THE HEAVY SPHERE SUPPORTED BY A
CONCENTRATED FORCE
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1. Introduction. In the linear three-dimensional theory of elasticity only a few
particular solutions are known which describe the action of a concentrated force
on an isotropic homogeneous solid. The fundamental particular solution which ex-
presses the displacement due to a force at a point within an indefinitely extended
solid was given first by Lord Kelvin [5]. It was found again at a later date by
Boussinesq [1] along with other particular solutions which can be derived from it
and which lead to the solution of the problem of a concentrated force acting on an
infinite solid bounded by a plane. Michell [4] obtained the displacements and
stresses in an infinite cone acted on bya concentrated force at the vertex by using
Boussinesq’s results. The solids considered by these authors all extend to infinity.

In this paper a particular solution describing the action of a concentrated force

on a finite solid will be considered.

2. The problem. Let there be given an isotropic homogeneous sphere of radius
a, which is supported by a radial concentrated force at the south pole. Our problem
is the determination of the displacement vector at any point of the sphere in the
case of equilibrium, that is, in the case in which the magnitude of the force

is equal to the total weight of the sphere.

3. General theory. In the linear theory of elasticity for an isotropic homo-
geneous medium, the components u, v, w of the displacement vector u with respect

to a cartesian coordinate system x, y, z satisfy the differential equations of Lame

(2],
1) Au + o grad divu + SX=0,

where
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The vector X with components X, Y, Z respectively denotes the body force per
unit volume, and

[}
Q|+

are two constants depending on the material considered. The first component of

(1) is given by
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which explains the vector notation used. We restrict our attention to the physically

important case

1<, 0< g8 -

The components F , Fy , F; of the distributed force per unit surface area F which

is necessary to maintain the displacement u throughout the solid are given by
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Ny, My, nz are the components of the exterior unit normal n. The first line in (2)

may be written in the form
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4. Particular solutions when no body forces are present. Boussinesq showed
[1] that particular solutions of (1) for X = 0 may be obtained from a scalar func-
tion @(x, y, z) by putting

3% 3% _o% a+1
R

3) A,

322 G
provided ¢ is a biharmonic function,

(4) AANP=0.

Let

r2=x2+y2+zz'

’

then
(5) ¢=r

represents the action of a concentrated force in the z direction at the origin within
an infinite solid [5].

The function
(6) b=z log(r +z)—r

leads to Boussinesq’s solution [1] for an infinite solid bounded by the (x, y)-plane
and acted upon by a concentrated force at the origin in the z direction. Michell’s
solution [4] can be obtained by a linear combination of (5) and (6).

The function

(7) ¢ = (r? = 32%) log(r +2) + 3ar

was used by the author [3] to describe the displacements in a spherical shell
under concentrated radial forces.

Since for X = 0 the system (1) is linear homogeneous with constant coefficients,
particular solutions can be obtained from (5)—(7) by partial differentiation.

If (5) and (6) are differentiated with respect to z, two new particular solutions

@) b=,
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9 ¢=log(r + z)

result, From (9) the particular solution

(10) ¢ =

N =

can be derived. A linear combination of (10) and the derivative of (8) with respect
to z yields

2
(11) b=

r3

5. A particular solution for constant body force in the z-direction. If u, v, w
are computed from

_ Puf3
647 (o +1)(3a—1)a®
+ (40 +7) z2* —16(0 + 1) az® +8(0 +1) ar’z ],

(12)

[— (2u—1) r* —6r222

according to (3), it can be verified that (1) is satisfied for

3P

(13) X=Y=0, Z=— 3
47a

Equation (4) is no longer valid for the ¢ of (12).

6. Solution of the problem. The south pole of the sphere is taken as the origin
of the coordinate system, with the z axis directed vertically upward. The sphere is
then represented by the equation

(14) r? < 2az.
The components of the exterior unit normal n are
an, = x, any=y, an, =z —a.

It can be verified that the function

Pu.S
647 (o +1)(3c— 1) o®

(15) ¢ = [__ (20{'_ 1) r4 — 6r2;2
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+ (4 +7) 2* —16(c + 1) az® +8(a+ 1) ar’z |
P
N s

9 7 (L + 1) ar

s[9( + 1) 2r* —12(20 + 1) ar?
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[r2 —32% + 4az—

satisfies (1) provided the body forces are distributed according to (13). The par-
ticular solution (14) consists of a linear combination of (5)—(11) added to (12). On
the surface of the sphere r? = 2az it is found that the distributed force F per unit
surface area (2) vanishes on the whole surface except at the origin, where the
particular solution (15) has a singularity.

Because the resulting body force must be in equilibrium with the resulting ex-
terior force, it follows from (13) that the latter is radial upward and of magnitude P.

Since ¢ in (15) possesses a singularity at the origin, the comesponding dis-
placements and stresses will be infinite at that point. To avoid this difficulty we
can imagine the material near the origin cut out and the concentrated force P
replaced by the statically equivalent forces distributed over the surface of the
small cavity.

The displacements belonging to (15) can be computed by using (3).
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