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TANGENTIAL DEFORMATIONS ON THE DUAL OF
NILPOTENT SPECIAL LIE ALGEBRAS

N. BEN AMAR

The relationship between * - products (formal deforma-
tions) and quantization deformations (non formal deforma-
tions) on dual of nilpotent Lie algebras are studied. An
explicit, tangential quantization deformation is given on al-
gebras of polynomial functions and C°°, rapidly decreasing
function on the dual of any nilpotent special Lie algebras.

Introduction.

* - products i.e. associative deformations of usual multiplication of functions
have been introduced by F.Bayen, M.Flato, C.Fronsdal, A.Lichnerowicz and
D.Sternheimer (see [6]) as a tool for the quantization of a symplectic (or
Poisson [12]) manifold. This geometrical notion has been used to give an au-
tonomous phase space formulation of quantum mechanics without operators.
In the first definition of • - products, people consider formal deformations
in which / ~kh g is not a function, but rather a formal power series in h with
functions as coefficients. But recently M.A. Rieίfel introduced the notion
of (strict) deformation quantization, a framework in which the convergence
question could be handled. He constructed a deformation quantization on
the space S(g*) of the Schwartz (C°°, rapidly decreasing) functions on the
dual of a nilpotent Lie algebra g ([16]). This deformation is the convergent
version of the vertical part of the * - product constructed for a general Lie
group G on its cotangent bundle T*G by S.Gutt ([9]) and coincides with the
• - product given by V.Lugo for nilpotent Lie algebras ([13]). Unfortunately,
this product is not tangential in general. This means we cannot restrict it to
a coadjoint orbit even in general position and so it is useless for the construc-
tion of irreducible representations of the corresponding Lie group G. On the
other hand, D.Arnal and J.C.Cortet constructed formal tangential • - prod-
ucts on a dense invariant subset of the dual g* of any nilpotent Lie algebra
([1]). But, in general, this • - product cannot be extended to the whole dual
of g. Moreover, R.Howe, G.RatclifF and N.Wildberger constructed symbolic
calculus, through the Cayley transform, for OKP Cayley-stable (nilpotent)
Lie groups ([10]) and for special nilpotent Lie algebras, D.Arnal, M.Cahen
and S.Gutt defined a formal • - product on g*. These two constructions are
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while defined on the whole dual and tangential on a dense open subset of g*

Our aim here is the construction of a tangential deformation quantiza-
tion on g* defined on the whole algebras of polynomial and Schwartz func-
tions. Such a construction is realized in the present article in the case of
a special nilpotent Lie algebra, using a deformed version of the formulae of
M. A.Rieffel. More precisely, for each value of ft, we consider a new diffeomor-
phism φ which is a product of exponentials, instead of the usual exponential
mapping, to identify G with g.

The present paper is organized as follows. In the first section, we recall
the definition of • - product, we show that RieffeΓs deformation quantization
can be viewed as a * - product, we extend it to the space V(g*) of polynomial
functions on g* and give an explicit expression of it. In the second section, we
construct a convergent tangential and graded • - product on S(g*) ΘV(g*) in
the case of a special nilpotent Lie algebra 0. This product coincides on V{g*)
with the formal product of [2], but the expressions we give here are totally
explicit and have integral form which is much more adapted for use. In
the third section, we define the •-exponential map and the adapted Fourier
transform and we related it to unitary representations of the corresponding
Lie group. Finally, we compare our construction to those of Arnal, Cahen,
Gutt and of Howe, Ratcliff, Wildberger.

1. • - products and deformation quantization.

Definition 1.1. ([16],[17]). Let (W, Λ) be a differentiate Poisson manifold
and A an associative and Lie (for Poisson bracket) subalgebra of C°°(W).
A strict deformation quantization of A in the direction of Λ is a family of
associative products, involutions and C*-norms on A for each ft G K which
are, for ft = 0, the original product, complex conjugation and supremum
norm and such that:
(1) For every / in A, the function ft h-» \\f\\n is continuous.

(2) For every /, g in A, \\f*h9^9*hf - {f,9}h converges to 0 as ft goes
toO.

