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ON INFINITESIMAL BEHAVIOR
OF THE KOBAYASHI DISTANCE

MYUNG-YULL PANG

The condition that the Kobayashi distance between two nearby
points in a pseudo-convex domain is realized by the Poincare dis-
tance on a single analytic disk joining the two points is studied. It is
shown that the condition forces the Kobayashi indicatrix to be convex.
Examples of pseudo-convex domains on which this condition fails to
hold are given. The (infinitesimal) Kobayashi metric is shown to be
a directional derivative of the Kobayashi distance. It is shown that, if
the condition holds near any point of a pseudo-convex domain and if
the Kobayashi metric is a complete Finsler metric of class C2, then
the Kobayashi distance between any two points in the domain can be
realized by the Poincare distance on a single analytic disk joining the
two points.

1. Introduction, In this paper, we study the infinitesimal behavior
of the Kobayashi distance on a pseudo-convex domain. In particular,
we examine the condition that the distance between two nearby points
in a pseudo-convex domain is realized by the Poincare distance on a
single analytic disk joining the two points.

Let D be a bounded domain in Cm and let δ denote the Poincare
distance on the open unit disk Δ in the complex plane. If D is
convex, then the Kobayashi distance between two points p, q £ D
can be defined in terms of a single analytic disk joining p and q in
D: the function d*: D x D —>R defined by

(1.1) d*(p9q) = inf {δ(a, b): f: Δ -> D holomorphic,

f(a)=p, f(b) = q, a, be A}

satisfies the triangle inequality, and d* is the Kobayashi distance func-
tion on D [LI].

When D is a pseudo-convex domain, d* does not in general satisfy
the triangle inequality (see [LI] for example). To define the Kobayashi
distance d: DxD —• R on a pseudo-convex domain D, it is necessary
to consider chains of analytic disks joining p and q:

(1.2) d ( p , q) = i n f { δ ( a x , b x ) + • • + δ ( a n , b n ) : a i 9 bj e A}
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where the infimum is taken over all possible chains of holomorphic
functions fk: A -* D, k = I, ... , n, with length n > 1 joining p
and q, i.e.

(1.3)

Clearly, the two functions d and d* satisfy the inequality d <d*,
and d and rf* coincide when the domain D is convex. In particu-
lar, any two points p, q in a convex domain can be joined by a sin-
gle analytic disk and the Kobayashi distance between the two points
can be realized by the Poincare distance on the disk. Although this
is no longer true for pseudo-convex domains, one might hope that
this property still holds if p and q are very close. We call a point
p G D Kobayashi simple if p has a neighborhood Up such that the
Kobayashi distance between p and any other point q in Up can be
realized by the Poincare distance on a single analytic disk joining p
and q. One of the main purposes of this paper is to examine the
infinitesimal behavior of the Kobayashi distance function around a
point p in a pseudo-convex domain, and further, give obstructions
for p to be Kobayashi simple.

The infinitesimal behavior of the Kobayashi distance is closely re-
lated to the infinitesimal form of the Kobayashi distance introduced
by Royden [R]. Let TD denote the tangent space of D. We define
the Kobayashi metric F: TD -+ R as follows: For v e TPD, let F(v)
be the length of υ defined by

(1.4) F(v) = inf< — : / : Δ —• D holomorphic ,

=/>, f'(0)=λfv, A/>

where infimum is taken over / . We show that the length F(v) of v
is in fact the directional derivative of the function z \-+ d*(z, p) at
p in the direction of v in the following sense:

3.18. PROPOSITION. The following identity holds: For each υ
with \\v\\ = 1,
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We define the Kobayashi indicatnx Ip to be the set Ip = {v e
TPD: F(v) < 1} . One of the main results of this paper is the following
theorem.

THEOREM 4.1. If p is Kobayashi simple, then Ip is convex.

As a consequence of the theorem, if Ip is not convex, then p is not
a Kobayashi simple point, and therefore there is a sequence of points
pn convergent to p such that the distance between pn and p cannot
be realized by the Poincare distance on a single analytic disk joining
pn and p.

Unlike the triangle inequality of d*, convexity of the indicatnx of
certain domains is relatively easy to check. It is well known that the
Kobayashi indicatrix of a complete circular domain D (i.e. a pseudo-
convex domain such that λD c D for all λ £ Δ) coincides with the
domain D itself under the natural identification of ToD with C m

[Ba]. By giving an example of non-convex complete circular domains
(Example 4.22), we prove the following corollary:

4.13. COROLLARY. (1) If D is a complete circular domain and 0 e
D is Kobayashi simple, then D is convex.

(2) There exist strongly pseudo-convex domains with a point that is
not Kobayashi simple.

