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FINE STRUCTURE OF THE MACKEY MACHINE FOR
ACTIONS OF ABELIAN GROUPS WITH CONSTANT

MACKEY OBSTRUCTION

SIEGFRIED ECHTERHOFF AND JONATHAN ROSENBERG

Let G be a locally compact group, ω G Z2(G,T) a (mea-
surable) multiplier on G, and denote by C*(G,ω) the twisted
group G*-algebra of G defined by ω. We are only interested in
multipliers up to equivalence, so we always tacitly assume that
one is free to vary a multiplier within its cohomology class in
iί2(G,T). In this paper we are basically concerned with the
following two problems: the first is to determine the struc-
ture of C*(G,ω), where ω is a type I multiplier on the locally
compact abelian group G, and the second is to describe the
crossed product A >\a G of a continuous-trace G*-algebra A by
an action of an abelian group G, such that the corresponding
action of G on A has constant stabilizer iV, and the Mackey
obstruction to extending an irreducible representation p of A
to a covariant representation (p,U) of (A,N,α/v) is equal to a
constant multiplier ω € H2(N,T) for all p E A. The second
of these problems is the obvious starting point for the study
of the "fine structure of the Mackey machine", for actions
of abelian groups on continuous-trace algebras with "contin-
uously varying" stabilizers and Mackey obstructions.

In case where all Mackey obstructions are trivial, i.e. if a is pointwise
unitary on the stabilizer subgroup JV, these systems have been investigated
extensively in the literature (see for instance [18; 22; 24; 27; 28]), and
there are also some results for the case of continuously varying stabilizers [6;
26]. But in recent years there has been almost no progress in the investiga-
tion of crossed products with non-trivial Mackey obstructions. However, it
turns out that many techniques for the investigation of crossed products by
pointwise unitary actions can be used also for the case of non-trivial Mackey
obstructions.

Let us explain our results in more detail. In Section 1 we start with
investigation of the twisted group algebras C*(G,ω) of an abelian group
G and a multiplier ω G Z2(G,T). Recall that C*(G,ω) can be realized in
different ways. It is possible to write C*(G,ω) as a completion of Lι(G,ω),
the Z^-algebra of G with convolution and involution twisted by u;, or we
can write C*(G,ω) as the Green twisted product C xTω G(ω), where G(ω)
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is the central extension of G by T defined by ω, and rω : T -> T = U(C) is
the identity (see [14] and [20, Appendix 1] for more details). A multiplier
ω of G is said to be type I if C*(G,ω) is a type I C*-algebra. It is a
classical result by Baggett and Kleppner [1] that if G is abelian, then ω is
a type I multiplier if and only if the homomorphism hω : G —> G defined
by hω(x)(y) = ω(x,y)ω(y^x)~1 has closed range and is open as a map onto
its image. Now let Sω := keτhω denote the symmetry group of ω. Then
it is well known that Prim(C*(G,α;)) is always homeomorphic to Sω. Our
main result in Section 1 is now the fact that in the case where ω is type
I, C*(G,ω) is always Morita equivalent to C0(Sω). In fact, if G is second-
countable and we exclude the case where Sω is of finite index, C*(G,ω) is
isomorphic to Co(Sω) <8> /C. As a consequence we will also see that for any
type I [FC]"-group G the group C*-algebra C*(G) is Morita equivalent to
C0(G), which is interesting since these groups are the only known locally
compact groups with Hausdorff dual space, and are all such groups if G is
connected or discrete [2].

In Section 2 we investigate crossed products A xiα G such that A has
continuous trace, the abelian group G acts trivially on A, and all Mackey
obstructions are similar to a constant multiplier ω G Z2(G, T). It was shown
in [15] that for these systems Prim(A x α G) is always homeomorphic to
(A y\as S)~ and we will see that in the case where ω is type I, A x α G also
has continuous trace. The results in Section 1 may lead to the guess that in
this case A xια G is Morita equivalent to A xas 5, but we will see that this
is not true in general, by computing explicitly the Dixmier-Douady class of
A xi α G in terms of a and the Dixmier-Douady class of A, at least if G/S is
compactly generated.

Crossed products with constant stabilizer N and constant Mackey ob-
struction ω are investigated in Section 3. If the resulting action of G/N on
A is proper, i.e. if the map G/N x A -> A x A : (i,π) ι-> (π o αx-i,τr) is
proper in the sense that the inverse images of compact sets are compact,
then, just as in the case where a^ is pointwise unitary [18], we will see that
Prim(^4 xiα G) is a proper 5-space, where S denotes the symmetry group of
ω. In fact this result is also true under the more general assumption that all
Mackey obstructions of the system have a common symmetry group. If in
addition A is a principal G/iV-bundle (which is automatic if G/N is a Lie
group) and the action as of S on A is locally unitary (which is always the
case if S is compactly generated), then we will see that Pήm(A x α G) is a
principal 5-bundle over A/G, and we will also describe how to construct a
representative for this bundle in ZX(A/G,S) (Cech cohomology), where S
denotes the sheaf of germs of continuous S-valued functions on A/G.

Having done this, we go back to the investigation of crossed products
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with continuous trace. Extending a similar result of Green [13] to covariant
systems (A, G, α), where A has continuous trace and the abelian group G
acts freely on A, Olesen and Raeburn have shown [18, Theorem 3.1] that
A xa G has continuous trace if and only if G acts properly on A. As a
first step we will generalize this result to arbitrary A by showing that if an
abelian group G acts on A so that G acts freely on Prim(A), then the crossed
product A xa G has continuous trace if and only if A has continuous trace
and G acts properly on A. Using this and the Packer-Raeburn stabilization
trick [19] (which will also be used extensively in Section 2), we will then
see that if A has continuous trace, a crossed product A xa G with constant
stabilizer N and constant Mackey obstruction ω has continuous trace if and
only if ω is type I and G/N acts properly on (̂ 4 x\aN N)~ The last statement
is always true if the action of G/N on A is proper, but it turns out that the
converse is not true in general. In fact we will construct a covariant system
(A, (?, a) with constant stabilizer N such that a^ is pointwise unitary, A and
A x α G have continuous trace, but the action of G on A is even not smooth.
This example shows that Williams's description of transformation group
algebras with continuous trace [33] cannot be extended to actions of abelian
groups on continuous-trace algebras, even if all Mackey obstructions vanish.
Finally, we will discover that it is also possible to construct a covariant
system (A,G,α) with G abelian, such that A and A *\aG have continuous
trace, but where the stability groups do not vary continuously, thus showing
also that the other necessary condition for transformation groups having
continuous-trace transformation group algebra does not apply for actions on
continuous-trace algebras.

For any C*-algebra A we will as usual denote by M(A) the multiplier
algebra of A and by U(A) the group of unitaries in M(A). If X is a locally
closed subset of A (i.e. X is open in its closure), then there exist two ideals
Iχ and Jx of A such that X = Iχ/Jχ. For simplicity we will denote the
quotient Iχ/Jχ always by A\x. If a is an action of the locally group G on A
and X is G-invariant, then Ix and Jx are G-invariant, too. Thus a defines
canonically an action of G on A\χ, which will also be denoted by α. Finally,
if Ή is a Hubert space, then we denote by /C(Ή) the algebra of compact
operators on H.

This work was begun while the first author was visiting the Department
of Mathematics of the University of Maryland at College Park. He wants
to take this opportunity to thank the members of the Department for their
warm hospitality and the stimulating working atmosphere.
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1. Decompositions of multipliers and the structure of C*(G^ω).

We start our investigations with a study of decompositions of multipliers on
G. To fix notations: \ίω is a multiplier on G and H a closed subgroup of G,
then we denote by ωH the restriction of ω to H. Furthermore, if G = Gx x G2,
and if α^ and ω2 are multipliers of Gi and G2, respectively, then we denote
by CJI ® ω2 the multiplier on G defined by

ω1

Xι,Vι £ Gι and 0:2,2/2 £ G2> Let us also recall that a multiplier ω on the
abelian group G is called totally skew if (and only if) the symmetry group
Sω is trivial. If ω is totally skew, then it is type I if and only if hω maps G
isomorphically onto G [1].

Lemma 1. Let ω be a multiplier on a locally compact abelian group G.
Suppose G has a closed subgroup H such that ωπ is totally skew and type I,
and such that the group extension

1 -> # -> G -> G/H -> 1

splits. Then there is a complement L to H in G [i.e., a subgroup with
G = H x L) such that {after perhaps replacing ω by a similar multiplier) ω
splits as ω — ω# ® ω^.

Proof. Choose any splitting φ : G/H —> G for the group extension. Let us
denote by hω : G —> G the canonical homomorphism defined by hω(x)(y) —
ω(x,y)ω(y,x)~1. Since ωπ is totally skew and type I by assumption, it
follows from [1] that hωH : H -> H is a homeomorphism. Thus we can
define φ : G/H -> G by

This is again a splitting for the group extension, and we let L denote its
image, so that G = H x L. Furthermore, for each h G H and x E G/H, we
have

K(φ(x))(h) =

This implies that there exists a similar multiplier ω1 such that ω'(x,h) =
ω'(h,x) = 1 for each x G L and h G H. It follows easily from the cocycle
identities that ω' has the decomposition given in the lemma. D
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The next lemma shows that the answer to the question of whether a
totally skew multiplier ω o n a compactly generated abelian Lie group G is
type I only depends on the structure of G. Recall first the structure theory
of compactly generated abelian Lie groups: any such group can be written
in the form G — VxZxTxF, where V is a vector group, Z is finitely
generated free abelian, T is a torus, and F is finite abelian. The dimensions
of V and of T, the rank of Z, and the isomorphism class of F are a complete
set of isomorphism invariants for G.

L e m m a 2. Let ω be a totally skew multiplier on a compactly generated
abelian Lie group G. Let n be the dimension of the maximal torus T of
G, and let I be the rank of a maximal free abelian quotient of G (this may
be computed as dimQ(G/G0) ®z Q? where G o is the connected component of
the identity in G). Then I > n, and I = n if and only if ω is of type I.
Furthermore, if ω is type I and V is a maximal vector subgroup of G, then
ωy is also totally skew and type I.

