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A DIFFERENTIABLE STRUCTURE FOR A BUNDLE
OF C*-ALGEBRAS ASSOCIATED WITH A
DYNAMICAL SYSTEM

Moto O’UcHI

Let (M,G) be a differentiable dynamical system, and
o be a transverse action for (M,G). We have a differen-
tiable bundle (B, n, M, C) of C*-algebras with respect to a
flat family F, of local coordinate systems and we have a
flat connection V in B. If G is connected, the bundle B
is a disjoint union of p,(C}(G)) (x € M), where G is the
groupoid associated with (M, G) and p, is the regular rep-
resentation of C}(G). We show that, for f € C°(G), a cross
section c¢s(f) : ¢ — p;(f) is differentiable with respect to
the norm topology, and calculate a covariant derivative
V(es(f)). Though B is homeomorphic to the trivial bun-
dle, the differentiable structure for B is not trivial in gen-
eral. Let B° be a subbundle of B generated by elements
f with the property V(cs(f)) = 0. We show the triviality
of the differentiable structure for B° induced from that
for B when C}(G) is simple. We have a bundle RM(B) of
right multiplier algebras and it contains B as a subbun-
dle. Let (M,G) be a Kronecker dynamical system and ¢
be a flow whose slope is rational. In this case, we have a
subbundle D of RM(B) whose fibers are *- isomorphic to
C(T). The flat connection V" in D is not trivial and the
bundle B decomposes into the trivial bundle B’ and the
non-trivial bundle D. Moreover, for a o-invariant closed
connected submanifold N of M with dim N = 1, we show
that C}(G|N) is *-isomorphic to C}(D;,®;), where &, is
the holonomy group of V" with reference point z. If G
is not connected, we also have sufficiently many differ-
entiable cross sections of B and calculate their covariant
derivatives.

0. Introduction. In the theory of C*-algebras, one sometimes
study a stable C*-algebra A ® K instead of studying a given C*-
algebra A itself, where K is the algebra of all compact operators on
the infinite dimensional separable Hilbert space. There are many
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other algebras D such that D ® X =2 A ® K. Moreover, stable
algebras do not have any identity elements. Therefore, given a stable
C*-algebra C, we want to find C*- algebras A with the property
A® K = (), especially unital ones with the property. We do not
know any general answer to the question, but there is a method to
construct such algebras A for foliation C*- algebras. Let (V, F) be a
foliation and C*(V, F) be the foliation C*-algebra introduced by A.
Connes ([1], [3]). It follows from [10] that C*(V, F) is *-isomorphic
to C;(G|N)®K, where G is the holonomy groupoid of (V, F), where
N is a complete transverse submanifold and where the groupoid
G|N is the reduction of G by N. Suppose that V is compact. If
we have dim N = codim F, then the C*-algebra C}(G|N) is unital.
To give an example, if (V,F) is a Kronecker foliation, then the
C*- algebra C}(G|N) is the irrational rotation algebra Ay for an
appropriate N. This example plays an important role in the theory
of non-commutative differential geometry by A. Connes. We refer
the reader to the works of A. Connes [2], [3], that of A. Connes
and M.A. Rieffel [4] and that of M.A. Rieffel [20]. M.A. Rieffel
also studied the example in [17], [18] from the viewpoint of Morita
equivalence. The author studied another example of C}(G|N) in
[12], [13].

From these considerations, we begin to study C*-algebras of re-
ductions of differentiable dynamical systems. Let (M, G) be a dif-
ferentiable dynamical system. We denote by G the topological
groupoid G x M and denote by C;(G) the reduced C*-algebra as-
sociated with G. We have a regular representation p, of C}(G)
on a Hilbert space H, for every x € M. For the moment we
assume that G is connected and that C;(G) is simple. We set
B, = p:(C?(G)) and denote by B the disjoint union of C*-algebras
B, (x € M). We may consider elements a of C}(G) to be cross
sections cs(a) : £ — p;(a) of the bundle B on M. Continuous fields
of C*- algebras have been studied by many authors. We refer the
reader to the book of J. Dixmier [5], those of J.M.G. Fell and R.S.
Doran [8], [9], the work of B.D. Evans [6] and that of M.A. Rief-
fel [19]. Since we study C*-algebras associated with differentiable
dynamical systems, it is natural to consider differentiable structure
for fields of C*-algebras. In the previous paper [14], the author
introduced the notion of differentiable bundles of C'*-algebras and
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that of connections in them. A. Connes first introduced the notion
of connections into the theory of C*-algebras in [2]. He defined the
notion in the setting of projective modules. On the other hand, our
definition of connections is in the setting of bundles of C*-algebras
and it is a literal translation of that in the setting of vector bun-
dles, except that our connections are compatible with x-algebraic
structures possessed by fibers.

In this paper, we introduce a notion of a transverse action o for
(M, G) and we construct a family F, of local coordinate systems for
B from local charts of (M, G) compatible with 0. Then F, defines
a differentiable structure for B. Next, we prove that the above cross
section cs(f) is differentiable with respect to the norm topology for
every f € C(G). We define a flat connection V in B with respect
to F,. Though B is homeomorphic to the trivial bundle M x C*(G),
the differentiable structure for B is not trivial, that is, V is not triv-
ial. Let B? be the subbundle of B generated by elements f with the
property V(cs(f)) = 0. Then B¢ is trivial, that is, the restriction
of V to B is trivial. We denote by RM(B;) the right multiplier
algebra of B, and denote by RM(B) the disjoint union of Banach
algebras RM(B,) (z € M). There exists a differentiable structure
for RM(B) such that B is a subbundle of RM(B) and such that
V extends to a flat connection V7 in RM(B). In the case where
(M, G) is a Kronecker dynamical system, we give a decomposition
of B into a trivial part and a non-trivial part. There exists a sub-
bundle D of RM(B) such that every fiber D, is x-isomorphic to the
commutative C*-algebra C(T) and such that BZD, generates B;.
Let V™ be the restriction of V7 to D and let ®, be the holonomy
group of V" with reference point . Note that &, is a subgroup
of the group Aut(D,) of all *-automorphisms of D,. Let N be a
o-invariant closed connected submanifold of M with dim N = 1.
Then we show that the C*-algebra C(G|N) is *- isomorphic to the
reduced crossed product C*(D,, ®;) of D, by ®,. This result means
that B decomposes into the trivial bundle B? and the non-trivial
bundle D and that D corresponds to the reduction of (M,G) by
N. This situation was studied by M.A. Rieffel in [17], [18] from
the viewpoint of projective modules. Our result describes the same
situation from the viewpoint of vector bundles.