We call a domain Kobayashi simple if all of its points are Kobayashi
simple. For example, all convex domains are Kobayashi simple (see §2
for a non-trivial example). According to Lempert's results in [LI], if
D is a strongly convex domain with Ck boundary (k > 6), then the
Kobayashi metric of D becomes a Finsler metric of class Ck~4 (i.e.
the map F: TD -> R is Ck~4 away from the zero section and the
indicatrix is strongly convex at any point in the domain (Definition
5.1)). We show that certain properties of strongly convex domains
generalize to Kobayashi simple domains under the condition that the
Kobayashi metric is a Finsler metric of class C2. We call an analytic
disk in D joining a pair of points p, q G D extremal fovp, q if
the distance d*(p, q) is realized by the Poincare distance on the disk
(Definition 2.1). The properties of strongly convex domains which we
consider here are the following:

THEOREM (Lempert). Let D be a strongly convex domain with Ck

boundary (k>6). Then the following are true:
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(1) For any p, q e Z>, there exists a unique extremal disk joining p
and q.

(2) Any geodesic curve of F parametrized by arc length is (real)
analytic.

For Kobayashi simple domains, we have the following results:

6.9. COROLLARY. Suppose that D is Kobayashi simple and the
Kobayashi metric F of D is a Finsler metric of class C2. Then the
following are true:

(1) Each point p e D has a neighborhood Up such that, for any
q eUp, there is a unique extremal disk joining p and q.

(2) Any geodesic curve of F parametrized by arc length is (real)
analytic.

6.11. THEOREM. Let D be a Kobayashi simple domain. Suppose
that the Kobayashi metric F is a complete Finsler metric of class C2.
Then any two points p and q in D can be joined by a single analytic
disk on which the Kobayashi distance d(p, q) is realized by Poincare
distance on the analytic disk. In particular, the equality d = d* holds
and the function d* satisfies the triangle inequality.

We remark that the work in this paper is motivated by the following
conjecture by S. Krantz [Kr]:

CONJECTURE. Let D be a strongly pseudo-convex domain. Then
there is a fixed constant K = K(D) such that the Kobayashi distance
between any two points in D can be realized by chain of holomorphic
maps of length less than K.

If the domain D satisfies the hypothesis of Theorem 6.11, then the
constant K in the conjecture would be one. It would be interesting to
see how far the hypothesis of Theorem 6.11 can be weakened. For gen-
eral pseudo-convex domains, an interesting open question is whether
the converse of Theorem 4.1 is true, and the Kobayashi simple points
are characterized only by the convexity of the indicatrix.

Acknowledgment. I would like to express my thanks to S. Krgntz
for many helpful conversations and for the term "Kobayashi simple".
I wish to thank T. Duchamp for conversations we had.

2. Definitions and basic facts on the Kobayashi metric. In this sec-
tion, we introduce the notations and definitions, and review basic
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properties of the Kobayashi distance and the Kobayashi metric. For
further properties, we refer the reader to [K] and [R].

Let D\ and Z>2 be bounded domains. We denote by Dι ( A ) the
set of all holomorphic functions from D\ into Dι. We call D taut
if D(A) is a normal family. It is known that the concept of taut
domain is closely related to the concept of pseudo-convex domain:
taut domains are pseudo-convex [Wu]. Conversely, all the pseudo-
convex domains with C 1 boundary are taut [Ker]. Note that, since
D is bounded, D is a hyperbolic manifold in the sense of Kobayashi
[K], and the Kobayashi distance d induces the usual topology on D
[R]. If it is necessary to specify the domain on which d and F are
defined, we use the subscripted notation FD and dp to denote the
Kobayashi metric and the distance function of the domain D.

Although some of the results in this paper may generalize to a
broader class of domains, we will restrict attention here to D as
bounded taut domain.

2.1. DEFINITION. A map f £ Z>(Δ) is called extremal for a pair of
points p, qeD if d*(p, q) = δ(a, b), f(a) = p and f(b) = q for
some a, b e Δ (i.e. if f attains the infimum in (1.1)). Similarly\
f e D(A) is called extremal for a tangent vector v e TPD (or in the
direction of v) if /(0) = p and f(0) = ψj^ (Le. if j - attains the

infimum in (1.4)). If f: Δ —> D is an extremal map, we call the image
f(A) an extremal disk.

2.2. REMARK. We will often use the following facts in this paper:
(1) A map f e D(A) is extremal for v e TPD if and only if the

identity F(f(0)) = 1 holds.
(2) If f e D(A) is extremal for p,q e D, we can find b e (0, 1)

such that d*(p, q) = δ(09b).

One of the advantages of considering taut domains is that the ex-
istence of extremal disks can be easily shown by applying the normal
families argument:

2.3. LEMMA. For any pair p, qeD, there is at least one extremal
map. Similarly, for any υ e TPD, there is at least one extremal map.

The Kobayashi metric F, the Kobayashi distance d and the func-
tion d* have the distance decreasing property under holomorphic
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maps: If ^ E ^ φ i ) , then

(2.4)

dDί(p,q) > dD2(φ(p),φ(q)), d*Dχ{p, q) > d*Di{φ{p), φ(q))

and FDι(v) > FDi(φ*v),

for all p, q e D{ and i; G ΓZ>i. In particular, if D{ cD2, FDγ < FU2

and dr>ι < do2 - If Φ is a biholomorphism, equality holds in (2.4).
This shows that d, d* and i 7 are invariant under biholomorphism.

