DISTRIBUTIVE LATTICES WITH A THIRD OPERATION DEFINED

B. H. ArnoLD

1. Introduction. If L is the direct union of two distributive lattices, one may
define a new operation % between any two elements (a,b) and (c,d) of L by

(1) (a,b) ¥ (c,d)=(aNec, bUA).
This operation * is:

P1l. Idempotent

P2. Commutative

P3. Associative

P4. Distributive with %, U, N in all possible ways.

The main results of this paper are the following.

First (Theorem 16), this is essentially the only way in which an operation with
properties P1-P4 can arise in a distributive lattice. That is, if L is a distributive
lattice with a binary operation % having properties P1-P4, then L is a sublattice
of the direct union of two distributive lattices, and the operation * is given by
equation (1).

Second (Theorem 9), if

P5. L contains an identity element e for the operation *,

then L is the entire direct union. Here P5 is sufficient but not necessary; a neces-
sary and sufficient condition is given in Theorem 17. In case * is identical with
U or N, Theorems 9, 16, and 17 still hold, but give trivial decompositions.

Finally, Section 5 shows that the presence of an operation % is equivalent to
the existence of a partial ordering with certain properties, so that our theorems
may be restated so as to apply to distributive lattices with an auxiliary partial
ordering.

2. Preliminary considerations. Throughout the paper, L is a distributive lat-
tice with an operation % having at least properties P1-P4. By an isomorphism
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between two such algebraic structures, we shall mean a one-to-one correspondence
which preserves the operations U, N, *; as is customary, in the direct union
A X B of two such algebraic structures, all operations act coordinatewise; for
example, (a,b) * (c,d) =(a * ¢, b *d).

For later reference, we collect here several simple consequences of P1-P4.
The proofs consist of repeated applications of the idempotent and other laws, and
will be presented briefly and without annotation of the separate steps. These re-
sults will be used frequently in later proofs without any explicit reference being
made. In these theorems, small Latin letters represent arbitrary elements of L.

THEOREM 1. xNy<Lx*y<xUy.
Proof. We have
NPUGE*xy)=[cNyYUx]l*[xNy)Uy]l=x*y;
thus x Ny < x % y. Similarly for the other inequality.
THEOREM 2. [fx,< xyand v, < y,, then x, % y; < x, % y,.
Proof. We have
(o % 31) N (o ¥ y0) =2 % (ry N 3n) = 2 % 315
thus x, * y; < %, * ,. Similarly, x, % y, < x, ¥ y,, and the theorem follows.
THEOREM 3. x*(xUy)=x UG *y)andx ¥ (x Ny)=xN (x *y).
Proof. Clearly,
x¥@Uy)=@*x) U *y)=xUx*y).
Similarly for the other equation.
THEOREM 4. x*y=(xNy) *(xUy).
Proof. The result follows from the continued equation,

GNyY*@EUy) =[Ny *x]U [(xNy) *y]
=[(x*y)ﬂx]U [(x*y)ﬂy]
=@x*y)Nx Uy =x*y.

THEOREM 5. x % (x % y) =x % y.
Proof. Clearly,

x*(x*y)=(x*x)*y=x*y.



DISTRIBUTIVE LATTICES WITH A THIRD OPERATION DEFINED 35

THEOREM 6. [fx<u<x*y<v<y,thenu*v=x%y,
Proof. Since x < uand x ¥ y < v, Theorem 2 shows that
x¥y=x%(x ¥y) < uxov.
Similarly,

ukv< (xky) ¥y=x %y,

3. The operation * has properties P1-P5. In this section, we prove one of the
main results of the paper (Theorem 9), using the assumption that L contains an
element e which is an identity element for the operation *.

THEOREM 7. [fa< eandc< e,thena*c=aec.

Proof. Since a ¥ ¢ =(aNc) * (a Uc), it is sufficient to consider the case
a<c<e and prove a ¥ ¢c =a. But then a <a<a % e <c<e, and Theorem 6
shows that ¢ ¥ ¢ =a * e = a.

THEOREM 8. Ifb>eandd>e, then b*¥d=5bUd.
The proof is similar to that of Theorem 7.

