of
Ω, converging to / uniformly on compacta, and satisfying \\fj\\oo <
ll/lloo [CR]—see also [BF]. As Ω is polynomially convex, the fj 's
in turn can be uniformly approximated by polynomials pj9k As the
ball of P°°(μ) is weak-star compact, some subsequence of pjyj will
converge weak-star to some function g in P°°(μ). But

/ gkχdμ = g(λ) = limpjjiλ) = / fkλdμ

for all λ in Ω, so / is in P°°(μ).
The reverse inclusion is obvious.
(ii) Assume for simplicity that Ω is star-shaped with respect to zero.

Then the above argument works, with the obvious choice for fj of
f(rjz), where ry increases to 1. D

Case (ii) above generalizes the results of M. Ptak in [Pt2].

3. Doubly commuting isometries. An n-tuple of operators
(T\9 ... ,Tn) is said to doubly commute if, for any distinct indices
/ and j 9 TtTj = 7)7} and T?Tj = TjT?. In this section we prove
that any pair of doubly commuting isometries is reflexive. That single
isometries are reflexive was first proved by J. Deddens [De]. In [Ptl],
Ptak claims to prove that a pair of doubly commuting isometries is
reflexive; however, his proof contains a gap.

Specifically, let S be the shift on H2{%f), the space of square-
summable analytic functions with values in the Hubert space %? (for
information on shifts of multiplicity greater than one, which can be
represented as multiplication by z on some H2{%?), see the book
[Sz-NF]). Let 7Q be an operator on %?, and let T be the operator in
{S}f = H°°(B(J^)) defined by T(z) = To for all z in the circle. Then
in [Ptl], Proposition 4, Ptak asserts that if 7Q has property Coo > then
{5\ T} has property C (see definitions below), and says the proof is
a small modification of the proof of [Wo], Lemma 2. But Wogen's
proof, which he gives for the case that TQ is positive, can only be
generalized to reductive operators TQ (see Lemma 5 below). We note
that if 7Q is the unilateral shift, Ptak's assertion is equivalent to the
following question in function theory:

Let f\, fι be two functions in H2(Ύ2). Does there necessarily
exist /o in H2(Ί2) such that | / 0 | 2 = | / i | 2 + |/ 2 | 2 almost everywhere
on the torus?
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DEFINITIONS. If T is an operator on the Hubert space %f, then
T(nϊ acting on fl?^ is the direct sum of n copies of T with itself.
If 3" is a subset of B{βf), and x is a vector in β?, then C(J7", x) is
the smallest closed subspace containing x and invariant under every
element of &~. A subset 3^ of B(β?) has property C (introduced in
[Wo]) if, for every positive integer n and vector η in β?W , there is
a vector £ in %f and a unitary operator U: C{^^ , >/) -> C( 7 \ <*)
such that, for every T in i Γ ,

If this also holds for n = oo, say that ^ has property C^ .
The proof of the following lemma is based on [Wo], Lemma 2,

but we include it for completeness. A normal operator is reductive
if every invariant subspace is also invariant for its adjoint. In terms
of the scalar spectral measure μ, this is equivalent to saying that

LEMMA 5. Let S be the unilateral shift on H2(J%?), and let ^ be a
finite set of commuting normal operators on %? that are all reductive.
Extend each operator TQ in ^ to an operator T on H1 {<%*), by
defining T{z) = 7Q for all z in the circle; call the new collection &~.
Then A(S, 5T) has property C^.

Proof Let η be in H2(^)W, for some 1 < n < oo. Let J! =
C({SW, &-(")}, η) and ^ = JTeS^Jr. For each T in F
is invariant under T^ , so H2(&)(") θS^Jt is invariant for
Because T^ is reductive, H2(^)W θ S^^ is also invariant for
T^, so T^^£Q is contained in Jfa. Therefore Jfa is a reducing
subspace for each T^, and T^\^ is always normal.

The space ^ o is precisely C{^^, -P^ty), where P^o is the or-
thogonal projection onto Jfa. By the spectral theorem for normal
tuples, and as each T is just a direct sum of countably many copies
of TQ , there is a ^o-cyclic subspace J^ of βf and a unitary map U$
from Jt0 onto ^G such that C/oΓ(w)|^oί7o* = TQ\jrQ for each T in <Γ.
Now extend this to a map from ^f into H2(βf) by embedding ŷ o
into the constant functions of H2(βf) (i.e. the kernel of S*)9 and
defining U(S^km0) = zkUo(mo) for m 0 in «^Q. AS the range of U
is v4(S, ^-cyclic, ^4(5, y ) has property CΌo , as required. D

We also need the following lemma. It is also proved in [Ptl].
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LEMMA 6. Let S be the unilateral shift on H2{β^), and let ^ be a
finite commuting set of operators on %f such that AlgLat(e^) = A(J$).
Extend each operator Γo in ^o to an operator T on H1^), by
defining T(z) = Γo for all z in ΣΓ \ call the new collection ^ . Then
AlgLat(S, F) = W{S, F) = A{S,

Proof. Let R be in AlgLat(S, F). If kλ(z) is the kernel func-
tion 1/(1 - λz), then {kλ.<%"} is the kernel of (S - λ)*, and is in
Lat(*S*,^*). Therefore JR* leaves it invariant, and so commutes
with S* on it. As these spaces span H2(β^), R commutes with S.
Therefore R can be written as R = ]C?Lo zk^k > where each R^ maps
βf to %?, and the series converges almost uniformly on the disk, and
radially it converges strongly almost everywhere (see [Sz-NF]).

