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CHARACTERS OF BRAUER'S CENTRALIZER
ALGEBRAS

ARUN RAM

Brauer's centralizer algebras are finite dimensional al-
gebras with a distinguished basis. Each Brauer central-
izer algebra contains the group algebra of a symmetric
group as a subalgebra and the distinguished basis of the
Brauer algebra contains the permutations as a subset.
In view of this containment it is desirable to generalize
as many known facts concerning the group algebra of the
symmetric group to the Brauer algebras as possible. This
paper studies the irreducible characters of the Brauer al-
gebras in view of the distinguished basis. In particular we
define an analogue of conjugacy classes, and derive Frobe-
nius formulas for the characters of the Brauer algebras.
Using the Frobenius formulas we derive formulas for the
irreducible character of the Brauer algebras in terms of
the irreducible characters of the symmetric groups and
give a combinatorial rule for computing these irreducible
characters.

Introduction. Classically, Frobenius [Fr] determined the char-
acters of the symmetric group by exploiting the connection between
the power symmetric functions and the Schur functions. Schur
[Scl, Sc2] later showed that this connection arises from the fact
that the general linear group and the symmetric group each gener-
ate the full centralizer of each other on tensor space, now referred to
as the Schur-Weyl duality. In his landmark book [Wy], Weyl used
this duality as the principal algebraic tool for studying the repre-
sentations of the classical groups. In 1937 R. Brauer [Br] gave a
nice basis for the centralizer algebra of the action of the orthogonal
and symplectic groups on tensor space.

In [Rl] we gave a formula for the characters of the Hecke algebra
of type A in the same spirit as the original formula of Frobenius for
the characters of the symmetric group. This formula was then used
to derive a combinatorial rule for computing the characters of the
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Hecke algebras of type A which is a q extension of the Murnaghan-
Nakayama rule for computing the irreducible characters of the sym-
metric group. The algebraic structure motivating this approach to
the characters of the Hecke algebra is a Schur-Weyl type duality
between the Hecke algebra and the quantum group Uq(sl(n))[3i].

In this paper we extend the classical method of determining the
characters of the symmetric group to the Brauer algebras. In par-
ticular we derive Probenius type formulas and a combinatorial rule
for computing the irreducible characters of Brauer's centralizer alge-
bras. This paper is organized as follows. Section 1 summarizes the
necessary facts concerning semisimple algebras and the representa-
tion theory of the classical groups. Section 2 gives the definition
of the Brauer algebras and a brief description of their structure.
Section 3 defines an analogue of conjugacy classes for the Brauer
algebra. Note: The Brauer algebras are not group algebras, so,
conjugacy classes are not, a priori, natural. Section 4 gives a de-
scription of the Schur-Weyl duality for the case of the orthogonal
and symplectic groups and evaluates the trace functions that are the
key to the determination of the irreducible characters of the Brauer
algebras. Section 5 gives formulas for the irreducible characters of
the Brauer algebras in terms of the irreducible characters of the
symmetric groups. Finally, section 6 gives a combinatorial rule for
computing the irreducible characters of the Brauer algebras.

This paper is taken from a portion of the author's dissertation
[R2] at the University of California, San Diego. Many of the impli-
cations of a Schur-Weyl type duality which are discussed there are
not treated here. In particular, analogues of orthogonality relations
for irreducible characters of semisimple algebras which are not group
algebras (for example Brauer's centralizer algebras) and the Probe-
nius characteristic map (see [Mac]) in a general setting. Several of
the interrelations between the orthogonal and symplectic characters
(see [Pr] and [K-T]) can be derived immediately via the Probenius
formulas for Brauer's centralizer algebras and furthermore the mod-
ule theoretic derivation of this formula gives a natural setting for
the representation theoretic interpretation of these derivations.

I would like to thank my advisors H. Wenzl and A. Garsia at
University of California, San Diego for all of the encouragement,
support and helpful discussions throughout this work. I would also
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like to thank J. Remmel for helpful discussions.

1. Notations. Mn(F) denotes the full matrix algebra o f n x n
matrices with entries in the field F. We shall say that an algebra A
over F is semisimple if it is isomorphic to a direct sum of full matrix
algebras over F, i.e.

where λ are in some finite index set and nχ are positive integers.
Note that this is what is usually called a split semisimple algebra.
An element p G A, p Φ 0, is idempotent if p2 = p. An idempotent p
is minimal if p cannot be written as a sum p = P1+P2 of idempotents
such that P1P2 = P2P1 = 0. A partition of unity in algebra A is a
set of minimal idempotents pi G A such that piPj = PjPi = 0, for
i φ j and ΣiPi — 1. A character of A is an F-linear functional
X : A -> F such that

X(ob) =

for all α, b G A. If A is semisimple then every character of A is a
linear combination of irreducible characters.

Sf shall denote the symmetric group on / symbols and FSf its
group algebra over F. C denotes the field of complex numbers and
C(x) the field of rational functions in a single variable x.