Let g be a real, nilpotent and finite dimensional Lie algebra, g* be its dual
vector space and G the connected and simply connected Lie group of the Lie
algebra g. We define the linear Poisson bracket of two C°° functions /, ,g
on 0* by:

where df(μ) (respectively df(μ)) is the differential of / (respectively g) at
μ G fl* and [, ] denotes the Lie bracket in 0. Let us first recall the example
of strict deformation quantization given in this case by Rieffel ([16]): using
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the exponential map exp, he identifies g with G. Let the corresponding Lie
group structure on g denoted by *. For each h € R, he defines a Lie group
structure on g by putting, for all X and Y in g,

(for H = 0, X *ft Y means X + Y). Let GΛ be the Lie group G equipped with
the product *&. If / and g are functions in <S(fl), their convolution product
for the Gh structure will be denoted by / *Λ g.

Proposition 1.2. [16]. Let g be a nilpotent Lie algebra and let { , } be
the corresponding linear Poisson bracket on <S(fl*) Finally let* (resp. v) the
Fourier transform (resp. the inverse Fourier transform) between S(g*) and
S(g). For any / ί E l , let us define product, involution and norm on S(g*)
by:
(i) f*h9 = (f*Λ§Y (/,je%*))
(ii) Γ(X)=J(X)

(in) H/llfc is the norm of f in the group C*-algebra C*(Gn)
Then this structure provides a strict deformation quantization of S(g*) in
the direction o/~(2π)~1{ , }.

On the other hand, we have the notion of * - product:
Definition 1.3. ([6],[11],[12]). Let W be a differentiable Poisson manifold
with a Poisson bracket { , } and E be the space of formal series in the
parameter h with coefficients in C°°(W). A * - product on C°°(W) is defined
by a bilinear map from C°°(W) x C°°(W) into E:

r=0 ' *

where:
(i) Cr is a bidifferential operator on C°°(W) of maximum order r (r > 1)

in each argument, null on the constants,

(ii) C°(u,v) = u.v, C1^,?;) = § {u,v},

(iii) C r is symmetric (resp. skew symmetric) in (u, v) if r is even (resp.
odd),

r+s=t

~~ r\s\)-χσ{u,Ca{u,w)) (ί = l , 2 , . . . ) .

Roughly speaking, we can say that * - product are related to deformations
quantization by asymptotic developments. More precisely, in our case:
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Proposition 1.4. Let f,g be in S(g*) such that f and g are compactly
supported, then f *hg admits an expansion in the power series:

k>0

in the variable h, converging pointwise and in the space S'(g*) of tempered
distributions. This series is a * - product Moreover the following properties
hold:

1) / f*π9(μ)dμ= I f(μ)g(μ) dμ.

2) g*nf = 7*n9

Proof Let {Ej, 1 < j < n} be a basis for g and rci,..., xn be the corre-
sponding coordinates of X in g. Let μi , . . . , μn be the coordinates of μ in g*
for the dual basis. One has:

(fh9Y(μ)

= ί f(X)g(Y)e2iπ{x*hY>μ) dX dY.

We set:

e(x*hγ-x-γ,μ) =

| |
ife+ l-a<\β\ <k

where:
x« = (Xlr {χnY\ Yβ = (yi)βl (!/»)*,

α = ( α l ϊ . . . , α n ) 6 / J V n

ϊ β = (βu -. ,βn) 6 INn.

Since / and g are compactly supported, we consider only X and Y in
a given compact set and the above series converges absolutely. Then the
following series:

Σ hkΊϊ
k<l l<a<k \*W)

A;+ l-a<β <k

Q(x\-\ \-an

where Da means Qi , converges in the space of tempered distri-

butions.
One finds that:

C°(f,g) = fg and

l<a<k V^πJ
k+ l-α</3 <k
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Ck is, for each positive fc, a bidifferential operator on S(g*) of maximal order
k in each argument, vanishing on constants. A quick calculation shows that
(see [16]):

{f,g}(μ) = -4π2 J f(X)g(Y)e2iπ{X+Y>μ)([X,Y],μ) dX dY.

Then (ii) of Definition 1.3 holds. Now let:

r = l

using the Campbell-Hausdorff formula ([8]), it is not difficult to show that
br is symmetric (resp. skew symmetric) in (X, Y) if r is even (resp. odd).
Then we check easily that the same is true for CΓ.

Finally, we prove that the series:

r > 0

where u G <S(fl*) and u is compactly supported, converges uniformly on
compact sets then (iv) is clear.

One has:

/ / *Λ g{μ) dμ= (/ *,> gY{μ) dμ

= (/*AS)(O)= ίf(X)g(-X)dX

= (/*o$)(0)= f (f'9)(μ)dμ.