Proof. The assumption that ω is totally skew means that hω is an injection
with dense range, from the abelian Lie group G to the abelian group G. Let
G o be the connected component of the identity in G, let K be the maximal
compact subgroup of G, and let V be a maximal vector subgroup of G, so
that Go = T x V. The connected component of the identity in G is K±.
Since G has dimension n + d i m F and G has dimension I + dim V, the fact
that hω is an injection with dense range forces I > n, with equality if and
only if hω induces an isomorphism of Lie algebras. If this isn't the case, hω

is clearly not an isomorphism, while if it is, hω has closed range and thus ω
is type I. Furthermore, in this case, hω gives a non-degenerate pairing of V
with itself, since if hω(v) annihilates V for some v eV, then since hω(v) lies
in the connected component of the identity in G, it also annihilates K and
thus lies in (V K)-1, which is compact, hence (since hω is an isomorphism)
hω(v) = 1. Thus ωy is also skew and type I. D

The following lemma is crucial for the proofs of several of our main re-
sults. It shows that for any type I totally skew multiplier ω on a compactly
generated abelian group G there exists a decomposition G = H x L such
that ωH and ωL are trivial.

L e m m a 3. Let ω be a totally skew type I multiplier on the compactly gen-
erated locally compact abelian group G. Then there exists a splitting G =
Vι x V2 x Z x T x Fι x F2 such that V\ and V2 are isomorphic vector groups, Z
is a free abelian group of rank n,T is a torus of the same dimension n, and
F\ and F2 are isomorphic finite abelian groups. We can choose the splitting
such that
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(1) if H = Vι x T x Fλ and L — V2 x Z x F 2 ; then ωH and ωL are trivial;

(2) »/ V = Vi x y2, M - Z x T, and F = F x x F 2 , £&en ω is simi/αr to
ωv ® α;M ® C^F and a// ttese multipliers are totally skew and type I.

Proof. Since ω is totally skew and type I, it follows that hω is an isomorphism
between G and G. Thus G is also compactly generated, which means G is a
Lie group. Let V be a maximal vector subgroup of G. By Lemma 2, ωy is
also totally skew and type I, and furthermore, by Lemma 1, after replacing
ω by a similar multiplier, we may write G — V x G' and ω = ωy ® ω<3' (A
special case of this was pointed out in [1, p. 316].) Since ωv is totally skew,
we may assume that ωy is a "Heisenberg multiplier" of the form e*J, where
J is a symplectic form on the vector space V. By existence of polarizations
for symplectic vector spaces, there exists a splitting V = V\ x V2 such that
ωyλ and ωV2 are trivial.

Thus for rest of the proof, we may and do replace G by G' and assume that
the maximal torus T of G is also the connected component of the identity
in G. By Lemma 2, the dimension n of T coincides with the rank of a
maximal free abelian subgroup of G/T. Let K be the maximal compact
subgroup of G, so that K = T x F for some finite abelian group F. Note
that hω must map T isomorphically onto the maximal torus in G, which is
K±, and must map K isomorphically onto the maximal compact subgroup
of G, which is T1-. Let Z be any complement to K in G, so Z = Zn. Let
F = K Π h'^Z1-), so hω(F) = TL Π Z-1. Then F is a complement to T
in if, and for # E F, /ιω (x) must be non-trivial on F since it annihilates T
and Z. Thus ωF is totally skew (and of course type I). By Lemma 1, we
may assume ω — ωF ® ωτz It is thus enough to prove the lemma for two
remaining cases: when G is a product of a torus and a free abelian group,
and when G is finite.

First consider the case where G = TΓn x Zn. We prove the existence of
the splitting by induction on the dimension n of the maximal torus T. If
n = 0, there is nothing to prove. So suppose n > 0. Choose an infinite cyclic
discrete subgroup Zλ of G whose image in G/T = Z n is a direct summand.
Let Gx = h-χ(Zt) and ωx = ωG l. Then G = Gx x Γx where 7\ is a one-
dimensional torus. By [1, Lemma 3.3] we know that the symmetry group Sωi

oΐω1 is equal to Zλ and we can write Gλ = Z1x G2, where G2 = T71"1 x Z"""1.
It is clear that ω2 = CUG2 i

s totally skew and it is one consequence of Lemma 2
that ω2 is also type I. Hence by induction there exists a splitting G2 — Z'x T'
with the properties as in the Lemma. If we now define Z — Z' x Z\ then the
splitting G — Z x T also has the desired properties.

Finally let us consider the case of finite groups. This is certainly well-
known, but for completeness we prove it anyway. So let ω be a totally skew
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multiplier on the finite abelian group F, and let F' be a cyclic subgroup
of maximal order in F. Then we can find a splitting F = F' x F", and
since ωF> is trivial (since F1 is cyclic) it follows that hζ' induces a surjective
homomorphism from F" onto F'. This implies that we can split F" = FλxF2

such that F2 is the kernel of this homomorphism. It follows now easily for
JV = Fι x F1 that ωN is totally skew and we can assume by Lemma 1 that
ω = ωN ® ωF2. By induction on the order of F we get a splitting for F2 as
in the lemma and we are done. D

We are now ready to prove the main result of this section.

Theorem 1. Let G be a locally compact abelian group, ω a type I multiplier
on G with symmetry group S. Assume G/S is compactly generated. Then
C*(G,ω) is strongly Morita equivalent to C*(S) = C0{S). In fact, unless
G/S is finite, C*(G^ω) is isomorphic (non-canonically) to C0(S) ®K.

Proof. Since G/S carries a totally skew type I multiplier, it is self-dual, hence
is a compactly generated abelian Lie group. First, let's simplify the S. The
group G/S must be of the form R2n x T m x Z m x F , for some finite group F.
Thus there exists a group G' = R2n+™ x Zk (for some k > m) such that G/S
is isomorphic to G'/D for some finitely generated torsion-free abelian and
discrete subgroup D of G'. Now if q : G -> G/S and q1 : G" -> G'/D ̂  G/S
denote the quotient maps, we define

G = {(x,y)eGxG':q(x) = q'(y)}.

Then G is a locally compact abelian group with G/D = G, where we identify
D with its canonical image in GL Thus we may lift the cocycle ω to a cocycle
ω of G with symmetry group S = S x D. However, G' may be identified
with the quotient of G by the canonical image of S in G, via the projection
on the second factor. Since every quotient of the form R 2 n+m x Zfc of an
abelian locally compact group splits, we may write

G = Sx (R 2 n + m x Zfe), SCS.

Note that, since D C S , C*(G,ω) is a quotient algebra of G*(G,α;). So if
the latter is Morita equivalent to an abelian algebra, or a tensor product of
an abelian algebra with /C, so is C*(G,ω). By [1], C*(G,ω) has Hausdorff
spectrum S, so this will prove the theorem. But since S lies in the symmetry
group for ώ and also splits as a direct factor in G,

C*{G,ω) £ C*(S) ® G*(R2n+m x Z*, res of ώ)

£* C0(S) ® G*(M2n+m x Z*, res of ώ).
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The abelian factor is clearly harmless, so this shows that after replacing G by
l 2 n + m x 7Lk and S by D, we may assume that G is a torsion-free compactly
generated abelian Lie group, and S is a free abelian group sitting discretely
in G. We assume this hereafter.

In making the above reduction, we haven't changed the fact that G/S is
a self-dual compactly generated abelian Lie group, and we may suppose ω is
lifted from a totally skew bicharacter on G/S. By Lemma 3, there is an open
subgroup Gi of G, of finite index, such that Gχ/S is isomorphic to E2 n x
Tm x Z m and such that the restriction ωx oίω to G\ still has symmetry group
S. (Fix any splitting of G/S as G" x F with F finite, G' ^ R2n x T m x
and such that after replacing ω by a similar multiplier, ω splits as ωo>
Then let Gi be the inverse image of G' in G.) Gλ is an open subgroup of G
of finite index, so that G*(Gi,α;1) is a hereditary subalgebra of C*(G,ω) of
finite index, and they have homeomorphic spectra (since ω and ω\ have the
same symmetry group S). In fact, any irreducible representation of C*(G, ω)
restricts to a multiple of an irreducible representation of C*(Gi, α>i), since in
both cases there is one and only one irreducible representation inducing any
given character of S. We will first show that G*(Gi,α;1) is strongly Morita
equivalent to an abelian algebra, then deduce the same fact for C*(G,ω).

By Lemma 3, we may choose a decomposition G\/S — H' x L' such that
the image of ωγ is trivial when restricted to either H' or L' and such that
H1 9* Tm x Rn, L / ^ Z m x 8 n . Let H be the inverse image of H1 C Gλ/S in
Gi. Since any locally compact abelian extension of Z m x En by some other
locally compact abelian group must split, there is a subgroup L of G\ such
that L maps isomorphically onto Lι in Gχ/S and such that ωι is trivial when
restricted to either H or L.

Consider the central extension Gi(α i) of Gx by T associated to ωλ. Since
ϋύi is trivial on both H and L, the normal subgroup H(ωι\π) is just T x ff,
and we have a nilpotent extension

> L -> 1

which must split both algebraically and topologically, so

(with the copy of T central and the whole group nilpotent). By definition,
G*(Gi,α;i) is the quotient of C*(G1(ω1)) corresponding to the identity char-
acter of T. So C*(Cri,ωi) is a G*-crossed product C*(H) xi L and thus
isomorphic to a transformation group G*-algebra

Go (H) x L.
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Since L has trivial intersection with 5, the action here of L on H is free, with
Hausdorίf quotient isomorphic to S. By Green's Theorem [13], it follows that
C*(Gι,ωι) is strongly Morita equivalent to Co{§).