A partition λ = (λi, λ2,..., λn) is a finite sequence of decreasing
integers λi > λ2 > ... > λn > 0. The weight |λ| of λ is the
sum of its parts. We say that λ is a partition of / if |λ| = / and
write λ h /. We shall often use the notation λ = (0m°lmi2m2...)
where rrii is the number parts of λ equal to i. The conjugate of the
partition λ = (λi,...,λn) is the partition λ7 = (λ^λ^,...,λ^) given
by λ̂  = Card({j|λj > i}). A partition with all parts equal to 0 is
called the empty partition and denoted by 0. For partitions λ and
μ, λ C μ if λi < μi for all i. We say that a partition λ is even if all
its parts λ̂  are even.

Facts from the representation theory of the classical groups. Let
Mn(C) denote the set o f n x n matrices with entries in C, and let /
be the nx n identity matrix. Let J be the 2n x 2n matrix given by

J =
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We use the following standard notations for the general linear, or-
thogonal, and symplectic groups:

For each partition λ = (λi, ...,λn) define the following polynomials

saχ(xu...,xn) =

..., Xn,

λ,+n-j|

X.
n-3

I λj +n-j+1/2 _ x7(Xj+n-j+l/2)
_ x

n-j+l/2 _ -(n-j+1/2)

. - 1 „-!>
a

The Littlewood-Richardson coefficients cu

Xμ are nonnegative inte-
gers defined by the equation

sax(x1,...,xn)saμ(x1,...,xn) =

The Littlewood-Richardson coefficients are defined for each triple of
partitions of lengths less than or equal to n. (dχμ = 0 if sav does
not appear in the expansion of saχsaμ.)

The following identities, due to Littlewood [Li], hold in
7j[xι,xΐι, ...,xn,x~ι] ([K-T] contains an easily accessible proof),

(1.1)

sα^
XCv \β even

^ ,...,Xn,Xn ) = )

\Cu \β' even

\β even
c\β
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Recall that a partition β is even if all its parts are even.

THEOREM 1.2 ([Wy, Li]), (a) The irreducible polynomial repre-
sentation of Gl(n) are indexed by partitions X such that l(X) < n.
Let g G Gl(n) and let Xι,...,xn denote the eigenvalues of g. The
character sχ of the irreducible representation of Gl(n) correspond-
ing to X evaluated at g is given by

sχ(g) = saχ(xu...,xn).

(b) The irreducible polynomial representations of O(2n + 1) are
indexed by partitions X such that X[ + λ2 < 2n + 1. If X is such that
X[ + λ2 < 2n + 1 and l(X) > n, let X be the partition given by

for i > 1

for i=l.

Let g G O(2n + 1) and suppose that det(g) = 1, whence the eigenval-
ues of g will be in the form rc^x]"1, ...,xn,x~ι, 1. Then the character
soχ of the irreducible representation of O(2n + 1) corresponding to
X evaluated at g is given by

r~ T τ~ \ of P(W <Γ Ύ)

soχ{g) = <( ? , _, ___n , f Λ / λ W

(c) The irreducible polynomial representations of Sp(2n) are in-
dexed by partitions X such that l(X) < n. Let g G Sp(2n) and let
XijXj"1, ...,xn,α:~1 be the eigenvalues of g. Then the character sp\ of
the irreducible representation o/Sp(2n) corresponding to X evaluated
at g is given by

(d) The irreducible representations of O(2n) are indexed by par-
titions X such that X[ + λ2 < 2n. If X is such that X[ + λ2 < 2n and
l(X) > n, let X be the partition given by

, for i > 1,

2n — λ'l7 for z = l .
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Let g e 0(2n) and suppose that det(g) = 1, whence the eigenvalues
ofg will be of the form x\,x\λ, ...^x^x'1. Then the character soχ of
the irreducible representation of 0(2n) corresponding to λ is given
by

soχ(g) =
if ί(X)
ift{\)

2. The Brauer algebra. In this section we give the definition
and the basic facts about the Brauer algebras necessary for our
study of the characters of the Brauer algebra. Most of these facts
appear in [Wzl].

A diagram on / dots is given by two rows of / dots each and /
edges which connect the 2/ dots in pairs. The following is a diagram
on 5 dots.