Property (1) is proved. For (2) let us compute / * ^ p :

7*Λ 9(μ) = / 7(X)MY)e2iπ{X*hY>μ) dX DY
./0X0

= / 7(χί§(yyi7r{~x*h~γ'
Jgxg

= I
Jg

/
0X0

/ 7(χί§(yy~γ'μ)

gxg

f{X)g{Y)e2i^γ*"x^) dX DY
gxg

= 9*nf(μ)

D

Let us remark that this * - product was defined by Lugo in [13]. Let f,g
be functions in S(β*) x S(g*) (or in V(g*) x S{g*), or in Vis*) x
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where V(g*) denotes the set of polynomial functions on g* and let Φ be a
function in S(g*). Then Lugo put:

{(g*f)(μ),Φ(μ)) = (f(Y),(g(X)Mx*Y)))

Thus the Lugo product is:

This • - product on g* constitutes also the vertical part of a * - product
constructed, for a general Lie group (7, on its cotangent bundle T*(G) in
[9]. Let U{g) be the universal enveloping algebra of g and let σ be the linear
bijection defined by complete symmetrisation:

' seep

where Xik belongs to g, &p is the permutation group of p elements and
denotes the product in U(g). lϊV1 is the space of homogeneous polynomials
of degree Z,

1=0

If U belongs to ZY(fl), we denote by uι its component in cr(Vι). Finally, for
P in Vp and Q in V\ we put:

P*'hQ = f^(2Λ)V"1[(σ(P) oσ(Q))W_
r=0

S.Gutt proved in [9] that this formula can be extended in a * - product on
T * G and this product is totally determined by the expression of X VΛ P
where X belongs to g. Thus, we first compute Eι */> / for the Lugo-Rieffel
• - product:

Theorem 1.5. Let Eu (1 < i < ή) be a basis of g and f in S(g*) or in
V(g*), one has:
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where Bk is the kth Bernoulli number ([14]) and C^ are the structure con-
stants of g. This expression coincides with the Gutt product Ei *'h P, thus
the * - product of [9] coincides with the Lugo-Rieffel • - product.

Proof. Let / be in 5(0*), such that / is compactly supported, one has:

(B, *„ /, Φ) = (f(Y)(Et(x)MX •« Y)))

But, by direct computation,

d (yr V Ή _ ^ Bk
7; v-̂  *Λ •* )\x=o — / . ~7Ti

Therefore:

*n /,«> = — (f(X), &(Y) Σ | f

Thus:

~ _L_Λ--U "j-[(2iπ)k k ijl miJ2''' Lfm*-ιήύ

Now the product *Λ is determined by these expression, since:

1 k

Xii ' ' ' Xik *h f — T z2(X%i *h Xή " Xit ' Xik ) *a
κ 1=1

1=1

where w denotes omission. Thus, C r(X ΐ l Xik>f) is determined, by induc-
tion on k:

1=1 s=0

Finally, as the cochains Cr are bidifferential operators they are totally
determined by their values on polynomial functions. D
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2. Tangential * - product on the dual of a special Lie algebra.

Definition 2.1. ([12], [2]). Let Ω be a G-invariant open set in g* and
A be an associative subalgebra of C°°(Ω) stable by the Poisson bracket. A
deformation of A is called tangential if for every orbit O of G, contained in
Ω and for all pairs of functions u,v in A, such that u\O = 0, (u * f)\o — 0
vanishes for all / in A.

Definition 2.2. ([5]). A deformation on V(g*) or S(g*) is called covariant,
if for all X and Y in 5,

A deformation on V(g*) is called graded if, for eachp, q and r, Cr(Vp, Vq)

Let us remark that Lugo-Gutt-Rieίfel * - product is covariant, graded but
is not tangential in general. Of course, to build up irreducible representa-
tions of the corresponding Lie group G, using • - product on 5*, we need
restrictions of our • - product to coadjoint orbits. Thus, we cannot use the
Lugo-Gutt-Rieίfel • - product in this manner. In this section, we define
a convergent and tangential • - product for special nilpotent Lie algebras
by deformation of the Rieffel formula using, instead of the usual exponen-
tial map, a diffeomorphism φ between g and G. But let us first recall the
definition of a special Lie algebra.