It remains to show that C*(G,ω) is also strongly Morita equivalent to
Co(£), and in fact isomorphic to C0(S) ® /C unless G/S is finite. Since
C*(G,ω) is already known to have continuous trace ([16], but see the cor-
rected proof in [9, Lemma 6]) with spectrum 5, which is a torus, we only have
to show that its Dixmier-Douady class vanishes. (For the result on isomor-
phism, we are using [4, Theoreme 14], which says that an tt0-homogeneous
continuous-trace algebra over a finite-dimensional compact metrizable space
is necessarily locally trivial.) We will use the fact that the integral cohomol-
ogy and if-theory of a torus are torsion-free, together with the transfer on
Ko. Let i : C*(Gι,ωι) <-+ C*(G,ώ) be the inclusion. It induces a map

6, : K^C^Guω,)) -> K0(C*(G,ω)),

and since C*{G, ω) is a finitely generated free (left) C*(Gi, ω^-module, there
is also a transfer map

ι : K0(C*(G,ω)) -> K0{C*{Guωλ)),

such that 6* o ^ is multiplication by [G : Gχ\. Since the Dixmier-Douady
class vanishes for C*{Guω1),KQ{C*{Guωλ)) ^ K°(S), which is free abelian
of rank 2 r a n k 5~ 1. Hence L* is injective and K0(C*(G,ω)) has rank > 2 r a n k 5~ 1.
But by [29, Theorem 6.5], if the Dixmier-Douady class of C*(Gf, ω) were non-
zero, the d2 differential in the Atiyah-Hirzebruch spectral sequence for its
K-theory would be non-zero, and so its if-theory would have rank < 2rank5~~1

(the rank of the E2 term), a contradiction. This completes the proof. D

Remarks. If G/S is finite, say of order n2, then C*(G,ω) is homoge-
neous C*-algebra locally isomorphic to C0(S) ® Mn(C), but it is known that
C*(G,ω) need not be isomorphic to C0(S) ® Mn(C) in general, even if G
is free abelian (the case of a "non-commutative torus" or "rational rotation
algebra" - see [3] for further information about this case). So our result is
best possible.

An important special case of our results is thus that any type I non-
commutative torus is strongly Morita-equivalent to the continuous functions
on an ordinary torus. This fact was known before (see for instance [3] for
the two-dimensional case), but the argument above is new. If one is willing
to assume the result in this case, then one can avoid the if-theoretic part
of the above argument, as follows. By the reductions which have been made
before, we may split both G and the multiplier ω to get G — H x Z and
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ω = ωH ® ωz, where Z = Zn, and where the quotient of Z by the symmetry
group of ωχ is just the finite part of G/Sω. Then the result follows for G,
if it follows for H and Z. Now the arguments used for G\ in the original
proof give the result for H, while the result for Z follows by the fact that
non-commutative rational tori are Morita equivalent to C(Tn).

Finally, one can give an independent proof (not using JK*-theory) of the
fact that non-commutative rational tori are Morita equivalent to C(Tn) via
our Theorem 3 below. See §2 below for further details.

Recall that a locally compact group G is called an [FC] "-group if for all
x G G the conjugacy class of x is relatively compact. It is well known [16;9]
that the group C*-algebra C*(G) of an [FC]"-group has continuous trace
if and only if C*(G) is type I, i.e. G is a type I group. It is also known
[2] that any connected or discrete group with continuous-trace group C*-
algebra must be an [FC]~-group. We will see that the group C*-algebras of
these groups are always Morita equivalent to commutative C*-algebras. At
the same time we will show that the conclusion of Theorem 1 also holds for
arbitrary locally compact abelian groups.^

Theorem 2. Let G be any type I [FC]~-group. Then C*(G) is strongly
Morita equivalent to C0(G). Similarly, ifω is a type I multiplier on a locally
compact abelian group H, then C*(H,ω) is strongly Morita equivalent to
Co(S), where S is the symmetry group for ω. Furthermore, if H is second-
countable and H/S is not finite, then C*{H,ω) = CΌ(S) ® /C.

Proof. First of all, if G is a type I [FC]"-group, C*(G) has continuous trace,
and in particular has Hausdorff spectrum, by [9, Lemma 6]. Furthermore,
we claim G has a compact normal subgroup K such that G/K is locally
compact abelian. The argument for this is sketched in [16]: indeed, by
[17, Theorem 2.2], there exists a compact normal subgroup K1 of G such
that G/K' = V x D for a vector group V and a discrete [FC] group D. Since
G is type I, the same is true for JD, hence by Thoma's Theorem we know that
D contains an abelian subgroup of finite index, thus (since D is also [FC])
it follows that the commutator subgroup of D is finite. Taking the pull-back
of this finite subgroup in G we obtain a compact subgroup K of G such that
G/K is abelian. (For the central extension G = H(ω) of a locally compact
abelian H by T associated to a multiplier, it is already clear that one has
such a structure.) Without loss of generality, we can enlarge K if necessary
and assume that G/K is an abelian Lie group, though possibly with a very
large group of components. Since K is discrete, the orbits of G on K are both
open and closed, and it is easy to see that C*{G) decomposes as a C* (co)
direct sum of subalgebras associated to the various orbits. By the Mackey
machine (e.g., [14, §§4-5]), these subalgebras are strongly Morita equivalent
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to the C*(GP/K, ω"1), where we choose one p £ K from each orbit, Gp

is the stabilizer of p in G, and ω is the associated Mackey obstruction.
Furthermore, if G is type I, this means all these multipliers ω are type I.
Let us note also that the central extension G = H(ω) of a locally compact
abelian H by T associated to a type I multiplier ω is not necessarily a type I
group (see counterexample below), but at least the direct summand of C*(G)
corresponding to the identity character of T is type I, and the argument to
be given below will apply locally to this portion of the algebra. It is therefore
not necessary to give a separate argument for this case.

We may therefore assume we are looking at a type I multiplier ω on Gpi

where Gp is the stabilizer in G of some p G K, and where G/K is an abelian
Lie group. So Gp/K is also an abelian Lie group. The quotient of this group
by the symmetry group S for ω is now an abelian Lie group admitting a
type I totally skew multiplier, so it is compactly generated. The statement
of the theorem now follows from Theorem 1. (The fact that C*{H,ω) is
stable when H is second-countable and S is not of finite index again follows
from [4, Theoreme 14].) D

Remark. It might be of interest to see an example of a type I multiplier
on a locally compact abelian group H such that the corresponding central
extension G of H by T is not type I. Since the portion of C*(G) living
over the nth power of the identity character of T can be identified with
C*(G,ic;n), it's enough to give an example where ω is type I but ωn is not.
Now, to see whether it is or isn't, one can assume ω is totally skew, so hω

is an isomorphism H —» H. But hωn = hω o βn, where βn : x »-> xn, by an
easy calculation. So for hωn to have closed range (which is the condition for
type I-ness, at least in the separable case), it's necessary and sufficient for βn

to have closed range. There are groups where it doesn't; for example, take
n > 1 and let H1 be the restricted direct product of countably many copies
of Z/(n2) with respect to the open subgroups of order n,nZ/(n2) = Z/(n).
For this group, βn kills the compact subgroup ΠSi ^V(n) a n d so the range of
βn can be seen to be a countable dense subgroup of this compact subgroup.
This group H' doesn't have a type I totally skew multiplier, but H = H* xHι

does, and the nth power of its canonical totally skew multiplier isn't type I.
We take this opportunity to point out a correction: in §2 of [10], it was

asserted that if ω is type I, so is ωn for any n. This is true when H/S is an
abelian Lie group, which was the case needed there, though as we have seen
it is false in general.
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2. The structure of crossed products in the case of trivial action
on the spectrum.

We are now going to investigate the structure of crossed products A xa G
of separable covariant systems (A,G,a), where A has continuous trace, G
is abelian, the action of G on A is trivial, and the Mackey obstruction at
each point p E A is similar to a constant type I multiplier ω E Z2(G, T).
These systems play a crucial role in the investigation of the Mackey machine
for certain group extensions (see for instance the discussions in [31] and
[18, Section 3]). If S denotes the symmetry group of ω, then it is well known
that (A xαG)~is homeomorphic to (A xas 5)~[15], which is a proper 5-space
[18], and we will see that A xα G is always a continuous-trace algebra (here
as denotes the restriction of a to 5). The preceding results about C*(G,ω)
may lead to the guess that A xiα G is always Morita equivalent to A >iα5 S,
but by computing explicitly the Dixmier-Douady class of A x\a G in terms
of the Dixmier-Douady class δ(A) of A and the action of G, we will see that
this is not true in general. However, it is true for the very simplest such
systems, the projective unitary actions.

Let (A, G, a) be a separable covariant system such that A is of type I and G
acts trivially on A. If ω is the Mackey obstruction for the action a at p E A,
then there is an ω-representation U : G —> U^K^) such that U implements
a at /9, which means that p{ax(a)) = Uxp(a)U* for all a E A and x E G.
The action a of G on A is called pointwise unitary if U can be chosen
as a homomorphism, or equivalently if all Mackey obstructions are trivial.
We say a is unitary if there exists a strictly continuous homomorphism
u : G —̂  U(A), the group of unitaries in the multiplier algebra Λi(A) of
A, such that a is implemented by u, which means that ax(ά) = uxaux

for all x E G and a E A. Similarly, a is called locally unitary if, for
each p e l , there exists an open neighborhood U of p E A and a strictly
continuous homomorphism u : G —>> U{A\u) such that u implements a in
a neighborhood of p, which simply means that π(ax(a)) = π(uxaul) for all
π E (7, £ E G and α E A. This condition is equivalent to saying that for each
p E A there exists a closed two-sided ideal I C A such that / g ker p and the
restriction of a to / is unitary. Locally unitary actions have been studied
extensively in the literature [22;24] and there are also some remarkable
results concerning pointwise unitary actions [18]. If (A, G, a) is separable
and A has continuous trace, then it is known for large class of groups G that
pointwise unitary actions a of G on A are automatically locally unitary.
This is for instance true for all compactly generated abelian and compact
groups, but also for many other groups (see [30, Corollary 2.2]).
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In the sequel it will be necessary to decompose a given crossed product
A xa G with respect to a normal subgroup N of G, at least modulo Morita
equivalence. Hence, before we start with the investigation of crossed prod-
ucts with constant Mackey obstructions let us recall basic ingredients of the
stabilization trick of Packer and Raeburn [19]. (For another approach, see
also [8].) For this let us start with a separable covariant system (A, G, a) and
suppose that N is a closed normal subgroup of G. Then there is a canonical
action 7 of G on A xαjV N which is given on the dense subalgebra CC(N, A)
by the formula

Mf))(n) = AGtN(x)ax(f(χ-1nx))

x (Ξ G, n G iV, where AQ^ : G —> E + is defined by the formula

/ g(n) dn = AGiN(x) / g(x~1nx)
JN JN

dn

for all g € CC(N). Now suppose that c : G/N -> G is a Borel cross-section
with c(έ) = e. If we define u : G/JV x G/ΛΓ -> W(J4 xαiV iV) by

u(x,y) = ijvfφlcfjjctij/)"1),

where tjv denotes the canonical embedding of N into U(A xα N iV), then
(7 o c, ί/) is a twisted action (in the sense of Packer and Raeburn) of G/N
on B := A xiαΛΓ JV such that A x α G = B xι7OCjU G/JV [19, Theorem 4.2].
Furthermore, if (π, C/) is a covariant representation of (A, G,α), then the
corresponding representation of the twisted covariant system (B,G/iV,7 o
c, u) is given by (π x U\^^ U o c).

