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THE EULER CHARACTERISTIC OF A NONPOSITIVELY
CURVED, PIECEWISE EUCLIDEAN MANIFOLD

RUTH CHARNEY AND MICHAEL DAVIS

A conjecture of H. Hopf states that if M2n is a closed, Rie-
mannian manifold of nonpositive sectional curvature, then its
Euler characteristic, χ(M2n), should satisfy (-l)nχ(M2 n) > 0.
In this paper, we investigate the conjecture in the context
of piecewise Euclidean manifolds having "nonpositive curva-
ture" in the sense of Gromov's CAT(O) inequality. In this con-
text, the conjecture can be reduced to a local version which
predicts the sign of a "local Euler characteristic" at each ver-
tex. In the case of a manifold with cubical cell structure, the
local version is a purely combinatorial statement which can
be shown to hold under appropriate conditions.

The original conjecture of Hopf, and a similar conjecture for nonnegative
curvature (which we shall not be concerned with here), are true in dimensions
2 and 4, by the Chern-Gauss-Bonnet Theorem: in both cases the curvature
condition forces the Gauss-Bonnet integrand to have the correct sign. This
is immediate in dimension 2. Chern [Ch] gives a proof in dimension 4 and
attributes the result to Milnor. A result of [Ge] shows that, in dimensions
> 6, the curvature condition does not force the Gauss-Bonnet integrand
to have the correct sign; hence, the same argument does not work in higher
dimensions. (However, the hypothesis that the curvature operator is negative
semidefinite does force the integrand to have the correct sign.)

Here we are concerned with the analogous conjecture for piecewise Eu-
clidean manifolds. In order to make sense of this, two points bear further
discussion: (1) the meaning of "nonpositive curvature" for piecewise Eu-
clidean spaces, and (2) the combinatorial analogue of the Gauss-Bonnet
Theorem for such spaces.

As for the first point, "nonpositive curvature" makes sense for a more
general class of metric spaces than Riemannian manifolds, namely, it makes
sense for "geodesic spaces" (also called "length spaces"). For geodesic spaces
the notion of nonpositive curvature is defined via Gromov's "CAT(O) inequal-.
ity" (see [G, p. 106]). A piecewise Euclidean cell complex naturally has the
structure of a geodesic space (cf. (1.3)) so nonpositive curvature makes sense
in this context. Associated to a vertex υ of such a cell complex, there is a
piecewise spherical complex called the "link of v". It is homeomorphic to the
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topological link; its metric is determined by the solid angles at υ in the cells
which contain v. There is an infinitesimal version of nonpositive curvature,
due to Gromov, which is equivalent to the previous version: the link of each
vertex must be "large". (By definition, a piecewise spherical space is large if
there is a unique geodesic between any two points of distance less than π.)

In dimension 2, in the case of a piecewise Euclidean surface M 2, these
ideas are quite well-known. For a vertex υ of M2, let θ(v) denote the sum,
over all 2-cells containing v, of the interior angles at v. The link of v is then
a circle of length θ(υ)\ it is large if and only if θ(v) > 2π.

As for the second point, there is a well-known analogue of the Gauss-
Bonnet formula for piecewise Euclidean cell complexes. It has the form
χ(X) — Σ^(^), where the summation is over the vertices of X and where
κ(v) depends only on the link of v. (The precise definition of κ(v) is given in
(3.4.3).) It is shown, rather convincingly, in [CMS] that κ(v) is the correct
analogue of the Gauss-Bonnet integrand in this context.

In contrast with the smooth case, we conjecture that, in all dimensions,
the infinitesimal version of nonpositive curvature should force κ(υ) to have
the correct sign.

For a vertex v of a piecewise Euclidean surface, κ(v) = 1 — (2π)~1θ(υ).
Hence, in dimension 2, our conjecture is true: θ(υ) > 2π implies κ(v) < 0.

In general, it is difficult to check that a piecewise spherical space L is large.
However, if L is a simplicial complex and if each edge of L has length π/2,
then Gromov has given a simple combinatorial condition which is necessary
and sufficient for L to be large: it must be a "flag complex". (The definition
is given in (2.7).) Such L (i.e., simplicial complexes with edge lengths τr/2)
arise as links in any piecewise Euclidean cell complex whose cells are regular
cubes. Furthermore, for such L, the quantity κ(L) is easily seen to be given
by the formula:

i l

where fi is the number of i-simplices in L. Hence, the local form of the Hopf
Conjecture for piecewise Euclidean cubical manifolds is the following, purely
combinatorial conjecture, called Conjecture D in Section 4.

Conjecture D. Suppose that L is a simplicial complex homeomorphic to
S2n~ι and that κ(L) is defined by the formula above. If L is a flag complex,
then (-l)nκ{L) > 0.

This conjecture is first interesting in dimension 3. For any triangulation
L3 of 53, the Lower Bound Theorem of [W], states that fλ > 4/0 -10. In this
dimension, Conjecture D is equivalent to the statement that if, in addition,
L3 is a flag complex, then /i > 5/0 - 16.
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Given an arbitrary simplicial complex L, we construct, in Section 6, a
finite, piecewise Euclidean, cubical complex so that the link of each vertex is
L. If L is a flag complex, then the cubical complex is nonpositively curved.
If L is homeomorphic to a sphere, the cubical complex is a manifold. Hence,
Conjecture D is equivalent to the Hopf Conjecture for piecewise Euclidean
manifolds cellulated by cubes (cf. Proposition 6.5).