Let x be an indeterminate. Let d\ and d<ι be two diagrams on
/ dots and let c denote the number of cycles created by placing d\
directly above c/2 and attaching the lower dots of d\ to the upper
dots of c^ The product did^ is xc times the diagram on / dots
resulting from this attachment. For example

The Brauer algebra Df(x) is the C(x) span of the diagrams on
/ dots where the multiplication is given by the linear extension of
the product of diagrams. The dimension of Df(x) is (2/ — 1)(2/ —
3) 5 3 1.
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The diagram

M

on / dots is the identity element of Df(x) which we shall denote by
1. For each 0 < i < f let e* and gι denote the diagrams

I I - Z - I ] - I |.. X... I ]
1 2 i W M f 1 2 ί M M {

respectively. Note that the gι and the ê , 1 < i < f — 1, generate

Any edge connecting two dots that are either both in the upper
row or both in the lower row is called a horizontal edge. The group
algebra of the symmetric group C(x)Sf is a subalgebra of Df(x) in
a natural way. Each permutation TΓ of S/, the symmetric group, is
identified with the diagram on / dots which has edges connecting
the ith dot of the lower row to the τr(i)th dot of the upper row.
In this way, any diagram on / dots which has all dots in the lower
row connected to dots in the upper row (i.e. no horizontal edges) is
viewed as a permutation in 5/ and is invertible with inverse given
by flipping the diagram from top to bottom. Note that the g^
1 < i < f — 1, generate the symmetric group.

There is a natural embedding of Dm(x) ® Dn{x) into Dn+m(x).
If d is a diagram on m dots and d! is a diagram on n dots then
d ® d' corresponds to the diagram onm + n dots given by placing
d adjacent to d'. Let d®k denote the diagram d ® d ® ® d {k
factors).

For each complex number a in C one defines a Brauer algebra
Df(a) over C as the linear span of the diagrams on / dots where
the multiplication is given as above except with x replaced by α.
Df(a) is an algebra of dimension 1 3 5 (2/ — 1).

The following theorems concerning the structure of the Brauer
algebras are given in [Wzl] and [Wy].

THEOREM 2.1 (H. Wenzl, [Wzl]). Df(x) is a semisimple algebra
over C(x).

THEOREM 2.2. The irreducible representations of Df(x) are in-
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dexed by partitions λ of f — 2k, k = 0,1,..., [ | ] .

THEOREM 2.3 ([Wzl]). Df(a) is semisimple and has irreducible

representations indexed by partitions λ of f — 2k, k = 0,1,..., Π

/or α/ί ίmί α /miίe number of a G C.

Let j9z be a partition of unity in Df(x). Assume that each pi
is expressed in terms of the basis of diagrams on / dots. Each
coefficient in this expansion is a rational function in x. In this way
it makes sense to consider the specialization Piipi), a G C given by
setting x = a. Pi(a) will be well defined and nonzero for all but a
finite number of a G C

For all but a finite number of a G C we will have that Pi(a) form
a partition of unity for Df(a).

For each λ h / - 2fc we shall denote the irreducible character of
Df(x) corresponding to λ by χ\fiXy Similarly for each a such that
Df(a) is semisimple and has irreducible representations indexed by
λ h / — 2k we denote the irreducible character of Df (a) correspond-
ing to λ by X(/?α) The following corollary follows from the above
remarks concerning a partition of unity in Df(a).

COROLLARY 2.4. For all but a finite number of a G C the char-
acter X(ftCt) of Df(a) is given by evaluating the character X(/jX) of
Df(x) at x = a.

3. Characters of Df(x). To each diagram d on f dots we as-
sociate a partition τ(d), the type of d, determined in the following
manner. Connect each dot in the upper row of the diagram d to
the corresponding dot in the lower row by a dotted line. Beginning
with an arbitrarily chosen dot of d follow the path determined by
the edges and the dotted lines and assign each edge a direction as it
is transversed. Returning to the original dot completes a cycle. If
not all edges have been transversed and a cycle is completed choose
a dot connected to an edge which has not yet been assigned a di-
rection and continue to follow the edges and dotted lines. Do this
until all edges have been assigned a direction. We call the resulting
graph a directed form of d.

Assign to each cycle the absolute value of the difference between
the number of edges in the cycle that are directed from top to bot-
tom and the number of edges in the cycle that are directed from
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bottom to top (horizontal edges and dotted lines are ignored). Note
that a cycle may be assigned the number 0. This sequence of num-
bers determines the partition τ(d). τ(d) is a partition of / — 2k for
some integer 0 < k < [£]. As an example, the diagram

has directed form given by

The type of d, τ(d) = (21).
The type of a diagram d is analogous to the cycle type of a per-

mutation. If d has no horizontal edges then the type of d is exactly
the same as the cycle type of the permutation represented by the
diagram d.

A cycle of length & is a diagram on k dots such that one dot in
each column is connected to a dot in the next column (and a dot
in the A th column is connected to a dot in the 1st column). For
example

is a 10-cycle. Let e denote the diagram

on 2-dots. Let
mutation

denote the diagram on k dots given by the per-

Ίk =

(\ 2 3 • k - 1 V

,2 3 4 k 1,

For each partition μ = (μi, μ2, •••? βk) with all parts nonzero, let j μ

denote the diagram j μ i <g> ημ2 ® <g> j μ k .
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If d and d! are diagrams on / dots, we say that d! is a conjugate
of d if there exists some permutation TΓ of Sf such that πdπ~~λ = d1.
Note that πdπ'1 is the diagram given by rearranging both the upper
dots of d and the lower dots of d according to the permutation TΓ.
One has the following easy facts.