On the open unit disk Δ, the Kobayashi distance d (and the func-
tion d*) coincides with the Poincare distance δ, and the Kobayashi
metric F coincides with the Poincare metric FA:

FA(υ) =

where υ e TZA. For α, ft e ( - 1 , 1) c Δ such that a < ft, the
Poincare distance δ(a9 ft) is δ(a, ft) = tanh" 1 ft - tanh" 1 a.

The Kobayashi distance d can be equivalently defined in terms of
d* as the largest distance dominated by d*:

(2.6) d{p, q) = inf{rf*(^, Λ ) + • • + </ (p Λ , β)}

where the infimum is taken over all possible p\, . . . , pn e D, n >
0. If D is a convex domain, Lempert showed that d* satisfies the
triangle inequality and the identity d* = d holds [LI]. In other words,
the distance between any two points p, q in D can be realized by
d*(p, q). Here, we give a more precise definition of Kobayashi simple
point in terms of d*:

2.7. DEFINITION. A point p e D is called Kobayashi simple if p
has a neighborhood Up c D such that for any q e Up, the equality
d(p, q) = d*(p, q) holds. A domain Z> is called Kobayashi simple if
all the points of D are Kobayashi simple.

From Lempert's result, it is clear that all the convex domains are
Kobayashi simple. Furthermore, products and holomorphic retracts of
Kobayashi simple domains are again Kobayashi simple. Besides these
examples, there are topologically non-trivial examples of Kobayashi
simple domain. One example is

(2.8) D = {(z,w)e C 2 : (|z| - 2)2 + \w\2 < 1}.

In fact, this domain is a quotient space of a cylinder in C 2 which is
Kobayashi simple because of its convexity. More generally, one can
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obtain a class of Kobayashi simple domains by considering quotient
spaces of Kobayashi simple domains in a similar manner.

We define a metric F: TD -* R by replacing the unit disk Δ by
the open unit ball B in C m in the definition of the Kobayashi metric
F in (1.4), and we note that this metric F coincides with the usual
Kobayashi metric F [R].

Finally, we define the length of a curve in D with respect to the
Kobayashi metric F. If γ: [a, b] -+ D is a C 1 curve, the length
L(γ) is defined by the integral

(2.9) L(γ) = f F(yr(t))dt.
Ja

Note that the length L(γ) does not change even if γ is re-parametrized
because of the homogeneity property of F [R]:

F{av) = \a\ F(v), for a e C and υ e TD.

The Kobayashi distance d is related to F as follows [R]:

2.10. THEOREM (Royden). Let p, q be any points in D. The Koba-
yashi distance d(p, q) is the integrated distance, i.e.

(2.11)

where the infimum is taken over all possible Cι curves in D joining
p and q.

3. Infinitesimal behavior of the Kobayashi distance. In this sec-
tion, we study the relation between the infinitesimal behavior of the
Kobayashi distance and the Kobayashi metric F. First, we begin by
stating some of Lempert's results on convex domains.

3.1. THEOREM (Lempert). Suppose D is a strongly convex domain
with smooth boundary. Then the following statements are true:

(1) For each tangent vector v e TD (resp. for each pair of points
p, q G D), there is a unique extremal map corresponding to v (resp.
for p9q).

(2) Extremal maps are proper imbeddings that smoothly extend to
the closed disk Δ.

(3) Extremal maps are isometries with respect to the distances δ
and d, and the metrics FA and F. Consequently, if f: Δ —• D is an
extremal map (either for a tangent vector or for a pair of points p, q
in D), then the disk f(A) is the extremal disk for any vector tangent
to /(Δ) and for any pair of points on /(Δ).
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The following proposition is well known.

3.2. PROPOSITION [R]. For any taut domain D, the Kobayashi met-
ric F: TD —• R is continuous.

3.3. LEMMA. Let D be a strongly convex domain with smooth
boundary. Suppose that {pn} and {qn} are sequences in D and {tn}
is a sequence in (0, 1) such that

(3.4) lim pn = lim qn = p, and lim qn~Pn = v φ 0.
n—>-oo n—>oo «—>>oo tn

Then the extremal maps fn: Δ -» D for pn, qn converge to the unique
extremal map / : Δ —• Z> for v e TPD.

Proof. By the extremality of fn , we can find bn e (0, 1) such that
Λ(0) = Pn , /*(*«) = ft and 5(0, ftn) = d\pn, ί π ) . Clearly Z>rt - 0
as n —• o o .

Let ŷ fc be any subsequence of fn which converges to a holomor-
phic map / in D(Δ) uniformly on compact sets. Note that strong
convexity of D implies that D is taut, and hence, fn has at least
one such subsequence [Gr], By Theorem 3.1, fn is extremal in the
direction of /^(0), and hence F(/^(0)) = 1. This implies that / is
also extremal in the direction of f (0) since

(3.5) F(f'(0)) = F (lim ^ (0)) = lim F(fn(0)) = 1.