For the next step let us denote JC(L2(G/N)) simply by /C. It was shown
in [19, Theorem 3.4] that there exists an ordinary action β of G/N on B® K,
such that β is exterior equivalent to the twisted action ((7 o c) ® id, u ® 1).
This means that there exists a Borel map υ : G/N —> U(B ® /C) such that

(1) /?* = Adi;* o ( 7 c ( i ) ® id), and
(2) Viy = υ±(jc{±) ® id)(^)w(i,y),

for all i , y G G/iV. As a consequence [19, Lemma 3.3] we know that
(£?®/C) XβG/N is isomorphic to (J5®/C) X(ΊoC®ϊά,u®ι)G/N, which in fact is iso-
morphic to (A®K) ^α®id G. The covariant representation (π, U) of (̂ 4, G, α)
now corresponds first to the representation (π®id, U® 1) of (A®id, G, α®id),
which by the isomorphism above corresponds to the covariant representation
(π x U\N ® id, V) of (B ® K, G/N, /?), where

V* = π x U\N ® id(vj.)UcW ® 1.

If A is stable, we may identify A ® K with A, α ® id with α (at least modulo
exterior equivalence by [24, Lemma 1.14]) and (π®id, U® 1) with (π, U). In



30 S. ECHTERHOFF AND J. ROSENBERG

the same way we may suppose that β is an action of G/N on B rather than
on B ® /C. Hence in this case we have an isomorphism between A xiα G and
B Xβ G/N, and if (π, U) is a covariant representation of (A, G, α), then the
corresponding representation of (B,G/N,β) is given by (π x U\N,V) such
that

where υ : G/N —> U(B) implements the exterior equivalence between (7 o
c, u) and β. We need the following Proposition:

Proposition 1. Let (A, G, a) be a separable covariant system such that A
is stable. Furthermore, let N be a closed normal subgroup of G and let β
be the action of G/N on B := A >4aN N as constructed as above. Then the
following is true:

(1) // H is any closed subgroup of G containing N, then A x\aH H =
B >ipH/N H/N, and the restriction of any representation (TΓ, U) of (A, iϊ, α#)
to B = Ax\aNN is equal to the restriction of the corresponding representation
of{B,H/N,βH/N)JoB.

(2) IfπxVe B, and if η denotes the canonical action of G on B, then
(π x V) o ηx is equivalent to (π x V) o βx for all x £ G.

Proof. Part (1) follows immediately from the construction above and the fact
that βH/N is just the action of H on B which comes from the same procedure,
if we start with the restriction of the Borel cross-section c to H/N.

In order to prove (2) let υ : G/N -> U{B) be the map which implements
the exterior equivalence between (7 o c, u) and β. Then βx = Adt^ o jφ).
Hence, if π x V G B and b E B we get:

(π x V) o ̂ (6) = (π x V) o A d ^ o 7c(ά)(6)

= (π x F ) K ) ( π x V)(7c(«)(6))(π x

which proves the claim, since (π x V) °7c(i) is always equivalent to (π x V) o

7* D

Proposition 2. Lei (A, G,α) 6e α separable covariant system such that G
is abelian, A is stable and of type I, G acts trivially on A and all Mackey
obstructions of the system are similar to a constant multiplier ω E Z2(G, T).
Moreover, let S denote the symmetry group of ω and suppose that ω is lifted
from ω E Z2(G/S,T), that is, ω(x,y) = ω(x,y) for all x,y E G. Then, if
β is the action of G/S on B := A >ιas S coming from the Packer-Raeburn
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stabilization trick, all Mackey obstructions of the system {B,G/S,β) are
similar to ώ.

Proof. Since the action of S on A is pointwise unitary, we can write every
irreducible representation of A x\as S in the form p x F , with p G A. Now let
U : G -* U(HP) be an ω-representation such that U implements a in p. Since
U\s is a homomorphism we have p x U\s € ί?, and it follows from the general
theory that we find a character χ £ G such that (U ® χ)\s = V. Hence we
may as well assume that U\s = V. Now let us define W : G/S -* U(ΉP) by

where C and v are as in the constuction of β above. Then, if 7 denotes
the canonical action of G on B and u : G/S x G/S —> U(B) is given by
u(x,y) = is(c(i)c(y)G(iy~1)), is denoting the canonical embedding of 5
into U{B), we get:

W*y = P x U\s(viy)Uciiy)

= px U\s(υ±^c{i)(υy)u(x,y))Uc{±y)

= px U\s(v±)p x U\s(-γc(x)(vy))

'Uφ)UcfflUc(iύ)-ιUc(iy)ω(c(x),cW

= ω(x,y)ρ x U\s(υA)Uc{ά)p x U\s(υy)Uc{y)

Here we used the relation p x ί7|s(7c(i)(fy)) = Uφ)p x C |̂5(̂ y)̂ c*(i)
follows easily from the fact that U implements a in p. Furthermore, we
have also used the fact that ώ(i,y) = ω(x,y) for all x,y e G, from which
in particular follows that ω{c{x)c(y),c{xy)~1) = α;(c(iy),c(iy)~1), and the
fact that U* = α;(a;,a;""1)ί7x-i, which implies that

1)^^)-!^^) = 1.

The proposition follows now from the fact the W implements β in p x U\s,
which can be shown exactly as in the proof of the correspondence of the.
covariant representations of (A, G, a) and (B, G/S, β) given in [19]. D

If G is abelian, H is a closed subgroup of G, and a is pointwise unitary,
then there is a well-defined map

resg :(Axa G)~-> (A x α f f H)~
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which is just given by the usual restriction of representations. If H is the
trivial subgroup, then we will denote this map simply by resG.

Proposition 3. Let (A, G, a) be a separable coυariant system such that A
has continuous trace, G is abelian and a is pointwise unitary. Suppose fur-
ther that N is a closed subgroup of G such tha G/N is compactly generated.
Then

{A»aGr^>(AxaNNr

is a principal G/N-bundle.

Proof. By passing from A to A®K, and from a to α®id we may assume that A
is stable. Let β be the action of G/N on B := A x aN N as in the constructions
above. Then it follows from Proposition 1 that res£ : (̂ 4 xiα G) ̂  —> B
is identical to the map resG/ΛΓ : (B x0 G/N)~-> B. In particular, this
implies that β is pointwise untary. By [18, Theorem 1.10] we know that B
is isomorphic to (resN)*(A) = C0(B) ®Cr^) A, the pull-back of A along res^.
Since A has continuous trace by assumption,.the same is true for (resiV)*(A),
since this algebra is by definition a quotient of the continuous trace algebra
C0(B) ® A (see [25] for the definition of pull-backs of C*-algebras). Hence,
since G/N is compactly generated, it follows from [30, Corollary 2.2] that
β is locally unitary. Thus the results in [22] imply that τesG/N, and hence
also res^r, is a principal G/iV-bundle. D

Let us now recall from [24] a certain pairing in Cech cohomology. For this
let X be a locally compact space and G a locally compact abelian group.
Furthermore, let Q and Q denote the sheaves of germs of continuous G- and
G-valued functions, respectively. Then there is a natural pairing

(-,.) : H\X,G) x Hι{X,G) -> # 3 (X,Z)

(Cech cohomology) which is given in the following way: If c £ iϊ 1(X, Q) and
d E H1 (X, Q) are represented by cocycles

Cij : Nij -> G and diά : Ny -> G

with respect to an open cover {Ni} of X, then we can define a cocycle

7 EZ 2 (X,T) by

Ίijk : Nijk ->• T; Jijk(x) = (cij(x), djk(x)).

Here T denotes the sheaf of germs of continuous T-valued functions on X.
The class (c, d) is now defined as the image of [7] under the natural isomor-
phism H2(X, T) —> H3(X, Z). Recall also that there is a canonical one-to-one
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correspondence between the classes in Hι(X, Q) and the isomorphism classes
of principal G-bundles over X. We are now ready to state the main result
of this section.

Theorem 3. Let (A, G, a) be a separable coυariant system such that A has
continuous trace, G is abelian and the action of G on A is trivial. Suppose
further that all Mackey obstruction are similar to a fixed type I multiplier ω €
Z2(G, T). Then AxaG has continuous trace and (AxaG)~ is homeomorphic
to Y := {A>\as S)~ where S denotes the symmetry group ofω. Furthermore,
if G/S is compactly generated, then there exist closed subgroups H and L of
G containing S with the following properties:

(1) The actions aH and a^ are pointwise unitary, G/S = H/S x L/S,
and h%, the composition of hω with the projection from G onto H, maps
L/S isomorphically onto H/S.

(2) Ifc denotes the class in H1 (F, C/S) corresponding to the L/S-bundle
res^; and d denotes the class in Hι(Y,C/S) corresponding to the H/S- and
hence L/S-bundle res<?, then

For the proof we need the following lemma, which gives a very weak form
of the decomposition results of Section 1 for multipliers on arbitrary locally
compact abelian groups. For this let us introduce the following notion: If ω is
a multiplier on the locally compact abelian group G, then a closed subgroup
H of G is called maximally ω-trivial if H is a maximal subgroup with
respect to the property that ωH is trivial.

Lemma 4. Let ω be any multiplier on the locally compact abelian group G.
Then there exists a maximally ω-trivial subgroup H of G. Moreover, if ω
is type I and totally skew, and if H is maximally ω-trivial, then h^ , the
composition of hω with the projection from G onto H, factors through an
isomorphism between G/H and H.

Proof. Let M denote the set of all closed subgroups L of G such that ωL

is trivial, ordered by inclusion, and let £ be a chain in Ai. Then it follows
easily from the continuity of hω that the restriction of ω to the closure K of
ULECL is trivial, too. Hence by Zorn's lemma there exists a maximal element
H in M, which just means that H is maximally ω-trivial.