When G is not connected, we also define a differentiable bundle
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B associated with a transverse action for (M, G) and define a flat
connection V in B. But, in this case, B, is larger than p,(C}(G))
and cross sections cs(f) may not be differentiable. We define a cross
section ¢sn,(f) of B for f € C°(G) and every connected component
m of G, and we show that the cross sections cs,,(f) are differen-
tiable. The *-algebra D, generated by elements of the form cs,, (f).
is dense in B, with respect to the strong operator topology. The
above results are valid even if G is discrete.

To find a transverse action for a given dynamical system (M, G),
it may be useful to consider the universal covering space M of M.
Suppose that the action of G on M lifts to an action of G on M.
(If G is simply connected, this assumption is satisfied.) If there
exists a transverse action for (M,G) and if it is compatible with
the covering map, then we have a transverse action for (M, G). But
we do not know any interesting examples of transverse actions for
dynamical systems (M, G) such that the connected components G,
of G are not abelian, and it is difficult to find such examples. This
is the problem for further investigation.

1. Preliminaries. (a) Commutative dynamical systems. Let
(M,G) be a topological transformation group. We assume that
a topological space M and a topological group G are second count-
able, Hausdorff and locally compact. We denote by G a topological
groupoid G x M with the following operations; s(g,z) = (e, z),
r(g,2) = (e, 92), (¢',92)(9,7) = (9'9,3), (9,2)~" = (97, gz) for
z € M and g, ¢ € G, where e is the unit of G. We set G, =
{(g9,z) € G;9 € G} for z € M. Let p be a right Haar measure
on G and A be the modular function of G. We define a right Haar
system {v;;x € M} on G by v, = ux ;. Let C.(G) be the x-algebra
of continuous functions with compact supports, where the product
and the involution are defined as follows:

(fi* f2)(g /f1 L 9'97)f2(9'9, ) du(g’),
f*(g,2) = flg71, gz)

for f, fi, f2, € Cc(G) and (g,z) € G. We denote by H, the Hilbert
space L%(G,,v;) for x € M. We define the regular representation
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pz of Cc(G) on H, by

(p=(NE)9,7) = [ £(9g™,92)E(9',2) dg)

for f € C.(G), € € H, and (g,z) € G,. We define the reduced norm
1171163 1711 = 5ubcaq [192(/)]I. We denote by C?(G) the completion
of C.(G) by the reduced norm. The representation p, extends to a
representation of C?(G), which we denote again by p, . For details
of groupoids and their C*-algebras, we refer the reader to [1], [3]
and [16].

LEMMA 1.1. Let f be an element of C.(G) and D be a compact
set in G such that supp f C D x M. Then the following inequality
holds: ||pz(f)|] < Ip||f]leo, where ||f]|oo is the supremum norm of

f and Ip = [, AY?(g) du(g).

Proof. Let xp be the characteristic function of D. For &, n € H,,
we have

/lf L, d'92)E(g'g, x)n(g, z)| du(g)
< (/ 1f(g7, g'92)|l€(d'g, ) du(g))

(/ 1f(g, g'9z)|In(g, )|2du(9)>l/2

<[ flleoxn (g ~IIIMNAY2(g") €]
Then we have |(p: (f)11)| < In|| fIlool 71111 O

We introduce a *-algebra of functions on G x G. Let C be the
set of bounded continuous functions K on G x G with the following
property; there exists a compact set D in G such that supp K C
G x D. The set D may vary when K varies. Then C is a *-algebra
with the following product and involution;

(K, * K2)(g,9') = /GKl(g,g"‘l)Kz(g"g, 99" dulg),

K*(9,9") =K(g'"1g,9'77)

for K, K1, K, € C and (g,¢') € G x G. We denote by # the Hilbert
space L*(G, ). We define a x-representation p of C on H by

= /G K(g,9)¢(g'9) du(g")

1/2
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for K € C, € € H and g € G. We can prove the following lemma
by a similar computation to that in the proof of Lemma 1.1.

LEMMA 1.2. Let K be an element of C and D be a compact set in
G such that supp K C G x D. Then the following inequality holds:
lp(E)|| < Ip||K||oo-

(b) Differentiable bundles of C*-algebras. With a few modifica-
tions on the definitions in [14, §1], we summarize the necessary
facts. Let e;,...,e, be the standart basis of R* and z,,...,z, be
the canonical coordinate functions of R*. Let €2 be an open subset
of R* and f be a map of Q2 into a Banach space C. If there exists
limy, 0 A=Y(f (z + he;) — f(z)) with respect to the norm in C, then
we denote the limit by (8f/dz;)(z). We say that f is differentiable
of class (C™)' on Q if the partial derivatives 0°f/0z* exist and are
continuous on §? for all multi-indices c.

DEFINITION 1.3. (c.f. [14, Definition 1.1] ). Let M be a finite
dimensional real manifold of class C*° and A be the complete atlas
defining the structure of M. A map f of M into a Banach space
C is said to be of class C*® if f o ¢! is of class (C*)’ on ¢(U) for
every (U, p) € A.