On the other hand, note that the following identity holds:

v Qnk~Pnk Λ. fnk{bnk) - fnk(0) ,
lim — 4 *• = lim — k-—4 * — = /(0)

n—*ΌO un n—>ΌO on

Combining this with the last identity in (3.4), we can easily see that
/'(()) and v are parallel, and hence, / is extremal for v. By the
uniqueness of the extremal map for υ, any convergent subsequence
of fn must converge to the same / , and hence it follows that fn

converges to / uniformly on compact sets. D

We show that Lemma 3.3 generalizes to the case when D is any
taut domain:

3.6. THEOREM. Let {pn} and {qn} be sequences in D both con-
vergent to p G D. Suppose that fn are extremal maps for the pairs
pn, qn and that they converge to f: A -> D uniformly on compact
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sets. Then, /'(0) Φ 0 and f is an extremal map in the direction of
/'(0) E TPD. Moreover, the following identity holds:

(3 7) lim
\\Pn-dn\\ " IMI

where v e TPD is any non-zero vector parallel to / ;(0) and \\ \\ de-
notes the Euclidean norm on TPD = Cm.

Proof. By the extremality of fn again, we can find tn e (0, 1) such
that fn(0) = pn, fn{tn) = qn and <J(0, ίΛ) = d*(pn,qn). Clearly
£w —* 0 as n —> oo.

First we will prove that /'(()) is non-zero. Choose an open Eu-
clidean ball B(p, r) c D of small radius r centered at p. Then, by
the compactness of the closed ball B(p, r/2), we can find a constant
C such that dB(p,r)(zi, z2) < C\\z{ - z2\\ for Zi, z2 e B(p, r/2).
Recall the inequality dp < d#,p rx. Hence, for large n, we have the
inequalities

(3.8)

This implies that /'(()) is non-zero since the first term converges to 1
while the last term converges to /'(0).

To show that / is extremal, recall that the metric F coincides with
the usual Kobayashi metric F. Therefore, for each e > 0, there is a
holomorphic map φ: B -+ D such that

(3.9) F ( / ( 0 ) ) < ^ < ^ ( / / ( 0 ) ) + 6,

φ(0) = p, φ*(£r) = λφf(0) and det(^*)0 7̂  0. By the inverse
function theorem, we can find a neighborhood U oϊ 0 € B such
that the restriction map φ\u is a biholomorphism from U to an
open neighborhood V of p eD. Without loss of generality, we may
assume pn, qn^V, and since φ\v is a biholomorphism between U
and F , there are sequences pnΛn G 17 such that p(pΛ) = p« and
^(ί/i) = ί« F o r e a c h n> we can take an (unique) extremal map
hn: A —• B into the ball for pn and ^rt such that pn = AΛ(0) and
Qn = A I I ^ ) for some sn G (0, 1). Note that the sequences $„, pn

and ίrt satisfy all the conditions in (3.4) since both sequences qn and
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pn converges to 0 in B, and

Qn -Pn φ~l{Qn) ~ φ~l(Pn)
(3.10)

4
as n —• oo. Thus, by Lemma 3.3, the sequence {/zw} converges to the
unique extremal map h: A-+ B .

Note that each n, both the maps φ ohn: Δ —• D and /„ are joining
pn and #„, i.e.

(3.11) φ ohn(0) = φ(pn)=Pn = Λ(0),

^ o hn{sn) = φ{qn) = Qn= fn(tn)

Recall that the fn are extremals for pn and qn . Hence

(3.12) δ(09tn) = d*(pn,qn) = d*(φohn(0),φohn(sn))<δ(09sn).

This implies tn<sn, and hence 1 < sf .

Since ŷ  converges to / uniformly on compact sets, we have

(3.13) /'(0) = lim
tn

l i m ί^o^fa)-^o^(O) £«1
n-^oo \ Sn tn)

But since we have

(3.14) Mm | y ° M 5 B ) - y o M 0 ) | = ( ^ 0 ^ ( 0 ) ) ^ o

the sequence ^ > 1 converges to some number 4̂ > 1. Therefore,

from (3.13) and (3.14), we obtain

(3.15) / ( 0 ) = ̂ (^oA(0)) ; = ^^(A ; (0)) .

On the other hand, recall that <P*{j^) = ^ / ' ( 0 ) Combining this
with the identity (3.15), we have

(3.16) Ah'(O Θ

v ' λ9dχim

By applying the Kobayashi metric Fβ of the ball on both sides of this
identity, and using the fact that h is an extremal map (i.e. FB(h'(0))^=
1), we obtain the identity Aλφ = 1. Now, by the inequality (3.9), we
have

(3.17) l<A = ±-<
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Recall that the inequality F(g'(0)) < 1 holds for any g e D(A). In
particular, F(f(0)) < 1, and since e > 0 in the inequality (3.17) was
arbitrarily chosen, we conclude that F(f'(0)) = 1. This proves that
/ is extremal in the direction of / '(0).