Finally suppose that ω is type I and totally skew and H is maximally ω-
trivial. Since hω is an isomorphism G —> G, composition with the projection
G —> H gives an open and surjective map h%. Clearly H is contained in
the kernel of h^. Assume that there exists x £ H such that hω(x)(h) =
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hω(h)(x) = 1 for all h e H. Then hω(xn){h) = (hω(x)(h))n = 1 for all
n G Z, and we have also hω(xn){xm) = (hω(x)(x))n+m = 1 for all n,m G Z.
The continuity of hω in both variables now implies that ω^ is trivial, if L
denotes the closed subgroup generated by H and x. But this contradicts the
maximally α -trivial property of H and we conclude that H is the kernel of
hζ. •

Proof of Theorem 3. It was already shown in [15] that (̂ 4 x α s S) ~is
homeomorphic to (AxaG)~ Since all assertions in the theorem are invariant
under passing from A to A®K and a to a®id we may asume that A is stable.
We start the proof for the case where ω is totally skew, and hence S is trivial.
By Lemma 4 we find a maximally α -trivial subgroup H of G. Since ωH is
trivial it follows that α# is pointwise unitary. Hence by [18, Theorem 1.3]
we know that the dual action of H on the Hausdorff space (Ay\aH H)^is free
and proper. Since A xaH H ^ (res^) (il) by [18, Theorem 1.10] it follows
also that A xα H H has continuous trace. Now let β denote the action of G/H
onAxaHH defined by the Packer-Raeburn stabilization trick. We show that
the corresponding action of G/H on (A xα H ίf)~is free and proper. Then it
follows from [24] that A x α G = (Ay\aH H) x^ G/H has continuous trace.
Hence, let x G G and p x V G {A xaH H)~ By part (2) of Proposition 1
we know that (p x V) o βi is equivalent to ( p x V ) o 7 , , where 7 denotes
the canonical action of G on A xα H H. Now let U : G —> U(%p) be an
α -representation of G which implements a in p. Since α;# is trivial, we
may assume that C/|/f is a homomorphism, which implies that (p, U\H) is
a covariant representation of (A, ϋf, «#). Hence, by multiplying U with an
appropriate character of G, we may assume that V = U\H> Then, for all /
in the dense subalgebra CC(H,A) of A y\aH H, we get:

= ί p(ax(f(h)))Uhdh
JH

= I UxP{f{h))U*xUh dh
JH

= Ux ^p(f(h))hω(x)(h)Uh dή U

= Ux(p x (U\H 0 hω{x))){f)U

= Ux(px(V®hω(x)))(f)U:,

where we have easily verifiable equation

U*Uh = hω(x)(h)UhU*, for all x € G and h € H.
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Thus, since (p x V) ojx is equivalent to ( ρ x F ) o ^ , it follows that the latter
is also equivalent to p x (V ® hω(x)). Since the composition of hω with the
projection from G onto H is an isomorphism G/H -» jff, we see that this
isomorphism carries that the action of G/H on (A xaH i f ) Λ onto the dual
action of H on the same space. But we have already mentioned above that
this action is proper.

Now suppose that G is compactly generated, still assuming that ω is
totally skew. Then it follows from Lemma 3 that G has a splitting H x L
with ωH and ωL trivial. Since G splits topologically we can write A >Jα G
as the iterated crossed product (A xα H H) x 7 L, where now 7 denotes the
restriction of the canonical action of G on A xaH H to L. Since hω defines
an isomorphism between L and if, the calculations above show that this
isomorphism carries the action, say 7, of L on (A xaH iί]Γonto the dual
action of H on this space. The description of the isomorphism between
(τesH)*(A) and Axaiί H given in [25] (note that aH is locally unitary since
G is compactly generated) shows that 7 is in fact the diagonal action
Hence it is now a consequence of [24] that

Now let us finally assume that S is nontrivial. Then there exists an ώ E
Z2(G/S',T) such that ω is lifted from ώ (modulo similarity). Let β be the
action from G/S on B := A xQ 5 S coming from Packer-Raeburn stabilization
trick. By Proposition 2 we know that all Mackey obstruction of the system
(JB, G/S, β) are similar to ω. Finally, if H and L are as in the theorem,
then we know that ωH/s and ωL/S are trivial, and by part (1) of Proposition
1, we see that the maps resf̂  and res| are identical to τesH^s and resL//s.
Hence, the equation for the Dixmier-Douady class of A xια G follows directly
by applying the second part of this proof to B >4β G/S. D

Remark. One possible application of Theorem 3 is to give a new proof of an
important special case of Theorem 1, that any type I non-commutative torus
is strongly Morita-equivalent to the continuous functions on an ordinary
torus. (This fact was not used in the proof above.) Namely, apply Theorem
3 with G free abelian, A = /C, and a an action of G on A with type I
obstruction cocycle ω. Then as we've seen, S is of finite index in G and
the space Y in the theorem is just 5, which is a torus. Since G/S is finite,
the classes c and d in Theorem 3 are necessarily torsion elements. Since the
cohomology of a torus is torsion-free, they must vanish and hence δ(A y\a

G) = 0, proving that A xα G is Morita -equivalent to C(S). However,
as proved below in Proposition 5, A >Jα G is also Morita-equivalent to the
non-commutative torus C*(G,ω~ι).
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We are now going to show that the pairing (c, d) may be nontrivial. In
order to do this we need the following lemma. Recall that two actions a and
a1 of G on A are called exterior equivalent, denoted a ~ α', if there exists
a strictly continuous function x »-> ux from G into U(A) such that

(1) uxy = uxa(x)(uy),
(2) a!(x) — (Adux)a(x) for all x,y £ G. It is well-known that the

crossed products A x\a G and A xa> G are isomorphic if a and α' are exterior
equivalent, and that conversely, if G is abelian and there is a G-equivariant
isomorphism of A xα G and A x\a> G compatible with the injections of A
into the two multiplier algebras, then a and a1 are exterior equivalent (see
[24, Theorem 0.10]).

Lemma 5. Let G be a locally compact group and A and B C*-algebras.
Suppose further that a and a1 are actions of G on A and that β and β' are
actions of G on B such that a is exterior equivalent to a' and β is exterior
equivalent to β'. Then the diagonal actions a® β and a' ® β' on any C*-
tensor product A®B, in particular on the minimal tensor product, are also
exterior equivalent.

Proof. We show first that a®β ~ a'®β. For this we define υ : G -» U(A®B)
by

vx = ux ® id, x E G.

Straightforward computations show that υ satisfies the conditions (1) and
(2) above, and hence that a®β is exterior equivalent to a' ®β. The Lemma
follows now easily from the symmetry of this result and from the fact that
~ is an equivalence relation. D

Now let X be any second-countable locally compact space, H a second-
countable locally compact abelian group, and let p : E —> X and q : F —> X
be any principal H- and ^-bundles, respectively. Then it was shown in [22]
that there exist locally unitary actions β and 7 of if and H on A — C0(X, /C)
such that the bundles res^ : ( i ^ f f ) Λ 4 l and resH : (A x 7 ίf)~-> X
are identical to the original bundles p and q (these actions are actually given
by the dual actions of H and H on the stabilized transformation group C*-
algebras defined by p and q, respectively). Now let G = H x H and define
actions β and 7 of G on A — C0(X, /C) by β(x, y) = β(x) and 7(0;, y) = 7(2/),
for all x E H and y G H. We define a multiplier ω on G by

where here ( , •) denotes the natural pairing of H with H. Then ω is easily
seen to be totally skew and type I. Let U : G —» U(H) be an α -representation
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of G, and let δ = Ad U denote the corresponding action of G on /C. We are
going to define the action a of G on CΌ(X, /C) in the following way: First of all
let a1 be the diagonal action β®η of G on C0(X, /C) ® C0(X, K). This action
induces an action a" of (7 on the balanced tensor product CO(X,1C) ®co{x)
Co(X,lC), which is canonically isomorphic to C0(X, K). Then we define
a = a" <8> δ as the diagonal action of G on C0(X, /C) ® /C = C0(X, /C).

It is easy to check that the Mackey obstructions associated to the system
(Co (A', /C), (2, α) are similar to ω. Furthermore, if we identify C0(X, /C) with
Co(X, /C) <8) /C ® /C coming from the above procedure, then we see easily
that OLii = β ® iά®δπ and α g = 7 ® id®<$^. But δπ and £g are exterior
equivalent to id and we see from Lemma 5 that therefore α # ~ β ® id ® id
and α g ~ 7 ® id ® id. Since the isomorphism which comes from exterior
equivalence intertwines the dual actions by [24, Theorem 0.10] this implies
that the bundles res11 : (A y\β £Γ)~->> X and res^ : (A xaH ϋΓ)~-» X are
the same, and an analogous result is true for the actions of H. Hence with
Theorem 3 we get the following:

Proposition 4. Let X be a second-countable locally compact space and H
a second-countable locally compact abelian group. Suppose further that c E
HX{X,H) and d € Hι(X,U). Then there exists an action a of G = H x H
on A — Co(X)JC) such that all multipliers associated to the system (A,G,a)
are similar to a constant totally skew type I multiplier ω on G and

Corollary 2. Let X be a second-countable locally compact space. Then every
class in H3(X,Z) (Cech cohomology) which can be written as a cup-product
of classes in ί f 1 (X, Z) and in H2(X,Z) arises as the Dixmier-Douady class
of C0(X,/C) >i (Z x T) for some acton aofZxΊonA = C0(X,/C) which
is trivial on X and for which the Mackey obstruction is constant, type I,
and totally skew. In particular, if X is any compact orientable 3-manifold
with non-zero first Betti number, every class in H3(X,Z) arises as such a
Dixmier-Douady class. Except in the case of the 0-class, A is therefore not
Morita equivalent to AxaG.

Proof. The first statement is immediate from the fact that if H — Z, then
H is the constant sheaf Z and H>(X,H) 2 ί P + 1 ( X , Z ) for j > 1. The
second statement about compact orientable 3-manifolds follows from the
non-degeneracy of the cup-product pairing between if1 and the torsion-free
part of if2, which in turn follows from Poincare duality. D

Locally projective unitary actions. Now we discuss the special case
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of projective unitary actions and locally projective unitary actions. For the
moment we drop the requirement that our groups be abelian.
Definition. Let (A, G, a) be a covariant system. Then a is called projec-
tive unitary (resp. locally projective unitary, pointwise projective
unitary) if there exists an action β of G on /C, the algebra of compact oper-
ators on the separable Hubert space H, such that the diagonal action a ® β
on A ® /C is unitary (resp. locally unitary, pointwise unitary).
Remark. (1) The pointwise projective unitary actions on a type I C*-
algebra A are just actions where all Mackey obstructions are similar to a
constant multiplier ω G Z2(G, T). In order to see this, let ω be the multiplier
defined by the action β of G on IC and let ωp be the Mackey obstruction of
the system (A, G, a) at p G A. Then the Mackey obstruction for the action
a®β at the representation p®'\ά G (A®IC)~Ίs just given by ωpω. Hence a®β
is pointwise unitary if and only if ωp is in the class of ω~x in H2(G,T) for
all p G A, which clearly means that the Mackey obstructions are constant.