There is a beautiful generalization, due to G. Moussong [M], of Gromov's
combinatorial condition for largeness of piecewise spherical simplicial com-
plexes with edges of length π/2. Moussong gives an analogous condition in
the case where the edge lengths are > π/2 which is partly combinatorial
and partly metric (see (2.9), (2.10)). This leads to a conjecture for such L,
analogous to Conjecture D, called Conjecture C in Section 4.

Section 5 provides some evidence for Conjectures C and D. First, we show
that Conjecture D holds for some wide classes of flag complexes which arise as
subdivisions. Then we show in Proposition (5.7) that Conjecture D implies
Conjecture C (in the case where the underlying simplicial complex is a flag
complex.) The proof uses a formula of [CMS] for the first derivative of n{t),
where κ(t) = κ(Lt) for some 1-parameter family Lt of piecewise spherical
simplicial complexes.

Finally, in Section 7, we discuss an equivalent form of Conjecture D, of
interest to combinatorialists.

1. Piecewise Euclidean and piecewise spherical cell complexes.

1.1. A Euclidean cell is a convex polytope in some Euclidean space. A
convex polyhedral cone in W1 (with vertex at the origin) is any intersection
of a finite number of linear half-spaces which contains no line. The spherical
cell associated to a convex polyhedral cone is its intersection with S*1"1. A
convex polyhedral cone is a simplicial cone if this intersection is a spherical
simplex.

1.1.1. If P is a Euclidean cell and F is a face of P, then the normal cone
of F in P is the convex polyhedral cone N(F, P) consisting of all inward
pointing normal vectors to F. Its dimension is the codimension of F in
P. The associated spherical cell is called the link of F in P and denoted
Lk(F,P). Thus, Lk{F,P) is the "solid angle" of P along F. Similarly, if F
is a face in a spherical cell P, then Lk(F, P) is defined to be the link of the
associated polyhedral cones.

1.1.2. A piecewise Euclidean cell complex is a space X formed by gluing
together Euclidean cells via isometries of their faces together with the de-
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composition of X into cells. A piecewise spherical cell complex is defined
similarly using spherical cells. We assume throughout that all cell com-
plexes are locally finite. We also assume that there is a positive lower bound
on the heights of all cells of X. (The height of a cell C is the minimum
distance between disjoint faces of C.)

1.1.3. If Fi and F2 are faces of a Euclidean (resp. spherical) cell P and
Fι C F 2, then Lk(Fι,F2) is canonically identified with a face of Lk(Fι,P).
It follows that if F is a cell in a piecewise Euclidean (resp. spherical) complex
X, then the set of all Lk(F, P ) , P a cell of X which contains F, fit together
to give a piecewise spherical cell complex

Lk(F,X)= U Lk(F,P)
FCP

called the link of F in X.

1.1.4. An n-cell P is simple if precisely n codimension-one faces of P meet
at each vertex. Equivalently, P is simple if Lk{F, P) is a simplex for each
proper face F of P. For example, a simplex is simple, so is a cube; an
octahedron is not. If each cell of a piecewise Euclidean cell complex X is
simple, then Lk(F,X) is a simplicial cell complex for each cell F in X.

1.1.5. A note on terminology. "Simplicial complex" is not synonymous
with "simplicial cell complex". In a simplicial cell complex the intersection
of two simplices is a union of faces, while in a simplicial complex such an
intersection is either empty or a single simplex.

1.2. A complete metric space Y is a geodesic space (or "length space") if,
given points yu y2 in y, there is a path 7 from yλ to y2 with ^(7) = d(yι,y2).
Such a distance minimizing path is called a geodesic.

1.3. Suppose X is a piecewise Euclidean or piecewise spherical cell complex.
Then "arc length" makes sense in each cell; hence, the length ί of a path in
X is well-defined. Given points x and y in X, define d(x,y) — inf {^(7)},
where the infimum is over all paths 7 from x to y of finite length. (If x and y
are in distinct path components, put d(x,y) = 00.) Under the assumptions
of (1.1.2), Moussong ([M]) showed that d is a complete, geodesic metric on
X. It is locally isometric with the given Euclidean or spherical metrics on
the individual cells. A piecewise Euclidean (resp. piecewise spherical)space
is the metric space underlying such a piecewise Euclidean (resp. piecewise
spherical) cell complex.
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2. The infinitesimal version of nonpositive curvature.

2.1. A geodesic space is nonpositiυely curved, abbreviated (NP), if, locally,
geodesic triangles satisfy the CAT(O)-inequality (see [G, p. 106]). The (NP)
condition has some strong consequences. For example, if a space is (NP),
then it is locally contractible and its universal covering space is contractible.

2.1.1. A piecewise spherical space is a large if there is a unique geodesic
between any two points of distance < π.

The following result is due to Gromov. For a proof, see [B] or [Br], (See

also Theorem 3.1 and the appendix of [CD1].)

Theorem 2.2 (Gromov). A piecewise Euclidean cell complex is (NP) if and

only if the link of each vertex is large.

In some cases, when the cell structure on a piecewise spherical space is
simplicial, there are combinatorial conditions which are necessary and suffi-
cient for it to be large. In order to state these conditions, it is first necessary
to develop some terminology and elementary facts about spherical simplices.

2.3. Let σ be a spherical n-simplex in 5 n with vertex set V, a set of linearly
independent unit vectors in IRn+1. The associated cosine matrix, c(σ) =
(cvv>),v,vf in V is the symmetric V by V matrix of inner products: cvv» =
v - v'. We note that c(σ) is positive definite.