(1) If G? and df are diagrams on / dots and d and d1 are conjugate
and x is a character of Df(x) then χ(d) = χ(d').

(2) Any two diagrams which are conjugate have the same type.

(3) If d = dι ® d2 ® ® dk then d is conjugate to dφ) ® dπ^) ®
• ® dτr(fc) for any permutation TΓ of the A; factors d*.

(4) Every diagram d is conjugate to one which is a product d' =
c\ ® c*ι ® ® Cjb of cycles. To see this, let a permutation TΓ be given
so that π(j) = z if, in the process of determining the type of the
diagram d, the ith edge to be assigned a direction is pointing to a
dot in the j th column. Then dl = πdπ~ι will be a product of cycles.

(5) Any cycle of length k with no horizontal edges is conjugate to

Ίh

THEOREM 3.1. If d is a diagram on f dots and χ is a character
of Df(x) then

χ(d) = (l/xh)χ(e®k®Ίμ)

where μ is the partition formed by nonzero parts of the type τ =
2...) of the diagram d, and k and h are given by

k = (f- \μ\)/2,

h = k —

Proof. Every diagram d is conjugate to a diagram

d' = c\ ® c2 <8> ,

which is a product of cycles Q. Let Cj be a cycle in d' which is
not e but that does have horizontal edges. Suppose that Cj has a
horizontal edge connecting the ith and (z + l)st dot of the upper
row of d!. Then xd' = ê cf and d'βi is conjugate to

d" = ci <g> ® Cj_i ® e ® ĉ  ®
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where crj is a cycle and the length of the cycle cfj is 2 less than the
length of the cycle Cj. For any character χ of Dj(x) we have that

(3.2) χ(d) = χ{d') = (l/x)χ(eid
>) = {l/x)χ{d'ei) = (l/x)χ(d").

Note that the type of the cycle dj is the same as the type of the
cycle Cj.

Repeat this process with d" in place of d! until all cycles with
horizontal edges are of the form e. Since any cycle of length r
with no horizontal edges is conjugate to 7* the resulting diagram is
conjugate to a diagram

dτ = e®k ® 7T1 <g> 7T2 ®

where the T{ are the types of the cycles with nonzero type in df. If
μ is the partition determined by the nonzero τz then dτ is conjugate
to the diagram e®k ® j μ . Since dτ is a diagram on / dots, k =

Each reduction from d' to d" introduces a factor of 1/x in the
computation of the character and decreases the length of the cycle
Cj by 2. Let \CJ\ denote the length of the cycle Cj in d. If type Tj of
Cj is not zero it takes (\a\ — Tj)/2 reductions to reduce Cj to a cycle
without horizontal edges. If Tj = 0 then it takes (\CJ\ — Tj)/2 — 1
reductions to reduce Cj to be e. Summing over all cycles gives

= k — mo- •

Theorem (3.1) shows that any character on Df(x) is completely
determined by its values on diagrams of the form eΘfc ® 7 μ where
μ is a partition of / — 2k, 0 < k < [f/2]. From the structure of
Df(x) we know that the irreducible characters of Df(x) are indexed
by partitions λ of / — 2k, 0 < k < [f/2]. This implies that the
condition in Theorem (3.1) is not only a necessary condition but
also a sufficient condition that a linear functional on Df(x) be a
character. This gives the following corollary.
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COROLLARY 3.3. A linear functional t : Df(x) —> C(x) is a
character of Df(x) if and only if it satisfies the relations in Theorem
(3.1) for all diagrams d on f dots.

4. Schur-Weyl duality. Let V be a vector space over C with
basis vi, V2 >..., vn. For each of the classical groups G define an action
of G on V by

(4.1) AVJ = Hji

for each A = | |α^ | | e G. This action defines the standard or fun-
damental representation (/?, V) of G. The vector space V®f =
V ® V ® <8> y, (/ factors) has a basis given by the elements
ViιVi2'' 'vif ( w e omit the ® signs between the V{. for brevity in
notation). Define an action of G on V®f by

(4.2) Avhvi2 - vif = (Av

for all A e G. We denote this representation by (p Θ / ,
Define representations 7Γα,π&, and π c, of Sf, Df(n), and Df(—n)

(n even), respectively, on F®-̂  as follows.

(a) Define an action of the symmetric group Sf on V®f by defin-
ing, for all σ e Sf,

This defines a representation πa of Sf on

(b) Define operators e and <? on V®2 by

n

υ<^ 0 = VjVi, and ^^-e = δij Σ vkvk,

respectively. Then, for each j = 1,2,...,/ — 1, define the action of
p^ and βj on V̂ Θ ̂  by

)v<i+2 ίfy, and

respectively. This defines a representation π^ of Df(n) on
where n = dim V.
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(c) Suppose that n — dim V is even, n — 2m, and let i' = m + z,
for 1 < i < m. Let

ί 1 ifj = i;;

Cij = < — 1 if z = j

[ 0 otherwise.

