COMPLETE MAPPINGS OF FINITE GROUPS

L. J.PAIGE

1. Introduction. A complete mapping of a group, loop, or quasigroup G is a
biunique mapping x — 8(x) of G upon G such that x X 8(x) = 7 (x) is a biunique
mapping of G upon G. This concept was introduced by H.B.Mann [3]; other
applications have been indicated by R.H.Bruck [2], and Paige [6]. However,
the determination of all groups which possess a complete mapping is still an
open question. For abelian groups and groups of infinite order the problem has
been answered in [1] and [5].

The first part of the present paper considers the question of complete map-
pings for finite non-abelian groups; the latter part is devoted to an application of

complete mappings in the construction of orthogonal Latin squares.
p pping g q

2. Complete mappings. We shall consider finite groups G written multiplica-
tively, the identity element being g, = 1. A group G will be called an admissible
group if there exists a complete mapping for G; otherwise G is said to be non-
admissible.

It should be noted that all groups of odd order are admissible by letting
0 (x) = .

THEOREM 1. A necessary condition that G be an admissible group is that
there exist an ordering of the elements of G such that g; X gy X+ ** X g, =1,

CoROLLARY. If G is an admissible group, the product of the elements of G

in any order is an element of the commutator subgroup of G.

Proof. Assume that x — O{x) is a complete mapping for G. Without loss of
generality we can take 6(1) = m(1) = 1. Now consider g, X O(g;); here g3'
# O(g,), so that O(g,)”! occurs among the remaining elements of G. Then let
6(g,)"! = g3 and form the product g, X 6(g;) X g3 X O(gz). We continue in this

manner and ultimately reach a product

1) g2 X 0(gg) X gz X O(g3) X +++ X gs XO(gs) =1,
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where O(g;-) = g/ (i =3, ++,s)and O(g;) =g;"'.

If s < n, we repeat the process beginning with gs+; X 6(gs+;) and finally we
arrive at a series of cycles similar to (1) whose product is the identity. Thus,
7(g1) X n(gy) X+« +X m(g,) =1, completing the proof and yielding the corollary
as a consequence.

We note that in the cycle represented by (1), the elements
g2 X 6(g2) X +++ X gi X 6(ei) =nlg2) X =+ X7(gi) (i <),

are all distinct; for the equality of two such products would imply 6(g;) = O(g;)
or i = j., Hence, we have the following result.

THEOREM 2. A4 necessary condition that G be admissible is that there exist
an ordering of the elements of G into subsets, such that in each subset, the
elements

2) iy Big X8ig ***) Bip Xgig X *os Xgi, =1
are all distinct.

In the most favorable case where G possesses a single subset of n — 1 non-
identity elements which satisfy condition (2), we may prove that G is an admissi-
ble group. To do this, let g, be the element that is not represented in the set of
elements (2). Construct the mapping O(x) as follows: O6(1) = 1, O(g,) is the
solution of the equation g; X x = g;,, and successively let g;+; = O(g;)7", and
let O(g;+) be the solution of the equation gj+; X x = g;,,, . All the O(x)’s are
are distinct and different from 1; for if O(gy) = 6(gs), & # s, we would have

g2 XO(gk) = giy X *++ X gy, =gi, X *++ Xgi, =gy X0O(gs),

the inner equality being contrary to hypothesis for k& ¥ s. Moreover if 6(gy) =1,
we would have g, = g;, X+ *X g;,, contrary to the selection of g;. Thus, we
have proved the following theorem.

THEOREM 3. 4 sufficient condition that G be an admissible group is that

there exist an ordering of the nonidentity elements of G, such that the elements

g2 X +00 Xgi for (i=2,++,n)

are all distinct and g, X * * * X g, = 1.
For abelian groups, Theorem 1 is also a sufficient condition that G be admis-
sible and we conjecture that this is likewise the case for non-abelian groups.
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However, the best we have been able to prove are theorems of the following type.

THEOREM 4. Let H be a normal subgroup of G. If G/H admits a complete
mapping 0, H a complete mapping 0,, then G is an admissible group.

Proof. Let G/H = K, the elements of K being e, p, g, * * *. Let up be an
element of G that maps upon p € K. Every element of G has the form up X & or
h X up, where p € K, h € H. The equality of up X hand ug X o' implies
p=gqand h=n1h "

Define O(up X k) = 0,(h) ug, (p). Obviously this mapping is biunique of G
upon G. Consider

(3) up X h X 92(h)u91(p) = uqh'92(h')u91(q) .
This implies
up Xug(p X H= ug X u6,(q) X H or  Upyb,(p) XH= Ugx64(q) XH,

whence p X 8,(p) = ¢ X ,(q) or p = g, since &, is a complete mapping for K. It
then follows from (3) that A = %' and & is a complete mapping for G.

THEOREM 5. If G is a group containing a subgroup H of odd order such that
G/H is a nonadmissible abelian group, then G is nonadmissible.