2.3.1. For v φ υ', let ίvυ, be the length of the edge (υ, v') of σ. Put ίυυ = 0.

Then cυv> — cos(4υ')

2.3.2. Conversely, suppose we are given a F b y F symmetric matrix (ίυv>)
satisfying: tυυ — 0 and ίυv, G (0, π) for v φ v1. If the associated cosine
matrix c, defined by cvv> = cos(£υi;/), is positive definite, then we can find a
basis V for Mn + 1, unique up to isometry, which spans a spherical n-simplex
with associated cosine matrix c. Hence, (ivv>) is the matrix of edge lengths
of a spherical simplex if and only if the associated cosine matrix is positive
definite.

2.4. A spherical simplex is all right if each of its edges has length π/2; it
has size > π/2 if each of its edges has length > π/2. The associated cosine
matrix of an all right n-simplex σ is the identity matrix. It follows that σ
is isometric to the regular n-simplex in Sn spanned by the standard basis
of Rn+1. The associated cosine matrix of a simplex of size > π/2 is "almost
negative" in the sense that its off-diagonal entries are < 0.
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The following is a result of [M].

L e m m a 2.4.1. Let τ be a face of a spherical simplex σ.

(i) If σ is all right, then so is Lk(τ,σ).

(ii) If σ has size > π/2, then so has Lk(τ,σ).

Proof. Statement (i) is obvious. To prove (ii) first note that if η C r2 C σ,
the Lk(Lk(τ1,τ2),Lk(τι,σ)) is isometric to Lk(τ2,σ). Hence, by indue-
tion, we can reduce to the case dimr = 0. So, suppose σ is spanned by
{v0,... ,vn} and r is the vertex v0. Let p : R n + 1 -+ (MVQ)1- be orthogonal
projection. Then Lk(vo^σ) can be identified with the spherical simplex in
( R V Q ) 1 - s p a n n e d b y Ui = p ( v i ) / \ p ( v i ) \ , i = 1 , . . . , n . For i φ j ,

pto) - P(VJ) = to - to • v oH) to - to υo)υo)
-υ0)

which is < 0 since the cosine matrix for σ is almost negative. It follows that
uτ Uj < 0 so the cosine matrix for Lk(υo,σ) is almost negative. D

2.5. A piecewise spherical simplicial cell complex is all right (resp. has
simplices of size > π/2) if the corresponding property holds for each of its
simplices.

2.5.1. If L is all right or if it has simplices of size > π/2, then, by Lemma
(2.4.1), the link of any simplex in L has the same property.

2.6. A piecewise Euclidean cell complex has nonacute, simple cells if each
of its cells is simple (cf. (1.1.4)) and the face angles in each cell are all > π/2;
or equivalently, if the link of every cell is simplicial with simplicies of size
> π/2. It is cubical if each cell is a regular Euclidean cube. In this case,
links are all right simplicial cell complexes.

2.7. Let K be a simplicial complex (no metric structure is assumed). A
set V of vertices in K spans a complete graph if any two distinct elements
of V span an edge in K. A simplicial cell complex if is a flag complex if it
is a (genuine) simplicial complex (cf. 1.1.5) and if any set of vertices which
spans a complete graph actually spans a simplex. Thus, a flag complex is a
simplicial complex with no "empty simplices". ,

2.7.1. Flag complexes have nice properties. For example,
(a) the link of any simplex in a flag complex is again a flag complex, and

(b) the join of two flag complexes is a flag complex.
The following lemma is proved in [G, p. 122].
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2.8. Gromov's Lemma. An all right piecewise spherical simplicial cell
complex is large if and only if it is a flag complex.

2.8.1. Hence, a piecewise Euclidean, cubical cell complex is (NP) if and
only if the link of each vertex is a flag complex.

2.9. Suppose L is a piecewise spherical simplicial complex and that V is
a set of vertices of L which span a complete graph. As in (2.3), there is
associated to V a cosine matrix, (cυv/), where cvυ' is the cosine of the length
of the edge (v,v'). A cell complex L is a metric flag complex if it is a
simplicial complex and if whenever V is a set of vertices such that (i) V
spans a complete graph, and (ii) the associated cosine matrix is positive
definite, then V spans a simplex of L.

The following difficult generalization of Gromov's Lemma is proved in
[M].

2.10. Moussong's Lemma. A piecewise spherical simplicial cell complex
with simplices of size > π/2 is large if and only if it is a metric flag complex.

2.10.1. So, a piecewise Euclidean cell complex with nonacute, simple cells

is (NP) if and only if the link of each vertex is a metric flag complex.

3. The Gauss-Bonnet Theorem for piecewise Euclidean spaces.

3.1. Let C be an n-dimensional convex polyhedral cone and σ the associ-
ated spherical (n — l)-cell. The outward pointing normals to the supporting
hyperplanes of C generate another convex polyhedral cone C* called the dual
cone. (If uu . . . ,uk are outward pointing normal vectors to the supporting
hyperplanes, then C* is the set of all nonnegative linear combinations of the
Ui.) The associated spherical cell σ* = C* Π Sn~~ι is the dual cell to σ.

3.2. The angle of C at 0, denoted by α(σ), is the (n — l)-dimensional volume

of σ, normalized so that the volume of Sn~Ύ is 1, i.e.,

vol (σ)
a ( σ ) = „ ! , c n - 1 \ '

The exterior angle of C at 0, denoted by α*(σ) is the angle of C*, i.e.,

α*(σ) =o(σ*) .