Define operators e and g on y 0 2 by

respectively. Then, for each j = 1,2,...,/ — 1, define the action of
Qj and e3 on V®^ by

vn'" vif9j = ^ i * * ?Vi (Vijvij^1g)vij+2 v^, and

vife3 =

respectively. This defines a representation πc of Df(—2m) on

THEOREM 4.3. (a) (Schur [Scl, Sc2]) Let Λ be the algebra gen-
erated by p 0 /(Gl(n)) in E n d ( F 0 / ) . Then A and πa(CSf) are the
full centralizers of each other in End(VΓ<8) ^).

(b) (Brauer [Br]). Let A be the algebra generated by pΘf(O(n))
in EndfV®^). Then A and πb(Df(ή)) are the full centralizers of
each other in End(V®f).

(c) (Brauer [Br]). Let A be the algebra generated by p 0 ^(Sp(2m))
in End(V® f). Then A and πc(Df(—2m)) are the full centralizers of
each other in E n d ( F 0 / ) .

Since πa(CSf) and p® f(Gl(n)), πa x ρ®f is a well defined repre-
sentation of the group Sf x Gl(n) on V®f. Let Df(ή) x O(n) denote
the C-algebra consisting of all C-linear combinations of pairs (d, A)
where d is a diagram on / dots and A G O(π). The multiplication
in Df(n) x O(n) is the linear extension of componentwise multipli-
cation of these pairs. Then, in view of part b) of Theorem (4.3),
one has a well defined representation πb x ρ®f of Df(n) x O(π) on
V®f. Define Df(-2m) x Sp(2m) and a representation πc x ρ®f of
Df(—2m) x Sp(—2m) on V®J analogously.
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THEOREM 4.4 ([Scl, Sc2, Wy]). (a) Let Sχ denote the ir-
reducible Sf module corresponding to λ and let U\ denote the ir-
reducible Gl(n) module corresponding to λ. Then, as Sf x Gl(n)
representations,

®f B sλ®uλ.

(b) Let Dχ denote the irreducible Df(n) module corresponding to
λ and let V\ denote the irreducible O(n) module corresponding to λ.
Then, as Df(n) x O(n) representations,

Lf/2]

k=0 \\-f-2k

(c) Lei Z>\ denote the irreducible Df(—2m) module corresponding
to λ and let W\ denote the irreducible Sp(2m) module corresponding
to λ. Then, as Df(—2m) x Sp(2m) representations,

=0 λh/-2A;
()

REMARK. In the above Theorem we have chosen to index the
irreducible representations oΐDf(ή) and Df(—2m) in the same fash-
ion as in [Wzl]. The indexing of representation of O(n) and Sp(2m)
is as in [Wy] Chapter VII. This follows the usual convention. Note,
however, that, using this labeling, Dχ> gets paired with W\ in part
(c), where λ; is the conjugate of the partition λ.

For the cases (b) and (c) in Theorem (4.3) one has that ([Wy],
[Wzl]) forn > 2/ the representation of Df(n) (resp. /?/(—2m), n =
2m) on V®f is a faithful representation of Df(ή) (resp. D/(—2m)).
Df(n) is semisimple for n > 2/. In particular the irreducible char-
acter X(/n) of Df{n) is well defined for every partition λ of / — 2A;,
fc = 0,1,2, ....

The following corollary is obtained from Theorem (4.4) by taking
traces.

COROLLARY 4.5. (a) For A e Gl(n) and h e CSf,

Ί ϊ
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where χ£ denotes the irreducible character of Sf corresponding to
A.

(b) Let n > 2/. Then for A G O(rc) and h 6 Df{n),

Ύr(p®f(A)πb(h))= £ χx

{M(h)soλ(A),
\\-f-2k

where χϊfn\ denotes the irreducible character of Df{n) corresponding
to λ.

(c) Let n = 2m>2f. Then for A € Sp(2m) and h € Df(-2m),

Ίt(fP'(A)*e{h))= Σ, Xi'f,-2m)(h)spλ(A),
\\-J-2k

where χ^ ι_2m) denotes the irreducible character of Df(—2m) corre-
sponding to λ.

Define the power symmetric functions as the following polynomi-
als in Z[xι,x2, ...,xn] For each positive integer r define

pr(xU X2, ..., Xn) = x\ + ̂  + h < ,

and for a partition μ = (/ii, μ2 5 •••> Â ik) define

?2,-^ιι) =PμiPμ2 " ' Pμk'

Part (a) of the following theorem is due to Schur [Sc2]. Stan-
ley [St] has also noticed (part (b)) that the trace Tr (p<8>/(^l)π6(d))
should be a power symmetric function.

THEOREM 4.6. (a) Let Ae Gl(n) and let σ € Sf. Then

Tr (p°'(A)πa(σ)) = pμ(xi^ 2, ...,*»),

^Λere μ iθ ίΛe type of the permutation σ and Xι,x2,. ,xn are the
eigenvalues of A.