(2) It follows directly from the definition above, that for the same class
of groups for which pointwise unitary actions on separable continuous-trace
are automatically locally unitary, pointwise projective unitary actions are
automatically locally projective unitary.

Crossed products for covariant system (̂ 4, G, a) such that a is projec-
tive unitary have a very simple description in terms of A and the Mackey
obstruction ω.

Proposition 5. Let (A, G, a) be a covariant system such that a is a projec-
tive unitary. Furthermore, let ω~ι be the Mackey obstruction of an action β
ofG on IC such that a®β is unitary. (Thus ω is the Mackey obstruction of a
at each point of A.) Then AxaG is Morita equivalent to C*(G,ω~1)®maxA.
In particular, if G is abelian and ω is type I with symmetry group S,Ay\aG
is Morita equivalent to C0(S) ® A.

Proof. Since a®β is unitary, it follows that the action a®β oiG on A®K
is exterior equivalent to the trivial action id. Let β be an action of G on
/C with Mackey obstruction ω. Then by Lemma 5, the action a ® β ® β of
G on A ® K ® /C is exterior equivalent to the action id ®β on (A ® /C) ® IC.
By the proof of [14, Proposition 14] we know that (A ® IC) ® /C xJid(g)^ G
is isomorphic to (A ® IC) ®max {IC x^ G), which is clearly Morita equivalent
to G*(G,ω~1) ®max A by [14, Theorem 18]. (The appearance of ω~ι in
place of ω is due to the fact that the irreducible representations of (K,y\-βG)
are obtained by first extending the standard representation of /C to an ω-
covariant representation of (/C, G), and then tensoring with arbitrary ω~ι-
representations of G to get genuine covariant representations.) On the other
hand it is clear that the Mackey obstruction of the action β ® β on /C ® IC
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is trivial, hence this action is unitary and exterior equivalent to the trivial
action id. Hence, by Lemma 5 we see that the action a ® id of G on A ®
(/C ® K) is exterior equivalent to id ®β on {A®K)® K. Hence we find that
(A>ιaG)®JC = (A®K,®/C)xαΘidG is Morita equivalent to (^(G^αr1)®m aχA.
The last statement now follows from Theorem 1. •

3. The structure of certain crossed products with constant
Mackey obstruction.

In this section we want to investigate certain crossed products A xa G such
that A has continuous trace, G is abelian, and such that the stabilizer for
each p £ A is equal to a fixed subgroup N of G. We will refer to such systems
as systems with constant stabilizer N. If in addition the Mackey obstructions
of the system (A, iV, αjv) are constant, we will say that (A, G, a) is a covari-
ant system with constant stabilizer and constant Mackey obstructions. Such
systems are the main object of this section. However, as we will see later,
some of our results are still true for systems with the weaker assumption that
all symmetry groups of the Mackey obstructions are constant, rather than
the more restrictive assumption that all Mackey obstructions are constant.
We will refer to these as systems with constant stabilizer N and constant
symmetry group S. If not otherwise stated, we will assume through-
out this section that (A, G, α) is always separable, A has continuous
trace, and G is abelian.

If (A, G, a) has constant stabilizer N and symmetry group 5, then we
know from [15] that the map indf : (A x α s S)~-> Prim(Λ xaN N) defined
by p *-> ker(ind^r p) is a G- and G-equivariant homeomorphism with respect
to the canonical actions of G and G on these spaces. It follows from this
and [12] that

ind : (Axas)
 Λ—>- Prim(A >ιαG);pH> ker(indf p)

is well defined surjective map. Hence, if Q(A) denotes the quasi-orbit space
for the action of G on A, we get the following commutative diagram of maps:

{A xQS SΓ ^-> Pήm{A x α G)

A > Q(A)
q

where q : A -> Q(A) is the quotient map. The definition of p is a little
bit more complicated: If J e Prim(A xα (?) and π x U G (A xiα G)~such
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that J = ker(π x t/), then there exists a unique quasi-orbit O G Q(A)
such that kerπ = Πpeokei p. The image of J under p is exactly this quasi-
orbit. All maps in the diagram are continuous, open and surjective, which
follows by routine arguments from the continuity of restricting and inducing
representations. They are also equivariant under the various actions of G
and G on these spaces, which follows for instance from [24, Lemma 2.3].
Now suppose that the action of G/N on A is proper. Then Q(A) — A/G is
Hausdorff, and we can prove the following theorem:

Theorem 4. Let (A,G,a) be a covariant system with constant stabilizer
N and constant symmetry group S. Suppose further that A is a proper
G/N-space. Then induction induces a homeomorphism (A >\as SY/G ->
Prim(A xα G), the action of G on Prim(Λ >oα G) has constant stabilizer S1-,
and Prim(AxαG) is a proper S- (= G/SJ~)- space. Furthermore, the actions
of G and G onW = (A x α s S)~make W into a proper S- and G/N-space,
respectively.

Proof. Using the same arguments as in the proof of [18, Corollary 2.1], we
see the actions of G and G on (A x α s S^factor through commuting free and
proper actions of G/N and S on (̂ 4 xas S)^. By continuity of induction, ind
gives a continuous open surjection from (A x α s S)~to Prim(^4 x α G), and
since the action of G on (A xas S^factors through a proper action of G/N,
the quotient space is Hausdorίf and ind factors through this quotient space.
The induced map (A xas Sy/G ̂  (A xaN NY/(G/N) -> Pήm(A xα G) is then
a homeomorphism by [14, Theorem 24]. Since res and ind factor through
homeomorphisms between (A x α 5 SY/G and Prim(^4 x α G) and between
(A x α s SY/S and A, respectively, the theorem follows from the following
lemma: D

Lemma 6. Let H and L be two abelian locally compact groups acting properly
on the locally compact space X. Suppose further, that the actions of H and
L commute, and that the resulting action of H x L on X is free. Then the
following statements are equivalent:

(1) H x L acts properly on X.
(2) H acts properly on X/L.
(3) L acts properly on X/H.

Proof. By symmetry it is clearly enough to show (1) <=ϊ (2). (2) => (1) is a
special case of [18, Lemma 1.9]. In order to show (1) =ϊ (2) let (hi,Xi)iei be
a net i n i ϊ x X such that (L(hiXi),L(xi)) converges in X/L x X/L. Hence,
by passing to a subnet if necessary, we may assume that there are elements
#o>#i £ X and nets (l^)ieiΛ^l)iei Q L such that l®Xι converges to x0 and
l\hiXi converges to x1. By replacing Xι by l^Xi and I] by / J ^ ) " 1 , it follows



FINE STRUCTURE OF THE MACKEY MACHINE 41

from (1) that, again by passing to a subnet, we may assume that (l}hi)ίeI

converges in H x L, from which clearly follows that {hι)ieI converges in
H. D

If S is compactly generated, and hence also S is a Lie group, and if G/N is
also a Lie group, then it follows from Palais slice theorem [21, Theorem 4.1]
that all spaces in the theorem above are actually principal S- and/or G/N-
bundles. As we have mentioned before, such bundles can be classified by
certain elements in Cech cohomology, and we are now going to describe the
relation between the various topological invariants. Recall that if p : X —> Z
is a principal G-bundle with representative Cij : N^ -» G in Zι(Z,G) and if
/ : Y —> Z is a continuous map, then the pull-back f*(p) ofp along / is the
principal G-bundle with representative {c^ of} : f~1(Nij) —> G in Zι(Y,G).

Theorem 5. Let (̂ 4, G, a) be a covariant system with constant stabilizer
N and constant symmetry group S. Suppose further that A is a principal
G/N-bundle and that as is locally unitary. Then all maps in the diagram

x Q G)

A > A/G
Q

are principal bundles. The horizontal arrows are principal G/N-bundles,
and the vertical arrows are principal S-bundles. Furthermore, we have the
relations

ind = p*q and res = q*p.

In the case where S = AT, i.e. if all Mackey obstructions are trivial, this
result was proved in [24] using Takai's duality theorem. But this method
doesn't work nicely in the situation above, at least if the Mackey obstructions
of the system are not type I, since then A xα G is in general not a type I
G*-algebra. Hence for the proof we will use the idea of constructing local
Green twisting maps as given in [27] and [28] for the case of trivial Mackey
obstruction. In fact, this construction gives even more information about the
bundle p : Prim(^4 xa G) —> AjG, since it gives the possibility to construct
explicitly a representative for this bundle in Zι(A/G,S). Let us start by
recalling the definition for Green twisting maps. For this let (̂ 4, G, a) be a
covariant system such that G is abelian, and let H be a closed subgroup of G.
A Green twisting map for (A, G, a) is a strictly continuous homomorphism
u : H —• U{A) such that
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(1) Oίh{ά) = uhau*h for all a G A and h G iϊ, and
(2) α^ϋfc) = i^ for all x G G and h G if.
Furthermore, we say that a system (A, G, α) has local Green twisting

maps if there exists a cover {Ni} of open subsets of A/G and maps uι : H —»
^(Alg-i^.)) such that each u{ is a Green twisting map for (A\q-i(N.),G,a).
If Ni and t^ are as above, then we will call {Ni,u1} a system of local
Green twisting maps with domain H for (A, G,α).

The proof of the following proposition follows the lines of [28, Propo-
sition 2.6], where a similar result is proved for the case of trivial Mackey
obstructions.

Proposition 6. Let (A, G, a) be a covarίant system with constant stabilizer
N and constant symmetry group S, such that A/G is Hausdorff. Suppose
further that there exists a system {Ni,u1} of local Green twisting maps with
domain S for (A, G,ά). Then p : Prim(^4 xa G) —> A/G is a principal
S-bundle which is represented by the cocycle 7^ : N{j -> S given by the
relation

pou1 =

with p G q~1(Nij). Furthermore, if res and ind are as in the diagram, then
res — q*p.