3.3. Let P be a Euclidean n-cell. After choosing an interior point of P as

the origin, one can define the "dual cell" P* whose vertices are the normal
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vectors to the codimension-one faces of P. For example, the octahedron is
dual to the cube. Radial projection of dP* onto Sn~ι gives a cellulation of
gn-ι rpke ^n _ ιyce[\s j n this cellulation are associated to the duals of the
normal cones at the vertices of P, i.e., each such (n — l)-cell is of the form
Lk(υ,PY for some vertex v. It follows that Σa*(Lk(v,P)) = 1, where the
summation is over all vertices υ of P. (If υ = P, then Lh(υ, P) = 0, so we
adopt the convention α*(0) = 1.)

3.4. Now suppose that X is a finite piecewise Euclidean cell complex. Then

where P runs over the cells of X and v runs over the vertices of P. Reversing
the order of summation gives

(3.4.1)

where v runs over the vertices of X and σ over the cells of Lh(v, X). (Note
that the 1 in the summation arises from the case P = υ.) For any finite,
piecewise spherical cell complex L, define

(3.4.2) κ(L) = 1 + ]Γ(-l) d i m σ + V(σ)
σ

where σ runs over the cells of L. Then (3.4.1) can be rewritten as

(3.4.3)

where κ(υ) = κ(Lk(v, X)). This is the desired analogue of the Gauss-Bonnet
Theorem for piecewise Euclidean spaces.

3.5. If σ is an all right simplex, then σ* = σ and α*(σ) = α(σ) = ( | ) c

Hence, if L is an all right, piecewise spherical, simplicial cell complex, then

dimσ+l

(3.5.1) — . . .



EULER CHARACTERISTICS 125

3.5.2. Let K be a simplicial cell complex (without metric structure) and

fi(~ f%{K)) the number of i-simplices in K. Put

If we endow K with the structure of an all right spherical complex by declar-
ing each simplex to be all right, then λ(K) = κ(K).

3.6. The following facts concerning n are proved in [CMS, Section 3].

3.6.1. If the underlying metric spaces of Lx and L2 are isometric, then

κ(Lχ) = κ(L2).

3.6.2. If L is isometric to the round sphere, then κ(L) = 0.

3.6.3. Suppose σn C Sn and τk C Sk are spherical cells; embed Sn and Sk

in orthogonal linear subspaces of Rn + f c+2 then the orthogonal join σ*τ is the
spherical (n + k + l)-cell spanned by σ and r (it is the union of all geodesies
in S'n+*+1 from σ to r). This extends to a definition of the orthogonal join
L\ *L2 of two piecewise spherical cell complexes Lx and L2 (see the Appendix
of [CD]). By [CMS, p.442],

κ(Lλ * L2) = κ(Lι)κ(L2).

3.6.4. If L is homeomorphic to an even dimensional sphere, then κ(L) = 0.
(Actually for this to be true it is only necessary to assume that χ(L) = 2
and χ(Lfc(σ, L)) — 2 for each odd dimensional cell σ.)

3.6.5. Let K be a simplicial cell complex and Lt a 1-parameter family of
piecewise spherical structures on K. For each edge e in if, let ae(t) be
the length of the corresponding edge et in Lu normalized so that S1 has
length 1. (Thus, ae(t) = (2π)"1£(e ί), where ί is the usual edge length.) Put
κ(t) = κ{Lt). The following beautiful formula for the first derivative of κ(t)
is given in [CMS, p. 424]

(3.6.6) κ'(ί) = -

The proofs of the above facts can be sketched as follows. In [C], Cheeger
considers another quantity, let us call it 7c(Zr), defined as the difference of
the L2-Euler characteristic of the cone of radius 1 on L and \ the L2-Euler
characteristic of L. So ~κ(L) depends only on the metric and not the cell
structure. Using heat equation methods he derives a formula for ~κ(L) solely
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in terms of interior angles and flags of odd dimensional cells (formula 3.35
in [CMS]) and he proves that χ(X) = Σ>(L/φ,X)). In [CMS, p. 424] it
is proved that κ(L) — κ(L). Since κ(L) depends only on the metric, (3.6.1)
follows. The formulas in (3.6.2), (3.6.4) and (3.6.6) follow easily from the
formula for ~κ{L)\ (3.6.3) is an easy computation.

4. Statements of the conjectures.

We are now in position to state precisely the various conjectures which were
mentioned in the Introduction. First, there is the analogue of the Hopf
Conjecture.

Conjecture A. If M2n is a nonpositively curved, piecewise Euclidean, closed
manifold, then (-l)nχ(M2n) > 0.

Next, suppose that L2n~1 is a (2n — l)-dimensional piecewise spherical cell
complex which is a generalized homology sphere, in the sense that it has the
homology of S2n~ι and for each A -cell σ,Lk{σ,L2n~ι) has the homology of
S2n~k~2. For example, if L2n~ι is homeomorphic to S2n~1, then it is a gen-
eralized homology sphere. In view of Gromov's Theorem (2.2), Conjecture
A is implied by the following.

Conjecture B. If L2n~ι is large (cf. (2.1.1)), then {-l)n κ{L2n~ι) > 0,
where K is defined by (3.4.2).

By Moussong's Lemma (2.10) the following conjecture is a special case of
Conjecture B.

Conjecture C. Suppose that L2n~ι is simplicial and has simplices of size
> π/2 {cf. (2.5)). // I?71'1 is a metric flag complex {cf. (2.9)), then
(-l) n«(L 2 n" 1) >0.