(b) Let A G O(n) and let d be a diagram on f dots. Then

Tr (p®f(A)ττb(d)) = n m o p μ (x l 5 α; 2 , ...,3n),

where μ is the partition given by the nonzero parts of the type of the
diagram d, mo is the number of parts equal to 0 in the type of d,
and X\,X2,~ ,xn we the eigenvalues of A.
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(c) Let A G Sp(2m) and let d be a diagram on f dots. Then

where μ is the partition given by the nonzero parts of the type of the
diagram d, ΪΠQ is the number of parts equal to 0 in the type of d,
and xι,x2,...,X2m we the eigenvalues of A.

Proof (a) By continuity it is sufficient to assume that the eigenval-
ues of A are all distinct and thus we may assume that A is diagonal.
The remainder of the proof follows by an easy computation.

(b) Prom Theorem (3.1) we have that

Tr (fPt(A)*b{dή = ^ Tr (p®f(A)Me®k ® 7#.)) ,

where μ is the partition given by the nonzero parts in the type
of the diagram rf, TUQ is the number of 0 parts in the type d, and
k = (/ - |μ|)/2. Let e = eλ G D2{x) and let g G O(π). By the
definition of the action of e we have

Ύr (p®2(A)πb{e)) = £ AviVje\ViVj =
n n

ΣΈ wAv^ = n.
i=l r=l

Since A € O(n) C Gl(n), part a) gives that

Tτ(p®r(A)πb(Ίr))=pr(xu...,xn).

The remainder of the proof follows from the fact that if d G Dm{x)
and d' G Dn(x) then

Tr (p^n+m\A)πb{d ® d')) = Tr (p®m(A)πb(d)) Tr (p®n{A)πb(d')) .

We have

Tr (p®f(A)πb(d)) = - ^ Tr

(c) The proof is exactly as in the orthogonal case except that one
has that for A € Sp(2m) and e = e\ G D2(—2m),

Tr (p®2(A)πc(e)) = £ AviVje\ViVj

l < i < 2

l«ίty = - 2 m ,
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by (4.6), and that, by part (a),

Tr (p®r(A)πc(Ίr)) = ( - l Γ V r ^ i , ...,X2m). •

5. The irreducible characters of Df(x). Our developments
in the previous section give us all necessary tools to derive a formula
for the irreducible characters of Dj{x) in terms of the characters of
the symmetric group Sf.

THEOREM 5.1. Let X be a partition of f — 2k and let d be a
diagram on f dots of type μ h / — 2h. Then the irreducible character
of Df(x) corresponding to X is given by

d) = *h Σ

Proof. Let n = 2m + 1, n > 2j, and let d = e®h <8> 7μ.Combining
Theorem (4.6)(b), Theorem (4.5)(b), and Theorem (1.2)(b), we have

(1) n^ixuX^^.^XmiXm'1)

= Έ XV,n)(d)sh(Xl,Xϊ\-,Xm,Xm)>
λhf-2k

and similarly by Theorem (4.6)(a), Theorem (4.5)(a), and Theorem

(2)

\\-f-2h

The branching rule (1.1) gives

(3)

\β even )

Setting (1) and (2) equal and using (3) to expand the sa\ in terms
of the sb\,

f [ Σ
v\-f-2h λCi/ \ ^ even
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Since the sbχ are algebraically independent (n > 2/) we can equate
coefficients of sb\ to get that

(4) f
i/h/-2fc \β even

This identifies the irreducible character χf/n) °f D/(n) for all odd
n > 2/.

Let

ch(x)=xh

Then,

(
ι/h/-2Λ V/3 even

i/Dλ

ch{n) = χf/

for infinite number of n 6 Z, where the first equality follows from (4)
and the second from Theorem (2.4). Since both ch(x) and χ^^(d)
are rational functions in x and they are equal at an infinite number
of points they must be equal everywhere. D

COROLLARY 5.2. If\λ\ < f and d is a diagram on f dots of the
form e®h ® ημ with \μ\ < f then

where d1 = eΘh~ι ® j μ .

Proof Let \μ\ = k. Then

D
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COROLLARY 5.3. If λ h / and d is a diagram on f dots of the
form e®h <g> ημ with \μ\ < f then

Proof Since λ is a partition of / and \μ\ < /, we have c ^ = 0
for all β. D

COROLLARY 5.4. If X\- f and if d is a diagram on f dots of the
form 7 μ with μ\~ f, then

Proof.