To prove the identity (3.7), recall from (3.13) that

= lim ^ Z ^lim .
n-+oo tn

Also, recall that <J(0, tn) = d*(pn, qn) and lim^oo ^ ^ = 1. Using
these identities and the fact that / is extremal (i.e. F(f'(0)) = 1),
the identity (3.7) can be verified as follows

1. d(pΛ9qn) _ δ(09tn)/tn 1 _ F(f(0)) -

3.18. PROPOSITION. The following identity holds: For each v G TPD
with \\υ\\ = l,

Proof, We prove this using Theorem 3.6. Let sn € R be a sequence
convergent to 0. Also, let, for each n, fn e D(A) be an extremal
map for the pair of points Pn=P, Qn=P + snv such that pn = fn(0)
and qn •= fn(tn) for some sequence tn e (0, 1) that converges to 0.
By taking subsequence if necessary, we may assume that fn converges
to / G D(A) uniformly on compact sets. To apply Theorem 3.6, we
verify that / '(0) is parallel to v :

= lim /»('» to lim V.
tn n->oo tn n-+oo tn

We can then apply Theorem 3.6 to obtain the following identity:

F(*Λ lίn, d*(p,p + snv) d*(p,p+snv)
r (V) = lim — = lim :—:

n-+oo \\p - (p - snv)\\ n-+oo \Sn\

Since sn was arbitrary, the identity (3.19) follows. α

4. Domains with local properties of convex domains. In this section,
we prove Theorem 4.1 in the introduction.
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4.1. THEOREM. IfpeD is Kobayashi simple, then Ip is convex.

Proof. Suppose that Ip is not convex for some p e D. Without
loss of generality, we may assume that p is the origin 0 e Cm. We
will show that there are sequences pn and qn in D both convergent
to 0 such that

(4.2) <Γ(0, qn) + d\qn , pn) < J*(0, pn).

This inequality then shows that p is not a Kobayashi simple point
because

(4.3) d(0, pn) < d*(0, qn) + d*(qn, pn) < d*(0, pn).

Since we assumed that /Q is not convex, there are two vectors
u, υ e T0D, such that

(4.4) F(u) + F(υ)<F(u + υ).

Let w = u + v and fu, fv, fw: A —• Z> be extremal maps in the
directions of w, v and w such that Λ(0) = fυ(0) = Λ (O) = 0. Note
that, since the curves γu(t) = fu(t) and ^ ( ί ) = fw(t), t e ( - 1 , 1)
are tangent to w, w at O E D and v e span{w, w}, we can find
sequences α w , bn e (0, 1) convergent to 0 such that, if we denote

(4.5) pn = Λ(έϊΛ), qn =

then

(4.6) lim *n~P". = π

π - ~ l l ί P l l l
Let / w : Δ -+ D be extremal maps for pn and qn . Clearly, we can

take fn such that ^ w = fn(0) and ήrΠ = fn(cn) for some cΛ G (0, 1).
By a normal families argument, and by taking a subsequence of fn if
necessary, we may assume that fn converges to a function f e D(A)
uniformly on compact sets. Hence

(4.7) lim „«"-*» = lim (/««») - Λ(O))/c

Comparing this with the identity (3.7), we obtain |Ar = TΠ^ΓΓ, . More-

over, by Theorem 3.6, the map / is an extremal in the direction of

/ ' (0) . Therefore,
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The basic idea of the proof is to approximate the elements of
the inequality (4.4) with the sequences d*(0,pn), d*(09qn) and
d*(qn 9 Pn) By taking subsequences if necessary, we may again as-
sume that the extremal maps joining the pairs 0, pn and 0, qn are
convergent. Hence we may apply Theorem 3.6 to these pairs of points.
Then the identity (3.7) implies

(4 9)
 JS&

(410)

as n —• oo. We obtain a similar identity for the pair pn and qn as
follows. Recall that /„ is extremal, and hence d*(pn, qn) = δ(0, cn).

By the identities (4.5) and (4.8) and the fact that δ(0, cn)/cn —• 1
as n —• oo, we obtain the identity

(4.11) lim ,, {Qn'Pn. ||v || = lim .,,., ,c" .-.„ ||v |
«-oo \\qn-pn\\ " " n-*°o /(c)-/(Q) ["

I I / ' ( O ) | | - v " "
Now we consider the inequality (4.4). Since the inequality is strict,

we can find numbers c and a small e > 0 such that

(4.12) F(u) + F(v) <c<c + e< F(w).