If L is a metric flag complex with simplices of size > π/2, then the same
is true for the link of each simplex in L, by Lemma (2.4.1). In the sequel we
will want to consider the statement that Conjecture C holds for a particular
complex L and for each link in L. It is therefore convenient to state the
following equivalent formulation of Conjecture C.

Conjecture C. // L2n~1 is a metric flag complex with simplices of size
> π/2, then {—l)nκ{L2n~1) > 0 and for each simplex σ of codimensίon
2k,{-l)kκ{Lk{σ,L)) >0.

Finally, we want to consider the special case where L2n~ι is all right. In
order to de-emphasize the metric in this case, we let K2n~ι be a simplicial
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cell complex which is a generalized homology sphere, as above, and λ(K)
the quantity defined in (3.5.2).

Conjecture D. If K2n^λ is a flag complex, then {-ΐ)n\(K2n~l) > 0.

We also have an equivalent reformulation.

Conjecture D'. If K2n~ι is a flag complex, then (-l)nλ(K2n-1) > 0 and
for each simplex σ of codimension 2fc, (—l)k\(Lk(σ, K2n~1)) > 0.

5. Evidence.

We begin by discussing some partial results for Conjecture D.

5.1. Let Om be the (m + l)-fold join of S° with itself. By (2.7.1), Om

is a flag complex and by (3.6.3), λ(Om) = 0. It is alternately described
as the boundary complex of the (m + l)-dimensional octahedron (or "cross
polytope"). It is the simplest flag complex which triangulates the m-sphere.
If we endow it with an all right, piecewise spherical structure, then it is
isometric to the round sphere. The link of a A -simplex in Om is isomorphic
to O™-*-1. It follows that Conjecture D' holds for O2n~ι.

5.2. Flag complexes arise naturally as derived complexes of posets. (Recall
that if A is a poset, then its derived complex A1 is the abstract simplicial
complex with simplices the finite chains in A.) If A is the poset of cells in a
cell complex, then the geometric realization of A1 can be identified with the
barycentric subdivision of the cell complex. In particular, if A is the poset
of faces of the boundary complex of a 2n-cell, then A' is a flag complex
homeomorphic to S2n~ι. Based on work of R. Stanley, E. Babson showed
that Conjecture D; holds for such A'. (For the argument, see (7.3).) Hence,
Conjecture U holds for the barycentric subdivision of the boundary complex
of a Euclidean cell.

5.3. Suppose K is a simplicial complex (no metric assumed). Recall that
for any simplex σ of K,Lk(σ,K) can be identified with the subcomplex of
K consisting of all closed simplices T, disjoint from σ, such that the join of
σ and r is a simplex of K containing σ.

5.3.1. Let e be an edge of K. We shall now define a subdivision of K,
called the edge subdivision and denoted by Sube(lf). Introduce a new vertex
υ€ as the midpoint of e, subdividing e into two new edges, say e+ and e_.
Let σ be a λ -simplex containing e. Then σ = e * r for some simplex r in
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Lk(e,K). Introduce a new (k — l)-simplex σ0 = ve * r, subdividing σ into
two new A -simplices σ+ = e+ * r and σ_ = e_ * r. The simplices which do
not contain e are not changed.

U σ_ σ

5.3.2. If K is a flag complex, then so is Sube(iί). Of course, we could have
subdivided K by introducing a barycenter of some simplex of dimension > 1
and then coning off; however, this does not preserve the property of being a
flag complex.

5.3.3. How are the links in Sube(K) related to links in KΊ Let σ be a
simplex in Sube(if). There are four cases to consider:

(i) σ corresponds to a simplex of K which is not in the closed star of e,

(ii) σ corresponds to a simplex in the link of e,

(iii) there is a simplex σ of K which contains e and σ = σ0 (or σ — ve),
(iv) there is a simplex σ of K which contains e and σ = σ + o r σ = σ_.

Then

Lk(σ, Snbe(K)) -

Lk{σ,K)

Sube(Lk{σ,K))

S°*Lk(σ,K)

Lk(σ,K)

in case (i)

in case (ii)

in case (iii)

in case (iv)

5.3.4. For any set of simplices J5, put

dimσ-fl

If σ is an open simplex and M a simplicial complex, then let £!(σ, M) be the
set of simplices in σ * M which do not lie in M. Clearly,
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Lemma 5.3.5. \{Sube{K)) = λ(K) - \\{Lk(e,K)).

Proof. To construct Sube(ϋf) from K one removes the open star of e and
replaces it by the open star of ve in υe * S° * Lk(e, K). The contribution of the
simplices in the open star oίe to λ(K) is \{E(e, LK(e, K))) = \λ(Lk(e, K)).
The contribution of those in the open star of υe is

\(E(υe,S°*Lk{e,K))) = ~\{S° *Lk(e,K)) = ~λ{S°)\(Lk(e,K)) = 0.

The formula follows. •

5.4. Now suppose K2n 1 is a flag complex and a generalized homology
sphere. Let e be an edge of K.

Proposition 5.4.1. // Conjecture D holds for K and for Lk(e,K), then it
also holds for Sube (K).

Proof. If {-l)nλ(K) > 0 and (-1)"-1 λ(Lk(e, K)) > 0, then

(-l)n\(Sube(K)) = (- l ) n λ(#) + |(-l)Λ-1A(ZiA:(β,ltΓ)) > 0.

D

Using this, (5.3.2) and (5.3.3), we immediately deduce the following.

Proposition 5.4.2. // Conjecture D' holds for K, then it also holds for any
complex obtained from K by repeated edge subdivisions.