THEOREM 9. If L is a distributive lattice with a binary operation % having
properties P1-P5, then L is isomorphic to the direct union of two distributive lat-
tices A, B each with an operation % having properties P1-P5; and if (a,b), (c,d)
are any two elements of A X B, then (a,b) ¥ (c,d)=(aNe¢c, bUd).

Proof. Set
A=1{ala<e}, B={b|b>e};

then, with the same operations as in L, A and B are distributive lattices each
with an operation % having properties P1-P5.

We prove that the correspondence (a,b) — a * b is the required isomorphism
from A X B onto L. It is clearly a single valued correspondence from 4 X B into L.
It covers L because, for any element x of L, we have x N e €4, x U e €B and,
by Theorem 4, (x Ne) % (x Ue) =x ¥ e =x. It is one-to-one because, for any
a€Ad, beB, we have eN(a * b) =(eNa) ¥ (e Nb)=a*e=a. Thus if a *b
=c*%d, ce€d, deB, then a =c. Similarly, b =d.

This correspondence preserves the three operations U, N, *. For instance,

(@)U, d=(@Uec,bUd) = (aUc)*(bUd=@@Uc)* [(Ud) *(bUJI].

By Theorem 8, b U d = b * d; making this replacement in one parenthesis only,
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and rearranging the factors connected by %, we have {(a U ¢) * b) * [(b U d) * d).
But b=bUe¢, d =a Ud, so that we have

laU)* bU]* [(bU ) *(aUd))
=[la*BUcl*[(b*a)Udl=(a*b) U *d),

whence the operation U is preserved by our correspondence. Similarly for N,
For the operation *,

(a,b) ¥ (c,d)=(a*c, bxd) > (@a*c)*% (b*d)=1(a*b)*(c*d).

Thus our correspondence is an isomorphism.

By Theorems 7 and 8, (a,b) * (c,d) =(a N ¢, b U d).This completes the proof.

REMARK. The element e will be the [ in 4 and the O in B. The lattice 4 will
have an O if and only if L has one; B will have an I if and only if L has one.

4. The operation % has properties P1-P4. In this section, we prove one of the
main results of the paper (Theorem 16). The method employed is to complete L in
such a way that ¥ has properties P1-P5 and then to apply Theorem 9. Several pre-
liminary definitions and theorems will be of use.

DerFiNiTION 1. We extend the operations U, N, * to act on any subsets H, K
of L by defining HUK = {x Uy |x €H, y ek}, and similarly for the other

operations.

Notice that # U K, for example, is a subset of L, and is usually neither the
supremum of the elements inthe subsets H and K nor the point setunion of H and K.

DEFINITION 2. A subset P of L is a %-ideal if P ¥ L C P.

For any fixed a € L, the set @ % L is a *-ideal; it is called the principal
*-ideal generated by a.

THEOREM 10. An element x of L is in the principal *-ideal A generated by a
if and only if a ¥ x = x.

The sufficiency is evident. To prove necessity, we note that if x € A, then
x = a % y; by Theorem 5 it follows that @ ¥ x =a * (a * y) = x.

DEFINITION 3. A subset H of L is intervally closed if x € H, y € H, and
x <z <y imply z € H. The interval closure of a set G is the smallest intervally
closed subset containing G.

It is easily seen that the interval closure of any set is the collection of ele-
ments which lie between two elements of the set.
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DEFINITION 4. A subset R of L is special if it is

(a) a %-ideal,
(b) a sublattice, and
(c) intervally closed.

THEOREM 11.  Each principal *-ideal is also a special subset.

Proof. Let A be the principal *-ideal generated by a, and let x, y be any two
elements of A. Then a ¥ (x Uy)=(a*x) U(a*y)=xUy, and x Uy € 4, by
Theorem 10. Similarly x Ny € 4, and 4 is a sublattice of L.

If x, y are any two elements of 4, and x < z < y, we must show that z is in 4.
Since A contains a N x and @ U y, there is no loss in generality in supposing that
x < a< y. Set a*(aUz)=u We prove first that u=a U z. Since a ¥ y = y
and ¢ £ uw <y, Theorem 6 shows that u * y =y, so that

(2) @Uz)Nw*y)=(@Uz)Ny=alz.