We assume that a real manifold M is second countable, Hausdorff
and of class C*™. Let B be a topological space, C be a C*-algebra
and 7 be a continuous map of B onto M. We set B, = n~!(z) for
z € M and suppose that B, is a C*-algebra. (It is easy to rewrite
the rest of this section for Banach algebras C and B,. We leave
it to the reader.) Let {U;} be an open covering of M indexed by
a set I and 1; be a homeomorphism of 7~!(U;) onto U; x C such
that p; o ¢;(b) = w(b) for b € n~1(U;), where p; : U; x C — U;
is the projection. For z € U;, we define a map 1;, of B; into C
by i z(b) = p2 0 9;(b) for b € B,, where py : U; x C — C is the
projection. We denote by F the set of pairs (U;, ;) (3 € I).

DEFINITION 1.4. (cf. [14, Definition 1.2]). A quartet
(B, m, M, C) is called a differentiable bundle of C*-algebras with
respect to F if F satisfies the following conditions:

(i) For every i € I and = € U;, v;, is a *- isomorphism between
C*-algebras.

(i) Fori, j € J with U;NU; # @ and for a map f of U;NUj; into
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C, define the map f; ; of U;NUj into C by f; j(z) = ¢iz09;,0 f(z).
If f is of class C*, then f; ; is of class C*.

Let F be a family satisfying the above condition (i). We say that
F is a flat family of C*-coordinate systems if it satisfies the following
conditions:

(iii) For every ¢, j € I with U;NU; # @ and for every connected
component U of U; N Uj, there exists a x- automorphism o of the
C*-algebra C such that a = ¢; ; 0 ¢, for all z € U.

Let & be a map of an open set U of M into m~!(U) such that
(&) =z forz € U. For i € I with U;NU # @, define the map &
of U;NU into C by &(x) = 9;2(&;). We say that £ is a differentiable
cross section on U if§; is of class C™ for every ¢ € I with U;NU # @.
We denote by I'(B) the x-algebra of all differentiable cross sections
on M. Let TM be the tangent bundle on M, I'(T' M) be the space
of C* vector fields on M and T*M be the cotangent bundle on M.
We denote by 7*M ® B the tensor product of 7*M and B as real
vector bundles. Let & be a cross section of T*"M ® B. If z1,... ,z,
is a local coordinate system in M, then we have &, = 3 (dzx), ® bE
with b € B,. We say that ¢ is differentiable if the cross sections
z +» bk are differentiable. Let I'(T*M ® B) be the two-sided I'(B)-
module of differentiable cross sections of 7*M ® B. We define the
involution on ['(T*M ® B) by & = 3 (dzx), ® (b5)*. We denote by
C>®(M,R) the space of real-valued C* functions on M.

DEFINITION 1.5. (c.f. [14, Definition 1.3]). Let (B, =, M, C)
be a differentiable bundle of C*-algebras and D be a x-subalgebra of
['(B) such that f¢€ € D for f € C*°(M;R) and £ € D. A linear map
V of D into I'(T*M ® B) is called a connection in B with domain
D if it satisfies the following conditions: (i) V(f¢) =df @+ fVE,
(i) V(€n) = (VEn +&(Vn), (i) (VE)(X) € D, (iv) V(E) =
(V&)* for &, ne D, f e C°(M;R) and X € I'(TM).

Suppose that the family F is flat. Let V be a connection in B
with domain I'(B) and (V, zy,...,z,) be a local coordinate system
in M. For £ € T'(B) and i € I, we set §(z) = iz (&;). We say that
V is a flat connection if we have

Uia(VO(X)2) = Y anlo) g (@) (@€ V D),

k=1
for X € I'(TM) with X, = ¥ ax(z)(8/0zk). (c.f. [14, Definitionl.6],
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[11, Chapter II, §9]). Then the following lemma is obvious.

LEMMA 1.6. If (B, m, M, C) is a differentiable bundle of C*-
algebras with respect to a flat family F, then there exists a unique
flat connection in B.

2. Transverse actions and bundles of C*-algebras. Let M
be an n-dimensional real manifold of class C* and G be a p-di-
mensional real Lie group of class C*. In the following sections, we
assume that M and G are second countable and Hausdorff and that
0<n<ooand 0 < p < oco. If p =0, then G is a countable
discrete group. Moreover we assume that M is connected. Suppose
that (M, G) is a differentiable dynamical system, that is, (M, G) is
a transformation group and the map (g,z) — gz of G x M into M
is of class C*°. Let G, be the connected component of the unit e in
G. We denote by A the countable discrete group G/G. and denote
by G, the connected component of G corresponding to m € N.
We take notations from §1, and also use the following notations;
Gm = G X M, gm,z =GnNG;,, H™ = L2(Gma/“|Gm)a H:T =
L*(Gmz, Ve|Gmz), for m € N and x € M. Let P™ € B(H,) be the
projection on H* and P™ € B(H) be the projection on H™. We
denote by N (G) the set of families ¢ = (f;)men With the following
properties; (1) fm € Cc(G) (m € N), (2) suPpen | fmllo < +00,
(3) there exists a compact set D in G such that supp f, C D x M
for all m € N. We set ||C|| = sup,, || fm!|oo-

LEMMA 2.1. For ¢ = (fm)mé/\/ € N(g)’ the sum ﬁz(C) = YmeN
Pz(fm) Pt converges with respect to the strong operator topology in
B(H.), and the following inequality holds: ||5:({)|| < Jpl|¢||, where
D is any compact set in G such that supp f, C D X M(m € N),
and Jp is a constant depending only on D.