Proof. Since uι : S -> U(A\q-i(Nτ)) is a unitary map which implements as,
it is well known that the map (/>, χ ) 4 p x χ(p o uι) is an 5-equivariant

homeomorphism from A\q-i(Ni) x S onto (-4|g-i(^) » α s S)*. The action of G
on (A|g-i(ΛΓ.) y\as S)~is given by

^ ) ) ° 7χ = (P ° «χ) x

= (poα x ) x

= (P°^χ) x X{[P°OLX) ou1),

where again 7 denotes the canonical action of G on A\q-\^N.) xas S. But this
shows that the homeomorphism above is G-equivariant, from which follows
that (A\q-i(N.) xias S)~/G is homeomorphic to Ni x S. Since the map ind in
our diagram is G- and hence 5-equivariant, we conclude that

(?(P), X) ^ ker(indf (p x χ(p o u1)))

is an iS-equivariant homeomorphism hi between NiX§ and Prim(il|g-i(jv.) xα

G). This shows that p : Prim(^4 xα G) —> A/G is a principal S'-bundle.
Now let p G q~l(Nij)1 and let χ be the unique element in S such that

pou1 — χ(p o uj). Then it follows also from the computations above that



FINE STRUCTURE OF THE MACKEY MACHINE 43

X only depends on the G-orbit of p, which implies that the map 7^ is well
defined.

Finally, for q(p) G JV̂  it follows from [24, Lemma 2.3] that

(p x χ(poui)))

= ker(ind£(p x χyiά(q(p))(p o uj)))

= ker(70 (ςf(p)) ® indf (p x χ(p o uj)))

from which follows that 7^ : JV̂  —» S is a representative for this bundle.
Finally, since the uι are unitary maps which implement as on A\q-i(N.) it
follows from the Phillips-Raeburn construction [22] that the principal S-
bundle res : (A x α s S)~-ϊ A is equal to q*p. D

We are now going to show that the covariant systems of Theorem 4 all
possess a system of local Green twisting maps with domain S. The next
lemma deals with the case where N = G and as is unitary.

Lemma 7. Let (̂ 4,G, a) be a covariant system with constant symmetry
group, such that G acts trivially on A. Suppose further that there exists a
unitary map u : S ~> U(A) such that u implements as (i.e. as is unitary).
Then u is a Green twisting map for (A, G,α).

Proof. Let p G A, ω the Mackey obstruction of a in p, and let U : G —>
U(UP) be an ω-representation which implements a in p. Then (p,U\s) is
a covariant representation of (A, 5, as). Hence, by multiplying U with an
appropriate character of G, we may assume that U\s = p ° u. Using the
identity U* = ω(x,x~ι)Ux-ι for x G G we get

p(α,(tθ) - uxP(us)u; = uxusu:
= ω(xj s)~ιω(x, x~ι)UxsUx-i

= ω(x,s)'~1ω(xs,x"~1)~ιω(x,x~'1)UX8X-i.

But since G is abelian, we have Uxsx-ι = Us and

ω(x, s)ω(xs,x~λ) = ω(s^x)ω(sx^x~1)

from which follows that ω(x,s)~1ω(xs1x~1)ω(x,x~1) = 1. But this implies
that p(ax(us)) = Us = p(us) for all x G G and θ G 5. Since we can do this
for all p G A it follows that ax(us) = ϋ s for all x G G and s £ S. Thus tx is
a Green twisting map for (A, G, α). D
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Before we state our next result, let us recall the definition of induced
covariant systems. For this let G be a locally compact group and H a closed
subgroup of G such that there is an action β of H on a G*-algebra D. The
induced C*-algebra Ind(D, β) is then defined by

lnd(D,β) = {/ 6 Cb(G,D); f(xh) = β{h-ι)f{x)

for all x G G, h G H and (x H> \\f(x)\\) G C0(G/H)}.

The induced action Ind/3 of G on lnd(D,β) is defined by

(lndβx{f)){y) = fix-'y), x,y EG.

The covariant system (Ind(D,/?),G,Ind/3) is called the induced covariant
system of (D,H,β). The proof of the following lemma is routine (see for
instance [32, Section 4]).

Lemma 8. Suppose that S C N are closed subgroups of the abelian lo-
cally compact group G, and let (D,N,β) be a covariant system such that
there exists a Green twisting map u : S -ϊ~U(D). Then Indu : S ->
U(lnd(D,β))defined by (lndusf)(x) = us(f(x)) is a Green twisting map
for(Jnd(D,β),G,Indβ).

Proposition 7. Let (A,G,a) be as in Theorem 4, i.e. (A, G, a) has constant
stabilizer N and constant symmetry group S such that in addition A is a
G/N-principal bundle and as is locally unitary. Then there exists a system

u1} of local Green twisting maps with domain S for (A,G,a).

Proof. Let {Ni} be an open cover of A/G such that for each i G / there
exists a section dι : Ni —> q~1(Ni). Since as is locally unitary we may
assume by possibly taking a refinement of {N^} that the actions βι of N on
A\d(Ni) which, for all i G /, are canonically defined by a^r, have the property
that βι

s is unitary. Hence by Lemma 7 there exists a Green twisting map
ti* : S -> U(A\di(Ni)) for each (j4|d<(jVi)i #,/?)• Now let φi Γ.ςΓ 1^) -> G/N
be defined by ψi{p) = x if and only if p = p0 o ax-i for some p0 G di(Ni).
Then, for each i G /, φi is obviously continuous and G-equivariant. Hence
by [5, Theorem] there exist G-equivariant isomorphisms Φ* : A\q-ι^i) —*
IndUkw)'/3*)- T h u s > by Lemma 8, Indu* : S -> W(Ind(i4|if.W))i9

i)) is
a Green twisting map for each system (Ind(A\d.(N.),βι), G,Ind/?*), which
is carried to a Green twisting map υ* : S —> U(A\q-i(Ni)) by Φ\ Hence
{JVi, υ*} is a system of local Green twisting maps for (A, G, α) with domain
5. D

Proof of Theorem 5. Combining Proposition 7 with Proposition 6, the
only thing which remains to prove is the fact that ind : (A x α s S) ^ —>
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Pήm(A x α s S) is a principal G/N-bundle such that ind = p*q. So let

Cij : Nij -» G/N be a representative for q in Z1(A/G^Q/Λί), By possibly

taking a refinement of the cover {i\^}? it follows from Proposition 7 together

with some arguments in the proof of Proposition 6 (we may assume the

existence of local Green twisting maps u% : S —> ZY(A|g-i(^))) that we have

G-equivariant homeomorphisms

(Φ),χ) •-> ker(ind£(a(z) x χ(ci(z) o u*)))

between e îVj) x 5 and p~1(Ni)1 where Q : N{ —>• q~1(Ni)1 i £ /, are
local sections with transition functions Cy. Combined with the inclusions
of Ci(JVi) x 5 into q~x(Ni) x S = (^4|g-i(ΛΓ.) xiα5 S)~we get sections c* :
res~1(i\Γi) -» ind" 1 (res ' 1 (JV*)), and if ^ are the transition functions of the c i 5

then it follows directly from construction of the cί that c^ = c^ op. Π

We return now to the question of when a given crossed product A xi Q G has
continuous trace. For this we need a slight generalization of [18, Theorem 3.1].
This wil be the only place in this section where we investigate covariant sys-
tems (Ay G, a) such that we do not assume a priori that A has continuous
trace.

Proposition 8. Suppose that (A, G, a) is a separable covariant system such
that G is abelian and the action of G on Prim(^4) is free. Then A xiα G has
continuous trace if and only if A has continuous trace and G acts properly
on A.

Remark. In [18, Theorem 3.1] the same result is proved for the special case

where A is assumed to have continuous trace. The reason for this restriction

was the use of a lemma [18, Lemma 3.2], which says that if A has continuous

trace and G acts freely on A, then ind?ei p is irreducible for all p £ A. But

we will now see that this lemma was not needed seriously.

Proof of Proposition 8. The "if" direction of the proposition is part of
[24, Theorem 1.1]. As in [18, Theorem 3.1], it is enough to show that, if
A xQ G has continuous trace, the dual action a of G on A xa G is pointwise
unitary. This will imply that (A x α G) x& G = A®K(L2(G)) has continuous
trace, and that the resulting action of G on (A® /C(L2(G)))~via α is proper,
which of course implies the same properties for A and the action of G on
A via a. Let p £ (A xa G ) ^ Then it follows from the assumptions and
[12] that kerp = ker( ind^ π) for some π £ A. Now let χ £ G. Then by
[24, Lemma 2.3] we know that

ker(χp) = ker(χind£ } π) = ker(ind£ } π).
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Hence it follows that the action a of G on Prim(Λ x α G) = (A xiα G)~is
trivial.

We are now going to show that this action is in fact pointwise unitary.
For this recall first that (Axa G)~Ίs homeomorphic to the quasi-orbit space
Q(Prim(A)), which follows directly from the continuity of inducing and re-
stricting representations. Since by assumption A xια G has continuous trace,
it follows in particular that each point in (A χjα G)~is closed. Hence, each
quasi-orbit O is closed in Q(Pύm(A)). Hence, by restricting a to A\o, we
may assume for the moment that (A xια G)~has only one element p and
thus A xa G = )C(HP). Let us now denote JC(ΉP) simply by /C. Let ω
be the Mackey obstruction for the dual action δ of G on /C, and let S be
the symmetry group of ω. Then, for the double dual action a of G on
/C x2 G == A ® /C(L2(G)), it follows that the stability groups for the cor-
responding action on Prim(A ® IC(L2(G))) are all given by 5 X C G. But
since the action of G on Pήm(A ® /C(L2((?))) via the double action a is free
if and only if the original action of G on Prim(A) is free, it follows by the
assumptions that S1- is trivial, which implies that S — G. But this shows
that ω is trivial. Since we can do this for all p G {A y\a £?)~we see that 3 is
pointwise unitary. D

From now on we will again assume that (̂ 4, G, a) is a separable covariant
system such that A has continuous trace and G is abelian.