Ί,
0, otherwise,

giving that

(/,χ) = ̂ ° Σ Σ cχβ)XS,(7M) = x%M. •
i/h/-2Λ \β even

ί/Cλ

Let Ξf denote the character table of J5/(x), i.e. Ξ/ is a matrix
with rows and columns indexed by partitions of / — 2k, 0 < k <
[//2], and the entry in the λth row and the μth column of Ξ/ is
χ\fyX){e®h®Ίμ) where h = (/ —|μ|)/2. We can summarize the results
of Corollaries (5.2)-(5.4) by observing that the character table Ξf
of Df(x) can be given in the form

where Ξ/_2 is the character table of Z}/_2(#) and Ξsf is the character
table of the symmetric group Sf. More specifically, the character
table of Df(x) can be given in block upper triangular form where
the diagonal blocks are of the form xkΞsf_2k, 0 < k < [//2].
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6. A combinatorial rule for computing the characters of
Df(x). In this section we analyze the combinatorics of formula (1)
in the proof of Theorem (5.1). We begin by reviewing the basic
properties of alternating and symmetric functions for the hyperoc-
tahedral group. Note that these basic results hold for any Weyl
group, see [Bou]. We shall treat only the special case of the hype-
roctahedral group in the following.

Define the hyperoctahedral group Bn as the group o f n x n ma-
trices w = (wij) such that

(1) Wij G {0,1, —1}, for each 1 < z, j < n, and

(2) the matrix (\wij\) is a permutation matrix.

The symmetric group Sn is a subgroup of Bn. For each w e Bn

define the sign of w by e(w) — det(w). As Bn C Mn(C), there is a
natural action of elements of Bn on elements a = (αi, a^, •••> ®"n) 6
C n . For each a e Zn let xa denote the monomial xa = x"1 x%2 x*n.
Define an action of elements of Bn on monomials in the variables
xι,xϊι,...,xn,x~ι by defining wxa = xwa.

Let 1/2 + Z denote the set {1/2 + p,p e Z} of half-integers and
set

δ=(n- 1/2, n - 3/2,..., 3/2,1/2).

For any a = (α 1 ? . . ., an) G (1/2 + Z) n define

Then, if λ is a partition ί{\) < n,

(6.1) sbx = ψ

The polynomial ba is skew symmetric under the action of Bn, i.e.,

Let a = (αi, ...,αn) e (l/2 + Z) n . Let m be the number of oti < 0 in
α and let \a\ denote the vector (|αi|, \a2\,..., \θin\). Let Re(|α|) de-
note the sequence given by rearranging the parts oi\ot\ in decreasing
order and let π denote the permutation such that ττ(|α|) = Re(|α|).
Let λ = Re(|α|) — δ. Since ba is skew symmetric under the action
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of Bn, &Re(|α|) = 0 unless | α i | , lα^l, •••, \θίn\
 a r e different. If the \cti\

are all positive and distinct then A is a partition. We have that

(6.2) ba = (-

[ (—l)me(π)bχ+δ, if A is a partition,

10, otherwise.

In the standard fashion (see [Mac]) we shall associate to each se-
quence of positive integers a = (αi, α^, ...,αn) a diagram consisting
of n rows of boxes such that row i contains o>i boxes. Let e, denote
the vector (0,...,0,l,0,...,0) where the 1 appears in the zth entry. Let
μ — (μ1? μ2?...? μn) be a partition. Let

δ + rei\) - δ.

We say that the sequence A is given by adding r boxes along the
boundary of the diagram of μ, beginning in row i and continuing in
rows < i.

(6.3) Γ0W1

row j

/

μ ^\ k

Let
v — Re(|μ + δ — re^|) — δ.

We say that the sequence v is given by removing a slinky of length
r from μ beginning at the row i. Pictorially, the diagram of v is
given by removing r boxes from the boundary of the diagram of
μ, beginning with the last box in row i and continuing in rows
> i as in diagram (6.4)(a). It may happen that r is large enough
that not all r boxes are removed before reaching the £(μ)th row.
In this case one proceeds by continuing to remove boxes from an
imaginary wall of height n adjacent to A. In this case v will be of
the form (*,*,...,*, —1, —1,. . . , —1,0,..., 0) where the * entries are
positive integers. Pictorally v is given as in diagram (6.4) (b). If,
in the process of removing boxes, the height n — 1 in the imaginary
wall is reached and still r — 1 boxes have not been removed, then
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one begins placing boxes, first in the holes in the wall, then along
the boundary of the shape, until a total of r — 1 boxes have either
removed or placed, diagram (6.4) (c).

(6.4)

ΓOWJ

rowi
i

(α)

It will be clear that the sequence v given by removing a slinky of
length r at row i is given by this diagram from the proof of Lemma
(6.6).

Represent the monomial xμ+δ by the diagram

(6.5)

Ί

Numbering the rows from the bottom to top, row i contains δi =
n — i + 1/2 boxes to the left of the vertical bar and μι boxes to
the right of the vertical bar. One can view the action of Bn on
monomials as an action of Bn on these diagrams. Let Si denote the
transposition (z, i +1) and let s0 denote the element of Bn given by
the matrix (*%), where Wij =0ϊoτl<i<n — 1 and wnn = — 1.
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LEMMA 6.6. Let μ be a partition and r > 0.
(a) Let λ be the sequence given by adding a slinky of length r to μ

at row i. Let k be the number of rows spanned by the slinky. Then

ί(-
1°

*/λ is a partition,

otherwise.