Proof. We set D,, = DNG,,. There exist elements m(1),... ,m(k)
of NV such that D is the disjoint union of non-empty sets D1y, . - . ,
Dm(lc)- Then we have px(fm)P::n = ZIEA(m) Pépz(fm)P:z, where
A(m) = {m@i) m;i=1,...,k}. If we have (Plp,(fn)P"€)(9,z) #
0, then there exists g’ € Gy, such that gg ~! € Dj,-1. This implies
that we have Im™! = m(:) for some 7 with 1 < 7 < k. We set
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B(l)={m@G)""leN;i=1,...,k}. We have

kY D 1Ppa(fm) PREII

leN meB(l)

Y Palfm)PrE

meN

Note that m € B(l) if and only if [ € A(m). Thus we have
> 2 Pp(fm) PREIP < IBIICHP 30 11PN

leN meB(l) meN
O

Let B, be the C*-subalgebra of B(#,) generated by {5:(¢); ¢ €
N(G)}. Since we have p;(¢) = po(f) for ( = (fm) With fr = f
for all m € N, B, contains p,(C*(G)). If G is connected, then
we have B, = p,(C*(G)). If G is not connected, then B, may not
be separable. For x € M and f € C.(G), we define K € C by
K!(g,4") = f(¢',g 'gz). For m e N, we define x,, € C®(G x G)
as follows; Xm(g,9") = 1if ¢"'g € G, and Xm(g, 9 ') = 0 oth-
erwise. For ( = (fm) € N(G), we define K$ € C by KS =
Y men K™ Xm. We denote by C, the C*-subalgebra of B(#) gener-
ated by {p(K $); ¢ € N(G)}. We define an isometry T of #, onto
by (Tn)(g) = n(g, z) for n € H,. We set ¢z(a) = TaT™* for a € B;.
For g € G, and a € C, we set ¥(z, g)(a) = RyaR;, where R is the
right regular representation of G on ‘H. Then we have:

LEMMA 2.2. For x € M, there ezists a unique spatial isomor-
phism 1, of B, onto C, such that 1¥,(p-(¢)) = p(KE) for ( € N(G).

LEMMA 2.3. Forx € M and g € G, there erists a unique spatial
isomorphism ¥(z,g) of C, onto Cyg such that ¥(z,g)(p(K%)) =
p(K,) for ¢ € N(G).

We denote by Diffg(M) the group of diffeomorphisms of M which
commute with the action of the connected component G, on M. For
a € Diffg(M) and m € N, there exists a diffeomorphism ¢, such
that ga(z) = am(gz) for all g € G, and z € M. If G is discrete,
then we have Diffg(M) = Diff(M), the group of all diffeomorphisms
on G. For a € Diffg(M) and ¢ = (fm) € N(G), we define a(() €
N(G) by G(C) = (Gm(fm)), Where Gm(fm)(0:2) = (g, 05}(3)).
For ¢ € N'(G), we have K&'©) = K¢, . Thus we have:
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LEMMA 2.4. For a € Diffg(M) and z € M, C; = Cy(z)-

Remember that dim M = n and dim G = p. We assume that
n > p. Let 0 : R*? — Diff¢(M) be a differentiable action, that is,
o is a homomorphism and the map (z,t) — oy(z) is of class C*°.

DEFINITION 2.5. Let U be a connected open set in M. Suppose
that there exists a C* diffeomorphism ¢ of U onto S x T, where
S is an open set in G, with e € S and T is an open set in R*P
with 0 € T. Then the pair (U, p) is called a local chart of (M, Q)
compatible with o if it satisfies the following conditions;

(i) ¢7'(g,t) = gp~'(e,1),

(i) ¢ X(g,t) = o1(¢p(g,0)) for all (g,t) € S x T.

Let (U, ) be a local chart compatible with o as above. We set
zo = ¢ !(e,0). For z € U with p(z) = (g,t), we have g~'z =
oi(zg). It follows from Lemmas 2.2, 2.3 and 2.4 that the map
U(z,97!) 0 9, is a spatial isomorphism of B; onto Cy, for z € U
with o(z) = (g,t). We set 1, = ¥(z,g7!) o ¢,. Then we have the
following:

PROPOSITION 2.6. Let (Ui, ¢1) and (Us, p2) be local chatrs com-
patible with o and U be a connected component of Uy NUs. If ;4 is
the x-isomorphism of B, onto Cy, as above with respect to (U;, p;)
with z; = ;' (e,0) (i = 1,2), then there ezists a x-isomorphism o
of Cy, onto Cy, such that a =1y, 09i, forallz € U.

Proof. For 1 = 1,2, we set ¢;(U;) = S; xT; as in Definition 2.5. We
fix z € U and suppose that ¢;(z) = (g;,t;) (¢ = 1,2). Let z’ be an
element of U such that o;(z') = (g¢},t.) (i = 1,2). We set go = ¢, 97"
and ty = t; — t}. Let Up be a sufficiently small neighborhood of z
in U. For 2’ € Uy, we have goz = 01,(2'), p2(90x) = (gog2,t2) and
2(04, (2)) = (gh, to +15). Since we have (goga,t2) = (g5, to +1t5), we
have g;'g; = g5 'g. Since we have 1, 0 91 s = ¥(z1,95"g:) and
Yoo oY e = U(T1, 57" g}), We have 1, 0 Y} = tho 0 09y 4. Since
U is a neighborhood of z, this completes the proof of Proposition

2.6. O

We denote by B the disjoint union of C*-algebras {B,;z € M}
and denote by 7 the map of B onto M defined by 7(a) = z for a €
B,. Let {(U;, ¢;)} be the set of all local charts of (M, G) compatible
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with o indexed by a set I and let v; , be the x-isomorphism of B,
onto C;, constructed as above from (U;, ¢;) with z; = ¢; (e, 0). We
define a map ¢; of 7~1(Uj;) onto U; x Cy; by ¢;(a) = (z,vi.(a)) for
a € B,. Let F, be the set of pairs (U;, ;) (¢ € I) constructed as
above.

DEFINITION 2.7. A differentiable action o is called a transverse
action for (M, G) if the family {U;;7 € I} is an open covering of M.