Definition 2.3. (see [7] and [2]). A nilpotent Lie algebra g is called special
if it contains an abelian ideal m whose codimension is half of the maximal
dimensionality for coadjoint orbits of g.

Let g be a n-dimensional special Lie algebra and

0 c fli c g2 c c gn = g

be an increasing sequence of ideals g{ of g with dimension i and such that
gn-k = Hi. The dimension of generic coadjoint orbits is thus 2k. Let G* be the
corresponding analytic subgroups of G. Let us choose a basis {2^, 1 < i < n}
of g such that Eι G 0i\βi-i For all i, we consider the diffeomorphism ψι
from 0i onto Gι defined by:

ψi(Y) = exp ί 2 ^ * ) * e x p (2yi-ιEi-^)

*exp ( £l/i#i J * exp (^ViEi) * exp (ψiEi
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if Y IS
For each non zero value of /i, ψι is a diffeomorphism, since the product in

Gι is a polynomial function, with the form:

X*Y =
'3 = 1

where Pj is a polynomial function in the variables
... ,2/i. Thus ψi is a polynomial and (ψi)"1 can be determined by induc-
tion on i and is polynomial too. In the following, we will denote by G\ the
algebra Qi equipped with the product *^:

X*\Y = φ-1(φi(X)*φi(Y))

(if h = 0, *^ is just the usual sum of vectors).

Theorem 2.4. Let f and g be in A = S(g*) Θ V(Q*) and μ be in g*. The
formula:

defines a product *%

h on A. This product is a * - product which is coυariant,
graded and tangential on a Zariski invariant open subset Ω of g*.

Moreover, on S(g*), we define, with this product, an involution and a
norm by:

(ii) | |/ | |Λ is the norm of f in the group C*-algebra C*(G^).
Then this structure provides a strict deformation quantization of <S(β*) in
the direction of — (2π)~1{ , }ί? where { , }i is the linear Poisson bracket on

Proof The above formula defines clearly an associative product since:

where =4 denotes the convolution of functions on G\.
A similar proof as in the Proposition 1.4 shows that this formula defines

a • - product. To prove the first part of the theorem, it is enough to show
that this * - product coincides on V(g*) with the covariant and generically
tangential • - product defined by induction in [2].

Let us recall briefly here this algebraic construction. We fix the basis
{Ej} of gi? a function on g* is a function of variables μx,..., μ^ dj is the j t h
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partial derivative in these variables. We define / ** g as fg if 1 < j < n — ft,
we prove by induction there exists an unique derivation Dj of the algebra

) such that:

2kD2ki Doj) = iEjr}, D^ is a differential operator on β*_x,
fc=0

C Vp-2k (0 if p - 2k < 0), finally, we define:

if j > n — k.

Let us first prove two lemmas.

Lemma 2.5. For X in g^i and μ in Q*_t, we put:

and for f inVig*^):

/'(μ) = ί f(X)e2i*<x''rt dX.
JQX-I

Then:
Df

Proof. We show directly that X ι-> X* are group and algebra automorphisms:

X* 4"1 Yt = (X ^ Y)* and

/t*i"V = (/*i"1»)t.
Then / κ-> ̂ /*(μ)|t==o is a derivation of (^(ίl*-!),^"1) and:

Ds is a differential operator on g*_x with polynomial coefficients.
Now D2s+ι vanishes for all s. Indeed, we first show that for each X in gi?

if Xj is its component on Ej,

Ψi{X) = hX +
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with mi > ra2 > ... > m2^ > n — A;, ji < inf{ii — 2k' + l,m2fc/}(m is
mi, . . . ,ra2A./) and OL™jik, is a real number. For y, Z in Qi~\, we put:

H(Y,Z) = log((exp^y) * (expftZ))

m>\

by using the Campbell-Hausdorff formula, Hm is a polynomial function of
degree m. Now:

1 = (exp-^Z) *

or
Hm(Y,Z) = -Hm{-Z,-Y) = (-

For i = 0, ψi{X) is ΛX and by induction, for i > 0, if X is X — α;

ψi {X) = exp ( 2χiEiJ * e χ P I — - y — )

i-i(x\Ψi
* exp I — - I * e x p I —a

Then by induction on i, exp ( '-^XiEi) * exp I -^—- I can be written as(?*)

exp I ^2 hmKm (X) I where Km is a polynomial function with degree m
\m>\

and

m > l

has the announced form. Now, ψi-ι( ) is an odd polynomial function in
ft, (dφi-ι('))-χ too.