From the identities (4.9)-(4.11), we conclude that

ί 4 1 3 x d*(θ,pn) .. .. d*{qn,Pn) ^*(0

for n large. If we let

\\v\\ \\Qn\\
f 414) M = M M N

hn-Pn\\ IMΓ

then the inequality (4.13) can be written as

d*(0,pn)M +d*(qn,pn)Nn<cR_ι

* ( ^ )
Note that, from the inequality (4.13) again, we have c + e < Rn , and
this implies

(4.16) c Λ - i < _ £ _ < ! .
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To complete the proof, we claim that Mn, Nn -* 1. Once the claim
is proved, we have

< Mn, —C— < Nn,
c + e " ' c + e

for large n and the inequality (4.15) together with (4.16) implies the
following inequality:

c d*(qn,pn)\ _ „ _ ! < c

c + e V d*(O,qn) ) ^ " " c + e '

for large n. The inequality (4.2) is a trivial consequence of this in-
equality. This completes the proof of the theorem.

To prove the claim, combine the identity (4.7) and (4.8) to obtain

(4 17) lim Qn~Pn . V = W —
«-°° \\Qn ~Pn\\ \\V\\ \\V\\ \\V\[

On the other hand,

qn-Pn qn \\qn\\ Pn \\Pn\\

\\qn -Pn\\ lk. | | \\Qn ~Pn\\ \\Pn\\ Un -Pn

Note that we have the following identities:

lim
Qn = l i m ^( f t ι , ) -/ w (0) = fw(0)= l i m =

\\qn\\ n^o \\fwφn) - fwφ)\\ 11
(420) lim p« - l i m

Comparison of (4.17) and (4.18) together with (4.19) and (4.20) yields

We now conclude this section by giving an example of a family of
domains that are not Kobayashi simple.

4.21. THEOREM [Ba]. If D is complete circular, then the Kobayashi
indicatrix Io at 0 e D coincides with the domain D under the natural
identification of T0D with D.

There are many examples of non-convex complete circular pseudo-
convex domains. We give one of them here:

4.22. EXAMPLE. Consider the domain defined by

D = {(z,w)eC2: \z\2 + \w\2 + t\zw\2< 1}.

This domain is clearly complete circular, and for large t > 0, D is
non-convex. Also,note that D is a strongly pseudo-convex domain
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with (real) analytic boundary. By Theorem 4.21 and Theorem 4.1,
the indicatrix IQ is non-convex, and 0 is not a Kobayashi simple
point.

The following corollary is an easy consequence of Theorem 4.1,
Theorem 4.21 and Example 4.22:

4.23. COROLLARY. (1) If D is a complete circular domain and 0 e
D is Kobayashi simple, then D is convex,

(2) Not all pseudo-convex domains are Kobayashi simple.

5. The complex Finsler metrics. In this section, we briefly review
the theory of Finsler metrics necessary for the next section. For more
details about the theory of Finsler metric and the calculus of varia-
tions, we refer the reader to [MM] and [S].

5.1. DEFINITION. A function F: TD-+R is called a Finsler metric
of class C 2 if the following conditions are satisfied:

(1) F is C2 on the tangent space TD away from the zero section.
(2) The indicatrix Ip = {υ e TPD: F(v) < 1} is strongly convex

for each p eD.
(3) (Positive) homogeneity: F(av) = \a\F(v) for all a e R and

v e 77).

If the homogeneity condition (3) holds for a e C, then we call F
a complex Finsler metric.

5.2. REMARK. The condition on the indicatrix in condition (2) is
in fact equivalent to the condition that the Hessian yiγi(v) a t v

is positive definite for all v Φ 0 in TD, where (uι, . . . , u2n) are
any linear coordinate functions on a fiber of TD. Note that strong
convexity implies convexity, which is equivalent to the condition that
F satisfies the triangle inequality

(5.3) F(vl+v2)<F(vl)

An easy example of a complex Finsler metric is the norm \\v\\ =
(v, v) induced by a Hermitian metric g on D if we regard it as

a function defined on TD. Also note that, from Lemperf s results, the
Kobayashi metric on strongly convex domains with smooth boundary
gives another important class of complex Finsler metrics [LI] [L2].

If D is equipped with a Finsler metric F, we define the length
L(γ) of a curve γ:[a,b]-> D by the formula (2.9). Note that the
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Finsler metric F induces a distance function dp on D in an obvious
way by formula (2.11).

A C 1 curve γ: (a, b) —• D is called a geodesic if it is a locally length
minimizing curve i.e. if for any t e (a, b) there is neighborhood
( ί - e , t + e) c(a,b) oft such that the distance dF(γ(t-e), γ(t + e))
is precisely the length ff** F(γ'(t)) dt of the curve j>|(f_e yH_€).

It is not clear whether the Kobayashi metric F has geodesies. How-
ever, for a Finsler metric F, the usual technique of the theory of
calculus of variations applies, and the geodesies can be described as
a solution of an ordinary differential equation (the Euler-Lagrange
equation) [GF] [S]. Thus, for each tangent vector υ G TPD, there is
a unique geodesic γυ: (—e , e) —> D (in the sense that it is a unique
solution of an ordinary differential equation) such that γ(0) = p and
/(0) = v. It is known that for each p e D, there there is a neigh-
borhood V of 0 in TPD such that, for any vector v in V, the
curve γv is defined at least on the interval [0, 1]. As in Hermitian
geometry, we can define an exponential map exp: V —• D at p by

5.4. THEOREM [MM]. Suppose D is equipped with a Finsler metric.
Then for each point p e D, there is a neighborhood V of 0 in TPD
such that the exponential map exp: V —> D is a Cι diffeomorphism
from V onto an open set in D.