In the following we assume that o is a transverse action for
(M, G). It follows from Proposition 2.6 that there exists a unique
topology on B such that 7 is continuous and 1); is a homeomorphism
for all 2 € 1. Since M is connected, the C*-algebras C, are mutually
* -isomorphic. Therefore, for a fixed £ € M, we set C = C; and fix
a *-isomorphism between C and C,, for every ¢ € I, and then we
identify C;, with C by this isomorphism. Thus we consider %; ; to
be a *-isomorphism of B, onto C and ; to be a homeomorphism
of 7=Y(U;) onto U; x C. By virtue of Proposition 2.6, we have the
following theorem:

THEOREM 2.8. Suppose that o is a transverse action for (M, Q).
Then the quartet (B, w, M, C) constructed above is a differen-
tiable bundle of C*-algebras with respect to the flat family F, of
C*-coordinate systems.

3. Differentiable cross sections. For f € C®(G) and m € N,
we define an element [f],, = (fm) of N(G) by fn = f and fr, =0
if kK # m, and define the cross section ¢s,,(f) of B by csm(f): =
pz([flm) (x € M), that is, csp(f)z = p(f)PX. If G is connected,
we set ¢s(f) = cse(f), where N = {e}, and we have cs(f); = p(f)-
Let o™ : R*? — Diff (M) be a differentiable action such that
o™ = gooog ! for every g € G,,. We prepare a lemma for proving
the differentiability of csp,(f).

LEMMA 3.1. For F € C®(R* P x G) and t € R*?, define an
element F; of C*(G) by Fi(g,z) = F(t,9,z). Let ty be an element
of R*?. (i) The supremum norm ||F; — Fi || converges to 0 as
t — to. (ii) Let J be an open interval in R containing 0, and let
t(-) be a C? map of J into R*P with t(0) = to. Define an element
f of C=(G) by f(g,z) = Si=F(0F/dt;)(to, g, x)(dt;/dh)(0), where
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t(h) = (t1(h), ... ,tn—p(h)). Then ||h™ (Fyn) — Fi,) — flloo converges
toQ as h — 0.

The proof is elementary, and we omit it.

THEOREM 3.2. The cross section csp,(f) is differentiable, that is,
csm(f) € T(B), for every f € CX(G) and m € N.

Proof. We fix i € I, that is, we fix (U;,¢s) in F, and a local
chart (U;, ;) compatible with o. Recall that ¢; is a diffeomorphism
of U; onto S x T, where S and T are open sets of G, and R*?
respectively. Let (U, ¢o) be a local coordinate system of M such
that U;NUy # @. Weset U =U; NUp and V = po(U). We define
C* map z(v) of V into U by z(v) = ¢5'(v) and define C* maps
g(v) of V into S and t(v) of V into T by ¢i(z(v)) = (g(v),t(v)).
We set { = csp,(f) and define maps 5, of U; into C and n of V into
C by &(z) = i.(€;) and n = & o ¢! respectively. It follows from
Lemmas 2.2 and 2.3 that we have n(v) = p(K 9(1],’)"_ 2(v))- We have
9(v)~'z(v) = 0y (i), where z; = ¢ '(e,0). We define an element
F of C*°(R*? x G) by F(t,g,z) = f(g,0™(z)). We have

KL, o Xm = KL aXom | < 1Fi) = Falloos for u, v € V.

Let E be a compact set in G such that supp f C E x M. It follows
from Lemma 1.2 that we have ||n(v) — n(u)|| < Ig||Fiw) — Fiu)lloo-
By virtue of Lemma 3.1 we know that 7 is continuous on V.

Let ey, ... ,e, be the standard basis of R* and vy,...,v, be co-
ordinate functions of R" associated with ey,... ,e,. We fix an el-
ement v of V. For a fixed k = 1,...,n, let § > 0 be such that
u + hey € V for |h| < §. We denote by J the interval {h; |h| < 6}
in R. We define a C* map 7 of J into T by 7(h) = t(u + hex). For
j=1,...,n—p, we define an element f[* of C°(G) by f*(g, ) =
(0/08)(£(9, 07 (x)))lizo. We set t(v) = (1(0), .- ,tn_p(v)) and
7(h) = (n(h),... ,Ta—p(h)). We define an element a of CX(G)
by a(g,z) = X;-F(0F/0t;)(7(0), g, z)(d7;/dh)(0). It follows from
Lemma 3.1 that h™!(Fyn) — Fr(0)) converges to a as h — 0. Let K
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be a function on G x G such that f{h(g, g') is equal to
f f '
h {KG' (h)(zl)Xm - KUT((])(zi)Xm} (g) g)

- Z ( a,(o)(z,)xm) (9, g)gt;( )-

We have || K| < ||h(F, ) — Fr(0)) — alloo. We set &7 = csm(f)
and define maps & of U; onto C and 7/ of V into C by & (z) =
¥io(&l) and 77 = & o @y respectively. It follows from Lemma 1.2
that we have

(e ) = 3 P 52 0)

< Ip|lh™ (Fry — Fr(ﬂ))—alloo-

Therefore we have (9n/0uvg)(u) = X527 77 (u) (0t /Ovi)(u). As we
have seen in the first half of this proof, 7’ is continuous on V.
Therefore 7 is of class (C!)’ in the sense of §1. Similarly 7 is of
class (C')' for j = 1,... ,n—p. Therefore we know that 7 is of class
(C*)" and that ¢&; is of class C* in the sense of Definition 1.3. This
completes the proof of Theorem 3.2. O

Recall that T'(B) is not only a *-algebra but also a C*(M) -
module. We denote by D the x-subalgebra of I'(B) generated by
elements of the form w - cs,,(f) with f € C®(G), m € N and
w € C®(M). Then D is also a C*(M)-submodule of I'(B). For
z € M, we set D, = {{, € B,;;¢{ € D}. Note that D, is the *-
subalgebra of B, generated by elements of the form p,(f)P* with
f € C®(G) and m € N. If N is finite, then D, is dense in the norm
topology of B, for every x € M. If N is infinite, then D, may not
be dense in the norm topology, but it is dense in the strong operator
topology of B, by Lemma 2.1.