Corollary 5.4.3. Conjecture D' holds for any complex obtained from O2n~ι

by repeated edge subdivisions.

5.4.5. Proposition (5.4.2) also follows from formula (3.6.6). Let Lo be K
with an all right piecewise spherical structure. Let Lt be the 1-parameter
family where the edge corresponding to e has length (1 + t)π/2 and all other
edges have length π/2. By induction on dimension, (—l)n~ικ{Lk(eti Lt)) >
0. Hence, by (3.6.6), (—l)nκ(Lt) is a non-decreasing function of t. But LΛ

is just the all right structure on Sube(iiί). Proposition (5.4.2) follows.

5.5. A k-circuit in K is a circuit of k edges. A 3-circuit is empty if it is not
the boundary of a 2-simplex. Similarly a 4-circuit is empty if it is not the
boundary of the union of two adjacent 2-simplices.
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5.5.1. The inverse operation of edge subdivision is "edge collapse." Suppose
e is an edge of K which is not part of an empty 3-circuit. (This is automatic
if if is a flag complex). To collapse e, one first removes the open star of e.
The resulting boundary is isomorphic to S° * Lk(e,K). One then collapses
this to Lk(e,K). The result is a simplicial complex Ke which is a quotient
space of K. If K is PL-homeomorphic to S2n~λ, then so is Ke. If UT is a
flag complex, then Ke is also a flag complex if and only if e is not part of
an empty 4-circuit. Hence, one can try to simplify K by performing edges
collapses on edges which are not part of empty 4-circuits.

5.5.2. At one point we thought it might be possible, given a flag complex
ifm, PL-homeomorphic to 5 m , to perform edge collapses to reduce it to Om.
This is true for m = 1,2, however, there is a counterexample for m — 3.
(Conjecture D holds for this counterexample.)

We turn now to Conjecture C.

5.6. Suppose Lo and Lλ are two piecewise spherical structures on a sim-
plicial cell complex K. For a simplex σ in K, let σ»,i'= 0,1, be the corre-
sponding spherical simplex in L^. Let c(σi), i = 0,1, be the associated cosine
matrix (cf. (2.3)).

5.6.1. We shall now define a 1-parameter family Lt of piecewise spherical
simplicial cell complexes Lt which interpolates between Lo and L\. Put
ct(σ) = tc(σι) + (1 — t)c(σ0). Since a convex combination of positive definite
matrices is positive definite, ct(σ) > 0. It follows that, for each t G [0,1],
there is a corresponding spherical simplex σt. These fit together to give Lt.
The family Lt is called the canonical deformation from Lo to L\. If e is an
edge of K, then let £e(t)(= ί{et)) be the length of the corresponding edge in
Lt. Then cos(4(t)) = tcos(^) + (1 - t)cos(£0), where ί{ = £e(i),i = 0,1.

5.6.2. In particular, suppose Lo is all right and Lx has simplices of size

> τr/2. Then for each edge e, 4(0) = π/2 and ie(t) G [π/2,π). So, £e(t) =

c o s " 1 ^ ) , where c = cos(^i). Hence, £'e(t) = -c( l - c2t2)~i, which is > 0

(since c < 0). Similarly, if ae(t) = (2π)"1£e(t) is the normalized length, then

α'e(ί)>0.

Proposition 5.7. Let L2n~i be a piecewise spherical simplicial complex with
simplices of size > π/2 which is a generalized homology sphere, and let K2n~ι

be the underlying simplicial complex. Suppose K2n~ι is a flag complex. If
Conjecture D holds for K2n'x, then Conjecture C holds for L2n~ι.

Proof. Let Lo be the all right structure on K, let Lx = L, and let Lt be the
canonical deformation. We assume that Conjecture D ; holds for K, i.e., that
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Conjecture C holds for LQ. We may also assume, by induction on n, that
Conjecture C holds for the link of each odd dimensional simplex in Lt. In
particular, for each edge eu (—\)n~ικ(Lk(et, Lt)) > 0. By (3.6.6),

(- l )V( ί ) = ( - l ) n -

which is > 0 (using 5.6.2). Hence, (—l)nκ(t) is nondecreasing. Thus,
(-l)n/s(0) > 0 implies (-l)nκ(l) > 0. D

Remark 5.8. In a forthcoming paper [CD2] we find further evidence for
Conjecture B. Suppose that X2n is a convex polytope of finite volume in
hyperbolic 2n-space. Its "completed polar dual" L2n~ι is large. Moreover,
(—l)nκ(L2n~ ι) is twice the volume of X2n (suitably normalized). Hence,
Conjecture B holds in this case.

6. Examples from Coxeter groups.

In this section we review the work of G. Moussong [M] (also, see [Dl],
[G, §4.6]). In particular, we show how to associate to each Coxeter sys-
tem (W, S) a piecewise spherical, simplicial complex Nerve (VF, S) and a
contractible, nonpositively curved, piecewise Euclidean cell complex Y with
W -̂action so that the link of each vertex of Y is Nerve (W,S). Moreover,
any finite, all right, flag complex can be realized as Nerve (W, S) for some

6.1. Suppose 5 is a finite set and m — (mss>) is a symmetric S by S
matrix, with entries positive integers or oo, satisfying mss ~ 1 and mss> > 2,
for s φ s'. This gives a presentation for a group W = (S\(ss')mss> — 1).
The pair (W, 5) is a Coxeter system and W is a Coxeter group. The rank of
(VF, S) is the cardinality of S. The group W is right-angled if mss> = 2 or oo
for all s φ sf. Associated to m, there is an S by S cosine matrix c — {css>)
defined by cSS' = — cos(τr/mS5'). (Here cos(π/oo) = cos(0) = 1.)