By Theorem 5, u * (a U z) = u. From the definition of u and Theorem 1, we have
u<alz, sothat

(3) [(aUz)ﬂu]*[(aUz)ﬂy]:u*(aUz):u.

But, from the distributive law, the left-hand members of equations (2) and (3) are
equal, and u=a U z.
We now proceed with the proof that z € 4. Set

v=zN{@*z)=z % (@Nz).
Then, by Theorem 1, a Nz < v < z, and
aUv=aU[z*%@N2)]=@Uz)*aU@Nz)]=@Uz)*a=u=alz.
But now

v=@N2)Uv=LUo)NEZUu)=@C@Uz2)NzUv)=@U2z)Nz=2z.

That is, z N (e * z) = z, whence z < a % z. Similarly, z > a % z. Thus z =a % z
and, by Theorem 10, z € 4.

THEOREM 12. [f P is any %-ideal, the interval closure of the sublattice
generated by P is a special subset of L.

Proof. Let () be the sublattice generated by P, and let Q be the interval
closure of (). Then evidently (Q is intervally closed.

( is a sublattice because if x, y € O , there exist elements uy, u,y, v, vyof
such that v, < x < vy, uy < y < vy Then uyUuy, < x Uy < v U vyand, since Q
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is a lattice, x Uy € Q. Similarly x Ny € §, so that ( is a sublattice of L.
Qis a *-ideal. Since * distributes over U, N, Q is a *-ideal, and Theorem 2
then shows that () is a *-ideal. This completes the proof.

REMARK. It is evident that any special subset containing P must contain (.
Thus Theorem 12 gives a construction for the smallest special subset containing
(generated by) a given *-ideal.

THEOREM 13. If R, S are special subsets of L, then R ¥ S, RUS, RNS

are special subsets of L.

Proof. That each of the sets R ¥ S, RUS, RNS is a *-ideal is a simple
consequence of the distributive laws and Definition 1.

To see that R * S is a special subset, note that R * S is contained in both R
and S, since both are *-ideals; but clearly R * S contains the point-set inter-
section of R and S since * is idempotent. Thus R * S is this intersection, which
is easily seen to be a special subset of L.

R US is intervally closed because, if r, Us; < x < r, U s,, then

nNrnxNrn<r
and, since R is a special subset, x N r, € R. Similarly, x N s, € S. But then
(xn r2) Ulkn s2)~_—x N (r2 U sz)=x

lies in R US, and R U S is intervally closed.

R U S is a sublattice of L because, if r; Us;, r,U s, are any two elements of
RUS, clearly (r, Us;) U(r,Us,)=(,Ur) U(s,Us,)lies in R US. Also, since
rnNra< (rpUsy) N(r,Usy)and s; Nsy, < (rp Usy) N (r, Us,), we have

(Tl n r2) u (31 n 32)5 (Tl u 31) n (r2 u Sz)f ("1 U ’2) u (31 u 32)-

But the two extreme elements of this sequence of inequalities lie in R U §; thus,
since R U S is intervally closed, the center element also lies in R U S. This com-
pletes the proof that R U S is a special subset; dually, R N S is a special subset.

DEFINITION 5. £ = {R, S, T, + -} is the collection of all special subsets
of L with the three operations U, N, *.

THEOREM 14. The set L with the operations U, N is a distributive lattice
and * has properties P1-P5.

Proof. Theorem 13 shows that £ is closed under the operations U, N, *. To
show that { is a distributive lattice, we prove



DISTRIBUTIVE LATTICES WITH A THIRD OPERATION DEFINED 39

I. RUR=R, RNR=R,

2. RUS=SUR, ROS=SNR,

3 RUSHUT=RUBSUD, RANSHINT=RN(SNT),
4. RURNS) =R,

5. RUSAT=RUSNRUTD.

Numbers 1, 2, and 3 are evident. To prove 4, we note that clearly
RUWRNS) DR;

we show that RU(RNS) € R Ifx=r U(r,Ns) is any element of RU (R N S),
thenr, <x <r,Ur,, and x € R.