On the other hand, if / is in V{gl_x) one has:

dX
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and D 2 s + 1 / vanishes for all s.

More precisely,

D°f(μ) = 2iπ [ f(X) Σ C!jXjμqe^x^ dX

(the coefficients Ct? are the structure constants of g) and

Σ
1=1 Lϊ=l \Jfe'+*"+l=/'

'Xmr • • • Xm^Xή + ̂  ^ CfjXΛ

ij!aή,J!,/'xrm - xm2l,
 xh

where aζ = βJ

qlxh . . . a?iafc#/+2, j = (ju . . . , j2*"+2) and ^ is a real number.

Then J9° = {Eu •} and D 2 ί ' sends P p on pP- 2 / / , vanishes if p < 2V. Thus:

D

Lemma 2.6. Lei / 6e m ̂ (fl*.!) θ S(sUi)> t h e n :

/or a// j < i

That means the • - product *\ coincides with the • - product defined in [2].

Proof. We keep the notations of the preceeding proof. For X, Y in g i ?

= exp Γ-fo + yi)EΛ * exp ^ - - y ^

*exp(¥>i_itY)) * exp ί g ^

*exp (-XiEij *

*exp(--XiEi) *exp {-{xi + y^EΛ.
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But

exp (--yiEΛ * exp(<pi-i((X))) * exp l^ViEi

thus:

*(exp(ea d

and for all j < i:

Then as in Theorem 1.5, we prove that if / is in S(g*) Θ P(fl<):

^ *ί f(μ) = Ei

and for all j < i,

Js?j 4 /(A*) = / 0 j

((e-ad***E<(hEj)*φi-ί{Y))),μ)
e2iπ(Y,μ

Especially, if / belongs to Vi^-t) ®

and for all j < i,

^ 4 /(μ) = 4

But

^ ( x 4 1 nk #-Λ((y))((^) * ψi-
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Thus

Then our * - product •£ coincides with the • - product of [2] on polynomial
functions and since the coefficient of hr of this product is a bidifferential
operator, it is totally determined by its value on polynomial functions. The
first part of the Theorem 2.4 is then proved.

Now as φn and φ~λ are polynomial, we can write:

x*%γ = x + γ + hM{h, x, Y)

where M is a g-valued polynomial function and, if we denote the coordinate
of M(/i, X,Y) on Eι by m/(^,X, y), then mi is a polynomial function only
of the variables #/+i,..., xn, 2/ί+i> ? ΊJn &nd h. We prove the second part of
our theorem by repeating exactly the argument of [16]. D

Definition 2.7. ([6], [12]). Two • - products (respectively tangential • -
products) • and *' on a Poisson manifold W are equivalent (respectively
tangentially equivalent) if there exists a formal series:

r=0

where Id denotes the identity and the TΓ's are differential (respectively dif-
ferential and tangential) operators vanishing on constants such that for each
u and v in C°°{W),

T{u*v)=T(u)*'T(υ).

Proposition 2.8. Let g be a special nilpotent Lie algebra and {ĝ } and
{g'i} two increasing sequence of ideals of g such that the dimension of Qi and
Q[ is i and:

ΰn-k = flή-fc = m> [™? m l = 0.

We define on g*, as in the preceeding theorem, two • - product: • by using
{fli} and*' by using {^}.

Then* and*1 are tangentially equivalent on ΩίΊΩ', subset of the union of
orbits of maximal dimension and they are equivalent to the Lugo-Gutt-Rieffel
* - product.

Proof. Let φ (resp. φ1) be the map corresponding to the gι (resp. g^). For /
in V(β*) or in S(β*), we put:
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Then, for all / and g in S(g*) Θ

Tf*'Tg = T(f*g)

and T — Id is expandable in a series of tangential operators. Indeed if / in
S(g*) Θ V(g*) is such that / is compactly supported, we can write:

Tf(μ)= [ f(X)e2iπ{φt lo*(χ)>*> dX

r = l

here η^}i are real numbers.
On the other hand, if P is an invariant polynomial function, P is in

V(m*) (see [19] for instance), by definition, for such a P, the Pι defined in
Lemma 2.5 for φ or φ' are just P, thus, for each /:

Moreover we can choose a local system of coordinates in Ω Π Ω' of the form
(λhPj,qj) such that the Xj(μ) are polynomial invariant functions (transverse
to the orbits) and pj(μ),qj(μ) are rational and define a canonical chart for
the orbit through μ. Such a chart is described in [1] or [19]. Now since our
Tr contains at least a derivative in Xjx with jι larger than n — fc, they vanish
on invariant P, thus on λh If we exprim them in the chart (λ,p, g), they
cannot have any derivative in the variables λ, since:

Γ(λ/) = Γ(λ*/) = (Tλ)*' (Γ/) = λ*' (Tf) = λ(Γ/).