5.5. THEOREM (Whitehead). Suppose D is equipped with a Finsler
metric. Then for each point p e D, there is a neighborhood Up of
p such that any two points in Up can be joined by a unique geodesic
segment lying in Up.

5.6. DEFINITION. A Finsler metric F defined on D is geodesically
complete if any geodesic segment γ: (a, b)-*D (parametrized by its
arc length) can be extended to a geodesic in D defined on R.

Note that if F is geodesically complete on D, then the exponential
map at p is defined on TPD.

5.7. THEOREM [MM]. (1) The metric dp induces the usual topology
on D.

(2) A Finsler metric F on D is geodesically complete if and only if
the induced distance dp is complete as a topological metric.

(3) If F is geodesically complete, then any two points p, q in D
can be joined by a geodesic curve γ with length L(γ) = dp[p, q) (i.e.
γ is the shortest path joining p and q).
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6. Kobayashi simple domains and geodesies. In this section, we
prove Corollary 6.9 and Theorem 6.11 in the introduction. An in-
teresting property of a Kobayashi simple domain is that, if p and q
are close enough, then there is a (real) analytic geodesic joining p and
q. Throughout this section, x + iy denotes the standard euclidean
coordinate on C.

6.1. LEMMA. Suppose that p, q are points in D satisfying the con-
dition d*(p, q) = d(ρ, q). Let f: A -» D be an extremal map for
p, q such that f(a) = p and f(b) = q for some a e [0, 1) and
b e(a, 1). Then the following are true:

(1) f* is an isometry between F and F& along [a, b] (i.e. we have
f*F = FA at each x e [a, b]). Consequently, the length of the curve
γ: [a, b] -> D defined by γ(t) = f(t) is δ(a, b) = d*(p9q) = d(p, q).

(2) The curve γ is the shortest curve joining p and q. Since f is
analytic, γ(t) is a (real) analytic geodesic.

(3) / is an extremal map joining p and f(x) for each x e(a, b].
Also, the identity d*(p, /(*)) = d(p, f(x)) holds for all x e [a, b].

Proof. We give the proof in the order (1), (2), (3).
(i) To prove (1), observe that, by the length decreasing property of

the Kobayashi metric,

By Royden's theorem, and the extremality of / (i.e. d*(p, q)
δ(a, b))9 we have

(6.3) d(p ,q) < ] b F(γ'(t)) dt < J* FA(J- J dt

= δ(a,b) = d*(p,q)

From this, we obtain the identity

Since the function in the integral is non-negative, it has to vanish, and
this implies that / is an isometry.

(ii) To prove that γ is a geodesic, we show that γ is the shortest
path joining p and q. Suppose that a: [0, c] —• D is another curve
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joining p, q. From the inequality (6.3) and Royden's theorem again,
we compare the length of γ and σ as follows:

= f*F{γ'{t))dt = d{p,q)< Γ F(σ'(t))dt = L(σ).
Ja JO

(iii) To verify the statements (3), we claim that the inequality

(6.4) Γ:F(γ'(ή)dt<d(p,γ(x))
Ja

holds: From this inequality and the fact that / is an isometry along
[α, b] (part (1)), we obtain the following inequality:

(6.5) dt

= Γ F(γ'(t))dt < d{p, γ(x)) <
Ja

This implies the equality rf*(p, γ(x)) = dip, γ(x)) = δ(a, x). The
extremality of / follows since d*(p, γ(x)) = δ(a, x).

To prove the claim, suppose that the inequality (6.4) fails to hold
i.e.

d(p,γ{x))< Γ F(γ'(t))dt.
Ja

Note that, by Royden's theorem again, we also have d(γ(x), q) <
$χF(γ'(t))dt. Combining these two inequalities, and by (6.3) again,
we reach a contradiction:

d{p, q) < d{p, γ(x)) + d(γ(x), q) < Γ F(γ'(ή) dt + f F(γ'(ή) dt
Ja J x

= f F(γ'(t))dt = L(γ).
Ja

But, since L(γ) = d(p, q) by part (1), this yields a contradiction. D

6.6. PROPOSITION. Suppose that the domain D is Kobayashi simple
and the Kobayashi metric F is a complex Finsler metric. Let a <
0 < β. If γ: [a, β] —> D is a geodesic parametrized by arc length
parameter s, then there is a holomorphic map f: A —• D such that

(6.7) y(5)

Moreover, the identity f*F = FA holds on tanh([α, β]).

Proof. Since F is a Finsler metric, Theorem 5.5 applies and there
is an e > 0 such that the restriction of γ to the interval [0, e] is
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the unique geodesic joining p = γ(0) and q = y(e). Since D is
Kobayashi simple, we may assume d*(p, q) = d(p, q) by taking e
smaller if necessary.