4. Flat connections. It follows from Lemma 1.6 that there ex-
ists a unique flat connection V in B. In this section we calculate
V(esm(f)) explicitly.

LEMMA 4.1. For j =1,... ,n — p, there exists an element w’ of
D(T*M) such that wi( I)—- (tjopeoyp) (X e (TM), z € U)
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for every local chart (U, ¢) of (M,G) compatible with o, where p, is
the projection of G. x R*™ onto R*™P and t; is the j-th coordinate
function of R*P.

Proof. Let {wi;k = 1,2,...} be a partition of unity on M sub-
ordinate to the cover {U;;: € I'}. Let i(k) be an element of I such
that supp wp C Ujxy. We define w! by w! = ¥R, wid(tj o pp 0
Pi(k))- O

THEOREM 4.2. The flat connection V in B satisfies the following
equation;

V(esn() = S0 @ csm(f) (f € C2(G) m € N),

=1

where f(g,z) = (0/0t;)(f(9,07"(x)))le=0- In particular, a cross
section (VE&)(X) is an element of D for every £ € D and X €
(TM).

Proof. Let {wi} be the partition of unity as in the proof of Lemma
4.1 and (k) be an element of I such that supp wi C Ujx). Let (V, )
be a local coordinate system of M and zi,...,z, be coordinate
functions associated with (V,7)). We sgt £ = cspm(f) and & =
csm( "), We set Eige)(z) = Yige)a(e) and &gy = Y,z (€2), and then
we set 1) = &(k)ow‘ and 7 = §z k) op~l. We set t( ) =t O D20 Pi(k)-
It follows from the proof of Theorem 3.2 that we have (617/81)1) =
Yot (Bf;(k) o 1~1/0v;). Since we have Y52, (dwr/dz;) = 0, we
have

oo n—p "‘(k)

sz(k)m(wk—&(k ) EZwk(w

k=1 j=

o (@)

Let X be an element of I'(T'M). It follows from Lemma 4.1 that
we have (V€)(X), = X527 wi(X;)&. This completes the proof of
Theorem 4.2. O

In the rest of this section, we assume that G is connected and that
C}(G) is simple. The following proposition shows that the bundle
B is topologically trivial, but the differentiable structure for B is
not trivial as we shall see in the next section.
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PROPOSITION 4.3. Suppose that G is connected and that C;(G)
is simple. Then the bundle B is isomorphic to the product bundle
M x C¥(G) as topological vector bundles.

Proof. We set A = C*(G). Since G is connected, we have g, = p;.
Since A is simple, p, is a *- isomorphism of A onto B,. For: € I, we
define a *-isomorphism ©;, of A onto C by ©;, = v¥;; 0 pz, where
(Ui, ;) € F,. Fora € A, we define a map 7, of U; into C by ne(z) =
©;:(a). For f € C*(G), it follows from the proof of Theorem 3.2
that 7y is continuous. Since O, is isometry, the map (z, a) — n,(z)
is continuous on U; x A. For ¢ € C, we define a map 7, of U; into A by
fle(z) = ©;,(c). The map (z,c) — 7(z) is continuous on U;xC. We
define a map ©; of U; X A onto U; X C by 0;(z,a) = (z,n.(z)). Then
we have ©;'(z,c) = (z,7.(z)). Therefore ©; is a homeomorphism.
We define a map © of M x A onto B by ©(x,a) = p(a). Then
we have 1), 0 © = O; for every i € I. Since the topology of B is

determined by {;}, © is a homeomorphism. O

We denote by C>°(G)° the x-algebra of all elements f of C°(G)
with the property that V(cs(f)) = 0. It follows from Theorem 4.2
that f is an element of C°(G)° if and only if we have f(g, 0¢(z)) =
f(g,x) for all t € R*? and (g,z) € G. Let C}(G)? be the C*-
subalgebra of Cf(G) generated by C°(G)?. We set B = p,(C;(G)7).
We set B° = UzenBZ and 77 = 7|B?, the restriction of m to B?.
For (Uz,’l/)z) € F,, we set 1/);7 = ’(,bi'(?TU)-l(Ui) and 'gb:z = ’l/)z,zIBg (III S
U;). We denote by FZ the set of (U;,9?) (¢ € I). Let CJ be the
C*-subalgebra of C, generated by elements p(K}) (f € C*(G)?).
Then ¢f, is a *-isomorphism of B onto C7 . Let Z be the element
chosen in §2 so that we can identify C,, with C = Cz. We set
C° = Cg. Then we may identify the subalgebra Cy. of C;, with the
subalgebra C? of C. Thus we consider 7, to be a *-isomorphism
of BZ onto C? and %¢ to be a homeomorphism of (77)~!(U;) onto
U; x C°. We denote by ©7 the restriction of © to M x C;(G)?,
where O is the homeomorphism defined in the proof of Proposition
4.3. Then we have the following:

PROPOSITION 4.4. Suppose that G is connected and C;(G) is
simple. The quartet (B°, n°, M, C°) is a differentiable bundle of
C*-algebras with respect to the family FZ. Moreover the differen-
tiable structure for BY is trivial in the following sense: There exists
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a homeomorphism ©° of M x C*(G)? onto B° with the following
property; for every (U;,y¥7) € FZ, there ezists a *-isomorphism o;
of C(G)? onto C° such that Y7 o ©F = id; X «;, where ©7 is the
restriction of ©7 to U; x C}(G)? and id; is the identity map of U;
onto itself.