To prove 5, we note that clearly (RUS)N(RUT) DR U(S N T); we show
that ( RUSNRUTD cRUSATD.Ifx=(r, Us) N(r,U¢) is any element of
(RUSYN(RUT), then (nNr)U(sNe<x<(r,Ur,)U(sN¢),and

xeRUWESNT.

The proofs that the operation % has properties P1-P4 are similar to those just
given and will be omitted. For P5, the lattice L itself is a special subset of L
and acts as the identity element for the operation * in L.

THEOREM 15. The correspondence x —> the principal ¥-ideal generated by
x is an isomorphism of L onto a sublattice of { which identifies the operations
% in L and the sublattice of L.

Proof. By Theorem 10, if x, y generate the same principal *-ideal, then
y =x ¥ y =y % x = x, so that the above correspondence is one-to-one.
To prove that this correspondence is an isomorphism, let

x> X=x*%L, y=>Y=y%L; thenxUy—>@&Uy) ¥L=2.

Clearly Z < X U Y. Conversely, if w = (x % u) U (y % v) is any element of X U Y,
then x Uy)* wNo)<w< (xUy)*(Uwv), and w € Z. The proofs for N, *
are similar, and will be omitted.

Theorems 9,14, and 15 give immediately our main result:

THEOREM 16. If L is any distributive lattice with an operation % having
properties P1-PA, then L is isomorphic to a sublattice of the direct union of two
distributive lattices A, B, each with an operation * having properties P1-P5;
and if (a,b), (c,d) are any two elements of A X B, then

(a,b) * (c,d)=(aNec, bUd).

THEOREM 17. If L is any distributive lattice with an operation * having
properties P1-P4, then L is isomorphic to a direct union in which the operation %
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is given by equation (1) if and only if each pair of elements of L is contained in
some principal %-ideal.

Necessity. If L is a direct union with % given by equation (1), the two arbitrary
elements (a,b), (c,d) are contained in the principal x-ideal generated by (eUec,

bNd).

Sufficiency. By Theorem 16, L may be considered as a sublattice of a direct
union in which * is given by equation (1). Let (x,,y) be any fixed element of L,
and define 4 = {x l (,y,) € L, 3= {y [ (xy5y) € L}; then 4 X 8 < L. In fact,
if (x,y,) and (xq,y) are in the principal %-ideal generated by (a,b), then

aZ xel, bS ynyl’
and L contains
[(x,y,) N (@,0)] % [(x,9).U (@,8)] = (x,0) * (a,5) = (x,7)

Conversely, L < A X B, for if (x,y) is any element of L, and (a,b) generates a
principal %-ideal containing (x,y) and (x 15y, then L contains

[(x,9) N (@,0)] U {(x,5) N [(x,5) * (x,y)]}
=(x,b) U {(x,y) N x Nxy, y U y) 3= (x,y,) .

Similarly, (x,,y) is in L, and (x,y) € 4 X B.

CAUTION. The decomposition of L will be trivial (one of 4, B consisting of a
single element) if and only if * is identical with U or n.

5. The ordering equivalent to *. In any distributive lattice L with an opera-
tion % having properties P1-P4, we may define an auxiliary order relation by
making x > y mean x % y =y. It is easily seen that this order relation has the
following properties:

0Ol. x>x;

02. x>y, y> x imply x =y ;

03. x> v, y> z imply x > z;

04. Any two elements x, y of L have a greatest lower bound (namely
x K y)',

05. The operation of taking the greatest lower bound is distributive
with itself and with the two lattice operations in all possible ways.
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Conversely, if L is any distributive lattice (with no additional operation % de-
fined) with an auxiliary order relation having properties 01-05, then the operation
% defined in L by setting x * y equal to the greatest lower bound of x and y has
properties P1-P4. Moreover, the operation % will have property P5 if and only if
the order relation satisfies:

06. There is a greatest element e in L.

Our results may thus be restated as theorems concerning distributive lattices
with an auxiliary order relation.
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