Let / be the extremal map joining p and q such that /(0) = /?
and f(bχ) = <? for some b\ G [0, 1). Then, by Lemma 6.1, the curve
σ ( 0 = / ( 0 ft>Γ t G [0, &i] is also a geodesic joining /? and q. By
the uniqueness of such a geodesic, y and σ must define the same
curve up to parametrization. Recall, from Lemma 6.1 again, that /
is an isometry between FA and F on [0, b\]. Hence the arc length
of the curve σ(t) from t = 0 to t — x is <5(0, x) = t a n h " 1 ^ ) for
x € [0, δ i ] . Thus, for x e [0, b{\9 we have ^( tanh" 1 ^)) = f(x).
Therefore, the identity (6.7) is proved for s G [0, e] .

Consequently, the geodesic γ(s) is real analytic for s G (0, e).
Since the same argument can be applied to the curve yc(s) = γ(s — c)
for any c € (α, β), 7(5) is real analytic on (α, /?). Since both sides
of the identity (6.7) are real analytic, the identity (6.7) should hold
for all s e [a, β].

To complete the proof, let A = sup{x: f*F = F& on [0, x]}. Sup-
pose A < tanh β. Then we can take x$ and X\ such that XQ < A <
Xι < tanh/? and there is a unique geodesic joining p = /(jto) a n d
Q = /(*i) By taking x0 and Xi closer if necessary, we may also
assume that d*(p, q) = d(p, q). If he D(A) is an extremal map for
p, q such that h(xo) = p and A(&2) = ί f°Γ some ί?2 > xo then, by
Lemma 6.1, the curve h(t) for t G [xo, b{[ is a geodesic joining p
and ^ . Note that, if we let s$ = tanhxo and 5Ί = tanhxi, then the
curve γ(s) for s e [SQ , Si] is also a geodesic curve joining p and q:

y(s0) = y(tanhxo) = /C*o) = P, v(s\) = y(tanhxθ = /(xi) = ̂ .

Again, by the uniqueness of such a geodesic, the curves h{t) and 7(5)
should define the same curve up to parametrization. By Lemma 6.1
again, we have h*F = FA on [XQ , b{\, and hence the arc length of
the curve h(t) for t e [XQ, X] is δ(xo, x). Therefore, parametrizing
both curves by arc length, we obtain

(6.8) γ(δ(xo,x)+so) = h(x)

for x G [xo> ̂ 2]- (Note that the length <5(xo> ̂ 2) of the curve h{t)
defined for t G [XQ, bι\ is the length of the curve γ(s) defined for
s G [SQ , s\]. Hence, the identity S\ - So = 5(xo > ^2) follows and this
implies b2 = X\.)

Observe that the identity (6.8) can be simplified to y(tanh x) = h(x)
since <J(xo> x)+^o = tanhx-tanhXQ+^O = tanhx. Hence, combining
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this with the identity (6.7), we conclude that f(x) = γ(tanhx) = h(x)
for x G [xo, JCI] . This implies that f*F = h*F = FA on [0, X\]
which contradicts the fact that A < X\. Hence, we must have A =
tanhβ and f*F = FA on [0,tanhjff].

A similar method can be applied to show that the identity f*F = FA

holds on [tanh β, 0]. α

6.9. COROLLARY. Suppose that D is Kobayashi simple and the
Kobayashi metric F of D is a Finsler metric of class C2. Then the
following are true:

(1) Each point p E D has a neighborhood Up such that, for any
q eUp, there is a unique extremal disk joining p and q.

(2) Any geodesic curve of F parametrized by arc length is (real)
analytic.

Proof. Let Up be a neighborhood of p such that for any q eUp,
the geodesies joining p and q is unique and d*(p, q) = d(p, q). The
uniqueness of extremal disk follows from Lemma 6.1 (2), the formula
(6.7) and the analyticity of extremal maps. That y(t) is real analytic
directly follows from the formula (6.7). D

6.10. DEFINITION [K]. A bounded domain D is called complete if
the Kobayashi distance d is complete as a topological metric.

6.11. THEOREM. Suppose that the Kobayashi metric F on a com-
plete Kobayashi simple domain D is a Finsler metric. Then, the dis-
tance d(p, q) between any two points p, q e D, can be realized by
the Poincare distance on a single analytic disk joining p and q i.e.
any p, q eD satisfies the condition

In particular, d* satisfies the triangle inequality.

Proof. By Theorem 5.7, there is a geodesic (parametrized by arc
length) γ: [0, β] -> D with length L(γ) = d(p, q) such that y(0) = p
and γ(β) = q. By Proposition 6.6, there is a map / € D(A) such that

γ(s) = /(tanh(s))

where s is the arc length and f*F = FA on tanh([0, β]). If we let
b = tanh β, we have

/(0) = γ (0) = p, f(b) = /(tanh β) = γ(β) = p.
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Hence, we have

and the theorem is proved. D
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