Proof. If G/H is a nonadmissible abelian group, G/H possesses a single
element of order 2 [6; p.49]. Let this coset be g, X H. Considering the product
of the elements of G modulo H, we have []7=; g; = g, mod H. Since g, is not in
H, the product of the elements of G in any order is not in H. However, H contains
the commutator subgroup of G and it follows from Corollary 1 of Theorem 1 that G
is not admissible.

The two preceding theorems may be used to establish the admissibility or
nonadmissibility of many groups. Often it is necessary to develop other tech-
niques, as for example in groups of order 2". Here we are able to argue modulo
the commutator subgroup and establish by mathematical induction the admissi-
bility of those groups whose commutator subgroups are not cyclic. The remaining
cases have been analyzed by Bruck and found to be admissible except in the

obvious case where G is cyclic of order 27.

3. Orthogonal Latin squares. Recalling the definition of a Latin square [3,

p.418],we see that the multiplication table of a quasigroup, loop, or group G is
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a Latin square. Indeed, any Latin square of order m may be used to define a
quasigroup of order m. Mann [3, 4] has shown how Latin squares, orthogonal to
a group G, may be constructed by means of complete mappings. (A Latin square L
is said to be orthogonal to a group G if L is orthogonal to the multiplication table
of G.) We may extend these results in the following manner.

For convenience we shall assume henceforth that the elements of a group or

quasigroup G are 1,2, * * *, n.

THEOREM 6. Let G be a quasigroup. Let 0,, 6,,***, 6, be n complete
mappings of G with the following property:

(4) 6:(g) # 6 (e) , for i#j, all g€ G.

Construct a Latin square S by placing j in the kth row and 0; (k)th column. Then
S is orthogonal to G.

Moreover, all Latin squares S, orthogonal to G, may be represented in this
manner.

Proof. Obviously the square S is a Latin square and it is orthogonal to G
since the number pairs [k X 8; (k), j] assume n? distinct values.

Conversely, let S be any Latin square orthogonal to G. Let j occupy the row
and column positions (1, ij,l)’ s oo, (n, ij,n) in S, where (I:]',l, RN ij,n) is, of
necessity, some permutation of (1,2, ¢+, n). Let <9]~ (k) be defined by &; (k)
= ij,k. The assumption that & X 0; (k) = h X G; (k) = m for k # h leads to a con-
tradiction, in that the number pair (m, j) would occur twice in the orthogonal Latin
squares G and S. Since iy # i,k forr # s, property (4) is satisfied, and this
completes the proof.

Although anticipated in part by Theorem 2 of [3], we may improve upon the

previous result for a group G.

THEOREM 7. A necessary and sufficient condition that there exist a Latin
square orthogonal to a group G is that there exist a complete mapping 6(x) for G.

Proof. The necessity follows trivially from Theorem 6. The sufficiency is
evident from the fact that, given one complete mapping &(x) of G, we may define n
complete mappings of G satisfying (4)by letting O(x) X i = 6;(x), i =1,2,* * *, n.

A more convenient method of obtaining a Latin square orthogonal to a group G

is to apply the following theorem.

THEOREM 8. Let G be a group, O(x) a complete mapping for G. Construct a
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Latin square S as follows: In the ith row and kth column place i X k X 0(k). Then

S is a Latin square orthogonal to G.

Proof. Trivially, S is a Latin square. In the orthogonal squares the number
pairs are [i X k, i X k X O(k)]; and every pair (r,s), (r,s = 1,2, * * *, n), exists
since the equations i X k =r, i X k X (k) = s have a unique solution. Thus the
Latin square S is orthogonal to G.

Theorem 8 is a variation of the method employed by Mann [4, p.253] and is
simpler to compute.

The problem of finding more than two mutually orthogonal Latin squares has
its basis in investigations of finite plane geometries [4] and nets [2]. Theorem
6 yields easily formulated but involved results in this connection. The repre-
sentation of Theorem 8 yields more interesting results. Consider the case of two
Latin squares S; and S, represented in the manner of Theorem 8 and orthogonal

to a group G. Then S; will be orthogonal to S, if and only if the number pairs
[i Xk x0(k), © Xk XO,(k)] (i,k=12 +,n)

take on every value (r,s), (r,s = 1,2, * *+, n). Hence, we can conclude immedi-
ately that a necessary and sufficient condition for S, to be orthogonal to S, is that

the equation

(5) rX6(k) =5 XGy(k)?

have a unique solution % for all pairs (r, s). The generalization to any number of

mutually orthogonal Latin squares of this type should be apparent.

We note from (5) that if 9, (x) = 6; (x) X x is a complete mapping, our condition
is trivially satisfied. In the case that G is abelian of order 2" (n > 1) and every
element of order 2, &,(x) = &;(x) X x is a complete mapping. Thus for this group
it is always possible to find at least two Latin squares mutually orthogonal to
G. This brings us to an interesting question that we have been unable to answer:
For a given group G, what is the maximum number of mutually orthogonal Latin

squares orthogonal to G?

In conclusion, we would like to conjecture that there exist no Latin squares

orthogonal to a symmetric group.
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