We denote by RM(A) the Banach algebra of all right multipliers
of a C*-algebra A on a Hilbert space ([15, 3.12]). Let RM(B)
be the disjoint union of Banach algebras RM(B;) (x € M) and
7 be the map of RM(B) onto M defined by 7(a) = z for a €
RM(B,). Let (U;, %) be an element of F,. It follows from Lemmas
2.2 and 2.3 that v, is spatial for every z € U;. Therefore we
can extend 1; ; to an isomorphism 4); , of RM(B,) onto RM(Cy,).
We define a map v; of #~1(U;) onto U; x RM(Cy,) by vi(a) =
(z,v; z(a)) for a € RM(B,). We denote by F, the set of (U;, 1)
(¢ € I). Moreover we may identify RM (C,,) with RM(C). Thus we
consider 1); ; to be an isomorphism of RM(B,) onto RM(C) and
1; to be a homeomorphism of 7~1(U;) onto U; x RM(C). Then
the quartet (RM(B), ®, M, RM(C)) is a differentiable bundle
of Banach algebras with respect to the flat family F, of Banach
coordinate systems. It follows from Lemma 1.6 that there exists a
unique flat connection V in RM(B).

5. Examples. (a) Kronecker dynamical systems and irrational
rotation algebras. Let M be the two-torus T? = R?/Z2%. For p €
R U {oo}, we define an action F* of R on M by Ff'(z1,z2) = (21 +
t,zy + pt) if u € R and by F°(z1,22) = (21,22 + t) ((z1,22) €
M,t € R). Let G be the real line R and 6 be an irrational number.
We define an action of G on M by t -z = F/(z) for t € G and
z € M. For p € QU {oo}, we define an action o of R on M by
o= F* Forzy= (29,23) € Mande >0, weset S =T ={t e
R; |t| < €}. We define a map ¢y of S x T into M by @o(t1,t2) =
t1 - 01,(20). We set U = ¢o(S x T). If € is small enough, then
o is a diffeomorphism onto U. In this case, we set ¢ = ¢! and
(U, p) is a local chart of (M, G) compatible with o. Therefore o is
a transverse action for (M,G). It follows from Theorem 2.8 that
there exists the differentiable bundle (B, m, M, C) of C*-algebras
with respect to the flat family F,. Let V be the flat connection in B
(Lemma 1.6). For f € C(G), it follows from Theorem 4.2 that we
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have, V(cs(f)) = (adz; +bdz,) ®cs(f1), where a = —0/(u—80), b=
1/(p — 0) and f; = 0f/0z1 + p(0f/0z2), if p € Q and we have
V(es(f)) = (—0dzy + dza) ® cs(8f /0z2) if p = oo.

First, we suppose that 4 = oo. For u € C(T), we define an
operator rm(u); on H, by (rm(u){)(t,z) = u(zs + 6t)((t,z) for
z = (21,22) € M, ( € Hy, and t € G. For f € C.(G), we have
pz(f)rm(u)m = px(f ' u)’ where (f ' u)(t? 371,:62) = f(t’ ml,x?)u(:c?)'
Therefore rm(u), is an element of RM(B,). We denote by D, the
set of elements rm(u), (u € C(T)). Then D, is a C*-subalgebra of
B(#.) and D, is *- isomorphic to C(T). Note that f is an element
of C®(G)? if and only if there exists an element f of C®(R x T)
such that f(t,z;, ;) = f(t, ;). Therefore BS D, generates B,. Let
D be the disjoint union of D, (x € M), =" be the restriction of 7
to D and ¢! be the restriction of ¢; to (7")~}(U;) for (U, ;) € Fo.
We denote by F7 the set of (U;,9f) (¢ € I). Then the quartet
(D, n", M, C(T)) is a differentiable bundle of C*-algebras with
respect to the flat family F] of C*-coordinate systems. We denote
by V" the unique flat connection in D (Lemma 1.6). Let (U, ) be
an element of F, constructed from the above local chart (U, ). We
denote by 9" the restriction of ¥ to (77)~}(U) and denote by 9! the
restriction of ¢, to D, for x € U. For x = (z1,z2) € U, we have
(Wr (rm(uw);)¢)(s) = u(—0(zy — 2?) + 22+ 05)((s) foru € C(T), ¢ €
H and s € R Let (z1,22,23) be a natural coordinate system of
U x T as a subset of T> = R3/Z3. We denote by C°(U x T) the
set of all C* functions f on U x T with the property that partial
derivatives 0% f /0z* are bounded for every multi-index o and every
natural coordinate system Z. For v € C(U x T), we define a map
rm(v) of U into D by rm(v), = rm(vs), for x € U, where v, is
an element of C(T) defined by v,(z3) = v(z,z3). As in the proof
of Theorem 3.2, we can show that rm(v) is a differentiable cross
section of D on U for v € Cg°(U x T), and we have V" (rm(v)) =
dzy ® rm(vy) + dzo ® Tm(vy), where v; = dv/0x, — 0(0v/0x3) and
ve = Ov/0x9 + Ov/0z3. Moreover we have V" (rm(v)) = 0 if and
only if there exists an element u of C*°(T) such that v(z1, z2, z3) =
u(0(z, — 29) — (2o — 29) + z3).

Let [a, b] be a closed interval in R, and v : [a,b] — M be a smooth
curve, that is, v extends to be a C* map of (a — €,b + ¢) into M
for some ¢ > 0, which we denote again by v. We shall say that a
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map £ of [a,b] into D is a smooth curve in D if £ extends to be
a map of (a —&,b+ ¢) into D, which we denote again by &, such
that 77(£(¢)) = 7(¢) and the map ¢t — 97, (£(?)) is of class C*
for every i € I. Next suppose that < is a piecewise smooth curve.
By definition there exists a partition a = ay < a; < - < ap = b
such that v|[a;, a;+1] is smooth for every j ([21, Definition 1.41]).
We shall say that a map £ of [a,b] into D is a piecewise smooth
curve in D if €|[aj, aj41] is smooth for every j. For a piecewise
smooth curve § in D, we define V" (£)(¥(t)) € D, by V() (¥(t)) =
(V) 1 ((d/dt) (W] (€(1)))) (cf. [14, §1]). A horizontal curve &
in D is a piecewise smooth curve in D such that V7(£)(¥(t)) = 0
for every t € [a,b] (c.f. [11, Chapter II, §3]). Then we have the
following:

LEMMA 5.1. Let 7 : [a,b] = M be a piecewise smooth curve with
v(a) = v(b) = z. For every A € D,, there exists a unique horizontal
curve &4 tin D such that £4(a) = A. Foru € C(T), define an element
h(u) of C(T) by £a(b) = rm(h(u)),, where A =rm(u);. Then there
ezists an integer k such that h(u)(s) = u(s + kf) (s € T) for every
u € C(T).