Let Λί be an arbitrary ^-invariant subspace. Then H2{^) is
A(S, i^-invariant, so i?-invariant. Therefore for almost every w in
T, R(w) = limrTi Σh=o(rw)kRk is in A l g L a t ^ ) . So if ξ is in Jt
and η is in

=0 a.e.

The left-hand side is a bounded analytic function of w , so it vanishes
for all w in the unit disk. In particular, for w = 0, this gives that i?o
is in AlgLat( ^o). Hence Y%Low

kRk+i is in AlgLat(^) for almost
every w , and by induction each Rk is.

Let

k=o

For 0 < r < 1, the partial sums Σk=orkzkRk are all in A(S,
and converge to Rr in norm. Moreover, as {Rr: 0 < r < 1} is
uniformly bounded, Rr converges to R in both the weak and σ-weak
operator topologies. D

THEOREM 7. Let T = (Γ 1 ? Γ2) be a pair of doubly commuting
isometrieson theHilbert space %T. Then AlgLat(Γ) = W(T) = A(T).

Proof. For each isometry 7}, %? has a Wold decomposition, i.e.
it decomposes into two reducing subspaces, on the first of which the
operator is a pure shift, and on the second of which it is unitary. As
the first space is the span of the kernels of (T*)n , it is left invariant
by everything that commutes with T* so the double commutativity
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hypothesis yields that each of these spaces is also reducing for the
other isometry. Therefore %f decomposes into 4 spaces, on which
each 7} is either unitary or a pure shift.

Moreover, the spaces where we have a shift S and a unitary U
decompose further. By multiplying by the spectral projection for U
corresponding to, say, the right semi-circle, U decomposes into the
direct sum of two reductive operators, and because S commutes with
U, it also commutes with this decomposition.

Therefore %? decomposes into (up to) 6 reducing subspaces, on
which T\, Γ2 are either

(i) both unitary, or
(ii) one a pure shift, the other a reductive unitary, or

(iii) both pure shifts.

We claim that in each case the pair is reflexive, the weakly and σ-
weakly closed algebras they generate coincide, and that this algebra is
elementary. This implies that on the direct sum of the subspaces the
pair is reflexive and the two algebras coincide.

(i) We have already remarked that normal tuples are reflexive.
That the algebra A(T) is elementary follows from the spectral theo-
rem.

(ii) This follows from Lemmata 5 and 6, because property Coo
implies A{T) is elementary.

(iii) Because T\ and Tι doubly commute, the space decomposes
into a direct sum of copies of H2{Ί2), where the operators are mul-
tiplication by the coordinate functions. The pair is reflexive (and
A(T) = W(T)) by Lemma 6. That A(T) is elementary follows from
the theorem of H. Bercovici and D. Westwood that any function h in
Lι (Ίn, σ), where σ is Lebesgue measure, can be factored as h = fg,
for some / in H2(Ύn) and g in L2(Ύn, σ) [BW]. D

4. Non-commuting isometries. We finish with an example to show
that non-commuting isometries need not be reflexive.

EXAMPLE 8. Let S be the unilateral shift, and U the diagonal
operator with first two entries - 1 , other entries 1.

S =

/0 0 0 . . . \ / - I
1 0 0 ... I -1
0 1 0

\ : : :

U =
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Let A be the weakly closed algebra generated by S and U. We claim
that A is not reflexive.

By Beurling's theorem, the invariant subspaces of S, thought of
as an operator on the Hardy space H2, are the spaces uH2, where
u is an inner function. So Lat(A) consists of those uH2 which are

[/-invariant. Let u(z) = ]££Loα«zW ^ a° = aχ = ®> t * i e n M ^ 2 * s

clearly [/-invariant.
Suppose a$φθ, and wi/2 is in Lat(-4). Then applying the oper-

ator (/ - C/) - £•(/ - 17)5 to w, one gets that the constant function

2#o is in uH2, so uH2 must be all of H2. Similarly, if a$ = 0 and
<Zi ^ 0, then the operator ^ ( 7 - 17) applied to w gives the function

z, so w772 = z772. Therefore Lat(^) = {z2uH2: u inner} u {*772} u
{772} U {0}.

Let 7? be the rank-one diagonal operator

7 ? = ( 0

Clearly 7? is in AlgLat(y4). We shall show it is not in A.
Let p(U, S) be a non-commuting polynomial in U and S. Be-

cause of the identities U2 = 7, CΛS2 = S 2 and USUS = 5(75,
p(U, S) must have the reduced form

p(C7, 5) = 9 l ( 5 ) + fcίSJt/ + q3(S)US + q4(S)USU.

So if {en}%L0 is the usual orthonormal basis for 772, (p(U, 5)e 0 , ^o)
= (p(U, S)e\, e\). As 4̂ is the weak closure of polynomials in U
and 5 , anything in A must have its first two diagonal entries equal.
Therefore 7? is not in A, as claimed. D

Note that on a finite-dimensional space, all subnormal operators are
normal and reductive. Therefore the weakly-closed algebra generated
by any set of them is a von Neumann algebra, and hence reflexive.
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