But this means T is tangential.
Finally, we repeat the preceeding argument with the transform:

to find equivalence between our * - product and the Lugo-Gutt-Rieffel prod-
uct. D

3. Adapted Fourier transform.

Ley us define now the adapted Fourier transform. We follow the method of
[4] (or [3]), defining first the * exponential mapping. Our • - product being
covariant, the map:
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is a representation of g on the space 5(g*). By definition, the * exponential
mapping is the representation for G whose differential is p.

Definition 3.1. Let u be in <S(g*) and X in g. We define £"(expX)
U(l) if U{t) is the solution of:

ή-U(t) = (2iπX • U)(t) with U(0) = u.
at

If / is a function of S(G) {G is identified with g by exp or </?), we put:

<£(/), u) = / / /(*)(£(*) * u ) ( / i ) ώ φ .
•/G./g*

Thanks to an argument of [4], this formula defines a tempered distribution
S(f) on S(g*) We shall write it as:

ε{f)(μ) = ί f(x)E(x)(μ) dx.
JG

[
9

Proposition 3.2. Let f be in S(G), then:

£(f)(μ)=

where φ is the map φn defined in the second section.

Proof. Let us put:

ε'(f)(μ)=

A simple computation shows that S'(S(G)) is S(g*) and:

where *Λ denotes the usual convolution of functions on S(G). Now £' can
be extended in an unitary transformation from L2(G) onto L2(g*) and if Lx

is the left regular representation of G on L2(G), for / in

Thus
/ (E(x) *Λ ε'(f))(μ) dμ = (Lxf)(0) =

0*
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or for g in

= ί g(χ)f(χ-1)dχ
JG

( ( , ) is the scalar product in L2(G)). Then by definition:

ε{g) = ε'(g).

D

The adapted Fourier transform is related to the unitary representation
associated to an orbit O in g*. Let us first recall the construction of such a
representation. We choose an element μ0 in O and a maximal subordinate
subalgebra f) of g i.e. a subalgebra such that:

<μo,[f),J)])=0

and maximal with that property. Since the exponential map is a diffeo-
morphism between g and G, the analytic subgroup corresponding to f) is
H = exp(ί)) and the formula:

defines a character of H. We induce this one-dimensional representation
from H to G and obtain the unitary representation associated to O:

Π° = mdmGχμo.

If O is isomorphic to R2* and equipped with the chart {pj,qj) of [1] or [19]
then Π° can be realized in L2(Rk) (with variables t (see [1] or [15])).

Since g is special, we can (and we do) choose f) = m, thus the point μ with
coordinate {pj,qj) is:

μ = exp -ftjBn [exp -ft_i.En_i ( (μ0) * * *) + P*-i^-i] + P* ' K

if {£ ĵ} is the dual basis of {Ej}. Now there exists an unitary transformation
S from L2(O) onto the space of Hubert Schmidt operators on L2(Rk) defined
by:

(

where

Fpu(p,q) = / u{x,q)e~2iπxp dx (s,t,p,q€ Rk).
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Theorem 3.3. Let us suppose Π° explicitely realized on L2(M.k) as in [1].

Let f be in S{G) and g in L2{O), then:

(1) U°(f)g(t)=JoK(t,τ)g(τ)dτ

where:

K(s, t)= f f(exp(-tkEn) * exp(-ifc_!En^) • • •

*exp(-tiEn_ j f e + 1) * m * exp(si,£,,_*+!)

• * exp{skEn))e2iπ<m^ dm,

here t = ( t 1 ? . . . ,tk) and s = (s1,... ,$*).

(2) K and S(f) are related by S{f) = S^iK).

Proof, Pukanszky gives in [15], p. 115 the expression of the kernel of Π°(/)

for the unitary representation Π° associated to an orbit O. In our special

case this expression can be written as in the first part of the theorem.