Proof. We fix ty € [a,b]. Let (U,9") and (U, ) be as above
with g = (t). Let V be a connected neighborhood of t, such
that y(t) € U for every t € V. Then we have £4(t) = (¢])) " o
Vi) (£a(to)) for ¢ € V. This implies the existence and the unique-
ness of £4. Let u, be an element of C(T) such that {4(t) = rm(us).()-
We set y(t) = (n(t),72(t)) and z;(t1,t2) = 7;(t1) — 7;(t2) for
J =1, 2. Then we have u;(—0z1 (¢, to) +72(t) +0s) = uzy(Y2(to) +6s)
(s € T). Thus we have A(u)(s) = u(s+ kf) for an integer £. ad

By virtue of Lemma 5.1, one can define a *-automorphism 57
of D, by iALA,(A) = €4(b). This automorphism is called the parallel
displacement along the curve y. We denote by C(z) the set of piece-
wise smooth curves starting and ending at . The holonomy group
@, of V™ with reference point z is the group of all automorphisms
h, (v € C(z)) (c.f. [11, Chapter II, §4]). We define an action o of”~
Z on C(T) by ox(u)(t) = u(t + k0) for u € C(T), k€ Zand t € T.
It follows from Lemma 5.1 that (D,, ®,) is isomorphic to (C(T), c).
Therefore the reduced crossed product C}(D,, ®,) is *-isomorphic
to the irrational rotation algebra Ag. On the other hand, let N be a
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o-invariant closed connected submanifold with dim N = 1. Then N
is of the form {z;} X T for some z; € T, and C}(G|N) is *-isomorphic
to Ag. Therefore C(G|N) is *-isomorphic to C*(Dy, ®,).

Next, we suppose that p is rational, say u = p/q for relatively
prime integers p and q. There exist integers a and b such that pb —
ga = 1. We define a diffeomorphism S of M as follows; S(z;, ;) =
(pzy — qxo, —azy +bx,) for (z1,z2) € M. Weset v = (—a+b8)/(p—
g6) and define actions Fandéby F, = So FfoS! and 6, =
S o0, 0S8 !. Then we have F, = F,_q and 6, = F{. Since
the system (M, F°, o) is conjugate to (M, F, &) by S, we have
a similar result to that obtained above. Note that C}(G|N) is *-
isomorphic to A, for every o-invariant closed connected submanifold
N with dim N = 1. We can summarize the conclusion just obtained
as follows:

THEOREM 5.2. Let o be a transverse action for (M,G) defined
by 0 = F* for p € QU {oo} and let (B, m, M, C) be a differen-
tiable bundle of C*-algebras with respect to F,. Then there exists
a subbundle (D, =", M, C(T)) of (RM(B), #, M, RM(C)) with
the following properties; (i) BZD, generates B, for every z € M,
(ii) Cr(G|N) is x-isomorphic to C}(Dy, ®;) for every x € M, where
N is a o-tnvariant closed connected submanifold of M with dim
N =1 and ®, is the holonomy group of the flat connection V" in
D.

(b) An action of a semi-direct product group. Let S be an element
of SL(2,Z), A be an eigenvalue of S and (1,6) be an eigenvector of
S with respect to A\. We suppose that 6 is real and irrational. Let G
be a semi-direct product group of Z and R defined by (n,t)(m,s) =
(n + M,A™™t + s) for (n,t), (m,s) € Z x R. We may identify
the group A with Z and a connected component G,, is the set of
elements of the form (m,t) (¢t € R) for m € Z. Let M be the
torus T2. Since we have SF? = FY,S, we can define an action of
G on M by (n,t) -z = S"F!(z) for (n,t) € G and z € M. Let
v be the other eigenvalue of S and (1, u) be an eigenvector of S
with respect to v. We set g, = F} fort € R. Asin (a), o is a
transverse action for (M, G). Let (B, m, M, C) be a differentiable
bundle of C*- algebras with respect to the family ¥, and let V be
the flat connection in B. It follows from Theorem 4.2 that we have
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Viesm(f)) = v™(adz, + bdzy) ® csm(f1), where a = —0/(u — 6),
b=1/(p—0) and f1 = 8f/0z1 + pu(0f/0z,) for m € Z and f €
C°(G). We denote by N the submanifold {0} x T of M and denote
by B(S, ) the reduction C*-algebra C;(G|N). This algebra was
studied in [12, 13, 14]. It follows from (7] and [13] that it is a
simple algebra. We do not have any results concerning relations
between the bundle and the algebra B(S, ). This is the problem
for further investigation.

(c) Actions of discrete groups. Let (M,G) be a differentiable
dynamical system with G discrete and let o : R* — Diff (M) be
a differentiable action. Suppose that the differential of the map
t — o¢(x) at 0 is an isomorphism for every € M. Then, for every
Zo € M, there exist a neighborhood U of zy and a neighborhood T
of 0 in R such that the map ¢ : t — 0¢(xo) is a diffeomorphism of
T onto U. We set ¢ = @5*. Then (U, ¢) is a local chart compatible
with o and o is a transverse action for (M,G). Let (B, m, M, C)
be a differentiable bundle of C*-algebras with respect to F, and V
be the flat connection. It follows from Theorem 4.2 that we have,
for g € G and f € C(G), V(cse(f)) = Tro; do* @ csg(fE), where
p = ((pl) te ,(p'n,) and flg(g,’ .’L') = (a/atk)f(g’a gat(g—lx))ltzﬂ-
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