6.2. The group W is finite if and only if the cosine matrix is positive definite
(cf. [Bo]). Suppose this is the case. Then W can be represented as a group
generated by orthogonal linear reflections on lRn, where n is the rank of
(W,S). We recall how this works. Since c is positive definite, one can find
a basis (us)ses for Kn such that us us> — css>. Let rs be reflection across
the linear hyperplane Hs normal to us. Then W is identified with the group
(rs) generated by the rs and this group is finite. The fundamental cone C(—
C(W, S)) is the simplicial cone defined by us • x < 0, s G S. (So the Hs are the
supporting hyperplanes of C.) Then C is a fundamental domain for W on W1.
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Its intersection with Sn 1 is the fundamental simplex σ(— σ(W, S)). As in
(3.1), define C*(= C*(W, *?)), the fundamental dual cone, and its intersection
with S'n"~1,σ*(— σ*(W,S)), the fundamental dual simplex. Thus, σ* is the
spherical simplex spanned by the us and its associated cosine matrix (cf.
2.3) is c. Let σs — σΓ)Hs. Note that the dihedral angle of σ along σs Πσs> is
π/mss> and that the length of the edge in σ* from n 5 to us> is π(l — ( m ^ ) " 1 ) .

6.2.1. The VF-translates of σ give a triangulation of S'71

simplicial complex is called the Coxeter complex of W.

The underlying

6.2.2. Choose a function e : S —> (0, oc). Let α; be the interior point of C
defined by x • us = —e(s), i.e., the Euclidean distance from x to Hs is 6(5).
The convex hull of the W-orbit of x is denoted by P(= P(W,S)) and called
a Coxeter cell. One checks easily that

(i) the vertices of P are the W-translates of #,

(ii) P is a simple n-cell and the normal cone at any vertex is C*(W,S),
and

(iii) ΘP is the dual of the Coxeter complex. The vertices wx and w'x are
connected by an edge if and only if w1 = ws, for some 5 in 5, and tHe
Euclidean length of such an edge is 2e(s).

6.2.3. Examples
(i) Suppose S = {s,s'},m — mss>, and W is the dihedral group of order

2m. Then P is a 2m-gon and it is regular if and only if e(s) = e(s').
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(ii) Suppose W = (Z/2)n. Then P is a product of intervals Π h Φ ) , Φ)L
s E S; P is a regular n-cube if and only if e is constant.

(iii) If W is the symmetric group o n n + 1 letters, then the n-cell P is
sometimes called a "permutohedron."

6.2.4. A Coxeter block B(= B(W,S)) is the convex n-cell defined by, B =
P Π C. It is combinatorially equivalent to an n-cube. Call the origin the
inside vertex of 5; its link is σ. Call x the outside vertex of J5; its link is σ*.
Note that WB = P.

6.3. We return to the general situation where W may be infinite. For
any subset T of 5, let Wτ denote the subgroup generated by T. (In fact,
(Wτ,T) is a Coxeter system.) Associate to (VF, S) an abstract simplicial
complex Nerve (W, 5) as follows: the vertex set is S] a proper subset T oΐ S
is a simplex if and only if Wτ is finite.

6.3.1. There is a natural piecewise spherical structure on Nerve (tV, S) de-
fined as follows. The simplex T is given the structure of the spherical sim-
plex associated to the cosine matrix of {Wτ-> T). Thus, the simplices of Nerve
(W,S) are isometric to the fundamental dual simplices ττ = σ*(Wτ,T) cor-
responding to the finite Coxeter subgroups of W. It follows that Nerve
{W,S) has simplices of size > τr/2 and, by (6.2), that it is a metric flag
complex.

6.3.2. If (W, S) is right-angled, then Nerve (W, S) is an all right flag com-
plex. Conversely, given any finite, all right flag complex K, there is a right-
angled Coxeter system with Nerve (W, S) = K: simply, let S be the vertex
set of K and define rass>, for s ψ 5', by

if (s,s') is an edge

if (5, s') is not an edge.

6.4. We define a fundamental chamber Y{= Y(W, 5)). Let N = Nerve(W,
5), let TV' be the barycentric subdivision of TV, and Y the cone on N' with
cone point x. For each simplex T in TV, let VT be its barycenter. Each point
y in TV' lies in the open star of a (unique) VT- Put Wy = VFT For y in
y - TV', let VFy be the trivial subgroup.

6.4.1. Define an equivalence relation ~ on W x y by: (t/Ji,yi) ~ (̂ 2,2/2) if
and only if yx = y2 and WιWyι = w2WV2. Let y ( = y(W, 5)) be the quotient
space (VF x y)/ ~. Then y is naturally a simplicial complex, and W acts
properly on Ϋ with orbit space Y.
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6.4.2. Put piecewise Euclidean structures on Y and Ϋ as follows. Choose
a function e : S —> (0, oo). For each simplex T in JV, let Bτ be the Coxeter
block defined as in (6.2.4) by using e\τ. (So the length of the edge from
the outside vertex of Bτ to the hyperplane corresponding to t is e(t).) We
can identify the subcomplex Cone (r^) of Y with BT in such a fashion that
VT corresponds to the inside vertex of BT and x corresponds to the outside
vertex. This defines a piecewise Euclidean structure on Y such that Lk(x, Y)
is Nerve (W, S) with its natural piecewise spherical structure. The space Ϋ
inherits a piecewise Euclidean structure from Y.