(b) Let v be the sequence given by removing a slinky of length r
from μ beginning at row i. Let k be the number of rows in the slinky.
Then

Σ e(w)wx;rχ»+δ = {
weBn

 % JO
if vis a partition,

otherwise.

Proof, (a) The diagram representing the monomials x^xμ+δ and
+δ looks like

In some sense the factors from x\ have "slinkyed" one row down the
shape of v. Let 1 < j < i be the greatest j < i such that in the
diagram of SjSj+ι Si^2Si-ιXiXμ+δ the number of boxes in the j
row is less than or equal to the number of boxes in the j + 1st row.
Pictorally j is such that the diagram of SjSj+ι 5i_25 ΐ_1^xμ" f 5

looks like that in (6.3) and the factors from x\ have slinkyed down
the shape of μ as far as possible.

Let λ = (λi,..., λn) be given by adding a slinky of length r to μ
beginning at row i, as in (6.3). Setting TΓ = Sj? sz_2Si-i, we have
that e(π) = i — j = A: — 1, where k is the number of rows in the
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slinky, and that xx+δ = πx\xμ+δ. Then

(6.7)
e(t£/)iι/x

λ + '

(b) x^rxμ+δ = xμ+δ"rβi and

if λ is a partition,

otherwise.

have diagrams of the form

IDWil

In this case rather than adding a slinky of length r we are removing
a slinky of length r beginning in row i. Let λ be the sequence given
by removing a slinky of length r from μ beginning at row i. If λ is
as in (6.4)(a) or (6.4)(b) let π = SjSj-i •*. If λ is as in (6.4)(c)
than let TΓ = s ^ + i 5n_i505n-i ^ . Then, in each case, we shall
have that

Let ifc = \j - i| + 1, so that A; is the number of rows spanned by the

slinky. The result follows as in (6.7). Π

REMARK. Notice that in the case of Lemma (6.6)(b), if n is

large (n > r + i(μ)), then one has that ΣweBn e(w)wx^rxμ+δ = 0

unless the sequence v given by removing a slinky of r boxes from μ

is either

(1) as in figure (6.4)(a), or

(2) r is odd and n - 1 - i + 1 = (r - l)/2, in which case i/ = μ.

These are the only cases for which v will be a partition.
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Fix n. Let Λ and μ be partitions. Then we say that λ differs from
μ by an r slinky if λ is given by either adding or removing a slinky
of length r from μ.

THEOREM 6.8. Let μ be a partition. Then

where the sum is over all partitions λ such that X differs from μ
by an r-slinky and k(X) is a number of rows in this slinky. This
expansion is independent of n for n > r + ί{μ).

Proof.

Using Lemma (6.6) we have that

where the sum is over all λ that differ from μ by a slinky of length
r and k(X) is a number of rows in this slinky. The result follows by
dividing by 6$.

The fact that this expansion is independent of n for large n follows
from the remark following Lemma (6.6). D

REMARK. There is a slight subtlety in the definition of when
λ differs from μ by an r-slinky. Let us restate this in the language
of border strips (connected skew diagrams with no 2 x 2 blocks of
boxes), see [Mac, §3, Ex. 11]. Assume n is large n > r+ί(μ). Then
λ differs from μ by an r-slinky if either

(1) μ C λ and λ/μ is a border strip of length r,

(2) λ C μ and μ/X is a border strip of length r, or
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(3) r is odd and λ = μ.

Let μ = (μι,μ2, ...,/in) be a partition. Define a μ-slinky tableau
of shape λ to be a sequence of partitions

such that for each i either λ ^ = λ*1+1) or λ^+1) differs from λ ^ by
a μι slinky.

THEOREM 6.9. Let d be a diagram on f dots of the form e Θ

Then

T

where the sum is over all μ-slinky tableaux T of shape λ and

w = Π(
slinkies

inT

—1)# of™ws in slinky-1

where the product is over all slinkys in T.

Proof By Corollary (5.2)

thus it is sufficient to prove the theorem for h = 0.
Let h = 0 and let m = 2n + 1 > 2/ + 1 be odd. Then from the

proof of Theorem (5.1) one knows that

and further that

λhf-2k

Thus, X(tx\ is given by the coefficient of sb\ in the expansion of
pμ(xi,xj~1,...,α:n,a;~1,l). This coefficient is given by repeated ap-
plication of Theorem (6.8). In view of the fact that n is large
(n > f > \μ\) this expansion is independent of n. The theorem
follows. D
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REMARK. J. Stembridge [Ste] has given a combinatorial rule for
computing the characters of the hyperoctahedral group Bn which
involves placing and removing slinkys in much the same fashion
as for the Brauer algebra. Although this may seem to be merely
coincidence it seems that there is a deeper connection between the
hyperoctahedral group and the Brauer algebra which is also reflected
in the work of Hanlon and Wales [HW1-2].
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