Theorem 6. Let (̂ 4, G, a) be a covariant system with constant stabilizer
N and constant Mackey obstruction ω and let H be a maximally ω-trivial
subgroup of N as in Lemma 4. Then the following statements are equivalent:

(1) Ay\aG has continuous trace.
(2) ω is type I and the action of G/N on (A xαiV N)~is proper.
(3) The action of G/H on A xaH H is proper.
If these conditions are true, and if res11 : (Axαiί)^~^ A is the restriction

map, and ind^ : (AxaHH)~—> (AxaG)^is the induction map, then we have
the following relation between the Dixmier-Douady classes of A and AxaG:

(τesHy(δ(A)) = (indG

Hy(δ(AxaG)).

Proof. For the roof of (1) & (2), let β be the action of G/N on A xaN N as in
the Packer-Raeburn stabilization trick (assuming that A is stable). Then it
follows from Proposition 8 that AxaG = (Ax\aNN)>iβG/N has continuous
trace if and only if the corresponding action of G/N on (A xiαiV iV)~is proper
and A xaN N has continuous trace. By Proposition 1, the first assertion is
true if and only if the canonical action of G/N on (A xα i v iV)"is proper,
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and, by Theorem 3, the second is true if ω is type I. On the other hand, it
is clear that A xα7V N is not type I if ω is not type I.

Since α# is pointwise unitary, we know that A >iαH H has continuous trace.
Hence (3) => (1) follows as above from Proposition 8 and the Packer-Raeburn
stabilization trick. Furthermore, again by Proposition 8 it is enough to show
that the action of G/H on (A xα H H)~is free in order to show (1) => (3). For
this let px V G (A xQH #)^and x G G such that x §£H. As we have seen in the
proof of Theorem 3, if x G JV, then (pxV) o ηx is equivalent to p x h^{x)V,
which is not equivalent to p x V since the restriction h^(x) is a nontrivial
element in H if x £H. lίx 0iV, then (px V)ojx is equivalent to {poax) x W,
for an appropriate representation W of H. But this representation cannot
be equivalent to p x V, since for rz; 0JV, ρo ax is not equivalent to p.

Suppose now that (A, G,α) satisfies properties (1) to (3). Then, since
G/H acts properly on (A xα H H)~ it follows easily from the Mackey-Green
machine that ind^ is a well defined surjective map. Furthermore, ind^
factors through a homeomorphism between (A κaH)~/G and (ixi Q G)~with
inverse map given by restricting representations. Now let β be the action
of G/H on A xα H H given by stabilization trick. Then indr/i also factors
through the same homeomorphism between (̂ 4 y\aH H)^/G and (̂ 4 xiα G)~
since by part (2) of Proposition 1 the inverse map is the same. By the
arguments used in the proof of Proposition 8 we know that the dual action
β of H1- on A x α G is pointwise unitary. Hence

{A x α H H) ® K(L2(G/H)) s (A x α G) ^H1-

since it is well known (see for instance the arguments in the proof of [24,
Theorem 2.2]) that τesH± (π ® id) = ind^/^π) for all π G {A xiαH H)~ and

since i n d ^ * = ind^ by what we have seen above. Hence, if A is stable, then
A xα j f H is isomorphic to (τesH)*(A) and also to (ind^)*(^4 x α G), from
which follows that (res")*(5(A)) = (ind%)*{δ{A x α G)). D

Corollary 3. Let (A, G, α) 6e α coυariant system with constant stabilizer
N and constant type I Mackey obstruction ω, such that G acts properly on
A. Then A xα G has continuous trace and we have the relation between
δ(A X)α G) and δ(A) stated in Theorem 6.

Proof. The proof follows immediately from Theorem 6 since the fact that
G/N acts properly on A easily implies that G/N acts properly on (A xas

S)~= {AxaN iV)~(compare the arguments in the proof of [18, Corollary 2.1]).
D
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Remark. At this point we should remark that, as in the case of locally
unitary actions on the stabilizer (see the remark on page 23 in [24]), the
equation for the Dixmier-Douady class in the theorem does not determine
δ(A x α G) uniquely. If this would be the case, then δ(A x α G) would be zero
if δ(A) is zero. But by Corollary 2, there are quite a lot of examples which
do not have this property.

In the proof of Corollary 3 we have used the fact that a proper action
of G/N on A also implies that the action of G/N on (A xiα N)~Ίs proper,
if (A, G, a) is a covariant system with constant stabilizer N and constant
Mackey obstruction ω. If A is commutative, then it is well known that the
converse is also true, i.e. if G/N acts properly on (A xαΛΓ N)^= A x AT,
then G/N must also act properly on A. In fact, by Williams's description of
continuous-trace transformation group algebras [33], a necessary condition
for C0{X) x G having continuous trace is that G act in a generalized sense
properly on X. We will now see that an analogue is not true if A is a
continuous-trace algebra even in the case where all Mackey obstructions
vanish. In fact we will construct a covariant system (A, G, α) with constant
stabilizer N such that a^ is pointwise unitary, A and AxaG have continuous
trace, but G doesn't even act smoothly on A. For this we need the following
lemma:

Lemma 9. Let (A, G, a) be a covariant system such that G is abelian, and
let β G Ant A such that β commutes with ax for all x G G. We define

β G Aut{A xa G) by (β{f)){x) = β{f{x)) for all f G CC(G,A), and β G

Aut{(A»aG)»zG) byφ{g)){χ)=β{g{χ))forallgeCc{G,AκaG), XeG.

Then the isomorphism Φ : (A x a G) xi^G -* A®K,(L2{G)) of Takai duality

transports β into β ® id.

Proof Let us identify /C(L2(G)) with C0(G) x τ G, and let

Φ : (A xα G) *£ G -> G0(G, A) x r Θ α G

be the isomorphism described in [14, Proposition 30] (where r denotes the
action of G on C0(G) coming from left translation). Then it is easily seen

that Φ transports β into the automorphism β of C0(G, A) x r®α G given on
/ G CC(G x G, A) by {β(f))(x,y) = /?(/(*,y)), ^ e G , viewing CC(G x
G,A) canonically as as a dense subalgebra of C0(G,A) xr(S)α G. Now let
Φ : G0(G,i4) xr(g,α G -± A® IC(L2(G)) be the corresponding isomorphism
(i.e. Φ = Φoφ" 1 ). Studying Raeburn's alternative proof of the Takai duality
theorem [23, Theorem 6], we see that the inverse of Φ is given on elementary
tensors α ® / G A® CC{G x G) by

Φ " 1 ^ ® /) = 9aj e GC(G x G, A), where gaj(x,y) = f(x,y)ay(a),
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for all x,y G G (in fact, it is not hard to show directly that the map a® f H*
gaj extends to an isomorphism between A®(C0(G) x r G) and C0(G, A) x r®α

G). Hence for all a 6 A and / <Ξ CC(G x G):

φ-^/J β id(α ® /)) = Φ - 1 ^ ) ® /) = gβ{a)J = β(gaJ)

since

, y)αy(α))

for all #, y G G, which finishes the proof. D

Example 1. Let r 1 and τ 2 be the actions of Z on M given by τ^(t) — n + t
and τ2(ί) = 2πn + ί, n G Z, ί E R, and let us denote the corresponding
actions of Z on C0(M) by the same letters. Let A = CΌ(IR) xir1 Z, and let a
be the action of G = T x Z on A given by

z G T, n G Z, where r 1 denotes the dual action of T = Z on A, and
τ 2

n is defined as in Lemma 9, for each n G Z. Since r 1 is a free and
proper action of Z on R, we know that A has continuous trace. In fact, it
follows from Green's theorem [13] that A is isomorphic to C(T, /C), where
we have identified T with R/Z. Furthermore, by the structure of G we may

write A xaG = ( A x q T ) χ j ^ Z , where τ 2

n is also defined as in Lemma

9 (note that in our case τ 2 is just the restriction of the canonical action of
G on A xi ̂  T to Z). Hence Lemma 9 shows that A xa G is isomorphic to
(C0(K) ®/C(Z2(Z))) xr2(g)idZ, which implies that A xa G has continuous trace
by the fact that r 2 is also a free and proper action of Z on R

Finally, let us note that the action of T on A is trivial, and that the
action of Z on A is just the irrational rotation given by the angle 2π. Hence
(A, G, a) has constant stabilizer N = T,A and AxaG have continuous trace,
but the action of G/N = Z on A is not proper. In fact G doesn't even act
smoothly on A.

Let us remark that this example gives also an answer to a question stated
in [11] whether it is possible for a crossed product A x α G to be of type I,
while G does not act smoothly on A. Clearly, the group example of Auslander
and Moore cited in [11] together with the Raeburn-Packer stabilization trick
gives also such an example.
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We now finish this paper by giving an example which shows that for
crossed products A xa G with A having continuos trace, it is not even neces-
sary that the stability groups vary continuously in order for A xα G to have
continuous trace. This is also completely different from the transformation
group case, where the condition of continuously varying stability groups is
always necessary for C0(X) x G to have continuous trace [33] (see [7] for the
case of nonabelian amenable groups).

Example 2. Let G = Z x T, and let us define an action of G on C by
(n,z)w — zw for n G Z, z E T and w G C. Furthermore, let ω be the
Heisenberg multiplier on G, which is defined by α>((n, z), (ra, w)) — zm, and
let U : G -> U(L2(G)) be an ω-representation of G. Then, if we denote
JC(L2(G)) simply by /C, we define an action a of G on A = G0(C) ® /C by
a = <5 ® Adi/, where ί denotes the action of G on C0(C) coming from the
action of G on C. The stability groups for the action of G on A are just
given by stability groups of the action of G on C, and we have Gw = Z if
w ^ 0 and Go = G. Thus the stability groups do not vary continuously.

However, A y\a G has continuous trace. To see this, write A x α G as
(i>i Q z Z) xi T. The point is that the action of T on (A x α z Z)"ϊs free, and also
proper, since T is compact and (A x α z Z)^is Hausdorff, which follows from
fact that α z is pointwise unitary. The fact that T acts freely on (A x α z Z)^
can easily be seen from the fact that T acts freely on (resz)~1(C\ {0}), since
T acts freely o n C \ {0}, and that T acts freely on (resz)~1({0}), since the
Mackey obstruction of a at 0 is given by ω and Z is a maximally α -trivial
subgroup of G (compare the arguments in the proof of Theorem 3). Hence
A xα G has continuous trace by Proposition 8. In fact, its spectrum is easily
seen to be homeomorphic to C, and A xaG = A (non-canonically).
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