For the part (2), let Gx be the analytic subgroup of G with Lie algebra gi

spanned by Eu . . . , 2£n_i. We define the representation Π* of G\ by:

I l ί ( 5 l ) = Πx(exp tEn9ι exp -tEn) ( t e R ) .

Let now Fx be a function in S(Gχ), by induction, we suppose that ΐl\{Fι)

can be written:

here x ( 1 ) is for (xu...,xk-ι), and if μ\ is exp-£E n

with:

«ί(P(i),9d))=

Then if F is in <S(G), we obtain:

F o φ(Xx + yEn)

(Πi f c "^((^i(Xi))/) (ί(i),tfc - y) dXi dy

f ί tk-*-,
— I I K\ 2 (^(1)9 ^(1)5 2/)

,tk -y) ds{ι) dy.
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Where:

!(t(1),*(1),i - s) = (FPwu\)FPwu\) (ΐ(1) - β ( 1 ), M±fill,

and:

/ {Foφ)(X1 +χEn)

Thus if w is the function on O defined by:

u(p,q)=ε(f)(μ(p,q))

= [ Foφ(X)e2iπ{x^q)) dX,

then:

with:

= / K(t,s)f(s)ds,

D

4. Final remarks.

Our goal was the construction of deformations on algebras of functions or
distributions on g*, for g nilpotent. Many authors considered such defor-
mations, all of them being related to the convolution on the corresponding
connected and simply connected Lie group G through an 'adapted Fourier
transform' of the form:

(εf)(μ)= ί fiexpXy^VdX

or / f(ψ(X))e2i*<»'xϊ dX.

Let us compare now our construction with some preceeding ones, starting
with that point of view of the Fourier transform. If Q is any nilpotent Lie
algebra, we knew two deformations:
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(1) the deformation of Lugo-Gutt-Rieffel where a(μ,X) is simply
(μ,X) (or Ψ is exp). E is well defined everywhere (for instance if / is a
Schwarz function on G) but it is well known that this deformation is not
(generically) tangential.
(2) the deformation of Arnal-Cortet where α(μ, X) is a function polynomial
in the variable X and rational in the variable μ. The function £/ is thus
defined only on a dense invariant subset of g*, the corresponding deformation
is tangential but we cannot surrounded the singularities as the example of
05,4 (see [2]) shows.

Now, we are obliged to consider only some classes of nilpotent Lie algebras
0, hoping to find generically tangential, globaly defined deformation on g*
for such g.

For instance, let us define the 'filform' Lie algebra f to be the algebra with
basis Y, Xo, Xu . . . , Xn and non trivial brackets:

\Y,Xi]=Xi-U t = l , . . . , n .

For n larger than 2, the Lugo-Gutt-Rieffel deformation on f is distinct of the
Arnal-Cortet deformation (and the same holds for the corresponding Fourier
transforms). The Arnal-Cortet deformation is in fact globally defined for
each f, on the other hand f is a special Lie algebra and our deformation on
f* is distinct of the Arnal-Cortet deformation, for n larger than 2.

Let us now mention the work of Howe, Ratcliff and Wildberger [10]. They
consider a globally defined, generically tangential deformation on the dual
g* of the Lie algebra of a OKR Cayley-stable Lie group G (see [10] for the
definitions). The fundamental example of such g is the Lie algebra um of

matrices of the form A B
0 -A1 where A, B are rax m matrices with A upper

triangular and B symmetric. For a OKR Cayley stable (2, they define a
Cay ley transform c from G to g and put:

= / dX

where K is a constant. Finally, their well defined and tangential deformation
can be defined through this Fourier transformation.

Let us compair our construction with the result of [10]. First, each um

is a special Lie algebra and we can apply our construction to them. For
m = 1,2, the two Fourier transforms coincide since then:

X2 γn
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But a direct computation shows they are distinct for m larger than 2.
Now, if G is any OΛΓi?-Cayley stable group and Π° a generic unitary

irreducible representation of G, in [10], the authors use an isomorphism Φ
between G/ker Ώ° and some Um such that cym o φ = rfΦ o CQ to define
their symbolic calculus. Therefore, G/ker Π° is special and we can compare
the two constructions. In fact, if m is larger than 2, the two formulae are
distinct.

Finally, if f is the filiform Lie algebra of dimensionality larger than 4, f is
special but not OKR, thus, in some sense, our construction is more general
than the construction of [10].
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