6.4.3. The map y —> (1, y) from Y to W x Y induces an identification of Y
with a subcomplex of Ϋ. Then WτBτ is a subcomplex of Ϋ isometric to the
Coxeter cell P(WT^T). It follows that Ϋ is cellulated by the Coxeter cells
wP(WτiT), where w £ W and T is a simplex in N. The vertices of these
cells are the VF-translates of the cone point x and the link of each vertex
is isometric to Nerve (W,5). By Moussong's Lemma (2.10) such links are
large. This gives the following result of [M].

Theorem 6.4.4 (Moussong). For any Coxeter system (W,S), the piecewise
Euclidean cell complex Y(W,S) is (NP). Moreover, the link of each vertex
is isometric to Nerve(W,S).

6.4.5. We can find finite, piecewise Euclidean cell complexes with the same
property by taking the quotient of Ϋ by a torsion-free subgroup Γ of finite
index in W. Thus, X — Ϋ/Γ also satisfies the conclusions of Theorem
(6.4.4).

6.4.6. Since (TT)* = σ(Wτ,T) is a fundamental simplex for W^, α*(τ^) =
IWrl-1. Hence,

(6.4.7) κ(Nerve(W,5)) = Σ{-l)Card{τ)\Wτ\
1-1

where the summation is over all subsets T of S such that Wτ is finite. We
note that the right hand side of (6.4.7) is the usual expression for the Euler
characteristic of W (that is, the "orbihedral Euler characteristic" of Y) and
that χ(X) = [Γ : ̂ Σ ΐ - l p ^ l W V Γ 1 . (Compare [D2].)

6.4.8. Let L be any all right flag complex and let (VF, S) be the right-angled
Coxeter system corresponding to L (cf. (6.3.2)). Let Ϋ and X be as above.
The conclusion is that there is a finite, piecewise Euclidean, cubical cell
complex X such that the link of each vertex is isometric to L. This gives
the following.
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Proposition 6.5. Conjecture A holds for all piecewise Euclidean manifolds
cellulated by regular cubes if and only if Conjecture D holds.

7. The Λ-polynomial.

7.1. Combinatorialists, interested in the poset of faces associated to a con-
vex cell, have made the following definitions. Suppose K is a finite simplicial
complex of dimension m — 1, that fi is the number of i-simplices in UT, and
that /_! = 1. The f-vector of K is the ra-tuple (/_l5 / 0 , . . . , /m_i) and the
h-υector (Λo,... , hm) is defined by the equation

m m

(7.1.1) ^^( i- i r^^M^
z=0 i=0

Polynomials f(t)(= fκ(t)) and h(t)(= hκ(t)) are defined by

m

(7.1-2) f(t) = Σfi_1t
i

i=0

m

(7.1.3) h{t) = Σhit\
i=0

Formula (7.1.1) can then be rewritten as

(7.1.4) h(t) = (1 - t)m f

7.2. Let \(K) be the quantity defined in (3.5.2). Clearly, λ(K) = fκ ( - | ) .

By substituting t = — 1 into (7.1.4) we get

(7.2.1) Λ(-l) = 2m/ (-1) = 2mλ(K).

Therefore, λ(K) and /ι(—1) have the same sign. So Conjecture D is equiva-

lent to the following.
Equivalent Form of Conjecture D Suppose K2n~ι is a generalized homol-
ogy sphere (as in Section 4). If K is a flag complex, then (—l)nhκ(—l) > 0.

7.3. In this paragraph, we discuss an observation of E. Babson (as commu-
nicated to us by L. Billera) which proves (5.2). For any "Eulerian poset" A,
combinatorialists have defined the "cd-index" Φ^(c, d), a certain polynomial
in two (noncommuting) variables (e.g. see [S2]). It is a refinement of the



136 RUTH CHARNEY & MICHAEL DAVIS

h-vector of the derived complex A1. In particular, it follows directly from its
definition that

(7.3.1) ΦA(0,-2) = M - l ) .

Stanley [S2] has proved (in slightly greater generality) that if A is the bound-
ary complex of a convex ra-cell, then the coefficients of Φ^ are all nonneg-
ative. In particular, for m = 2n, Φ^(0, —2) is (—2)n times the coefficient of
dn. It follows that Conjecture D holds for the barycentric subdivision of the
boundary complex of a 2n-cell.

7.4. The following well-known formulas hold for any K™'1 which is a gen-

eralized homology (m — l)-sphere.

(7.4.1) h{t) =tmh{Γι)

(7.4.2) hi > 0, for 0 < i < n.

Formula (7.4.1) (which means that hi = hm_i) is equivalent to the Dehn-
Sommerville Relations. These relations are a consequence of the facts that

χ(K) = χ(5 m - χ ) and that for any i-simplex σ,χ(Lk(σ,K)) = xiS™-*'2).
Thus, (7.4.1) holds for any K which is an "Euler sphere" in the above sense.
The inequalities in (7.4.2) hold whenever K is a "Cohen-Macaulay com-
plex" in the sense of [SI]. In particular, both formulas hold for generalized
homology spheres.

Conjecture E. IfKm~1 is a generalized homology sphere and a flag complex,
then h(t) has no roots of modulus 1, except possibly —1.

Lemma 7.5. Conjecture E implies Conjecture D.

Proof. Suppose that m = 2n. Factor ftasa product of monic polynomials,
h = hχh2, where the roots of hλ are real and those of h2 are not. We list
the non-real roots of h as: βι,... βk, βλ,... ,βk. Since h2(t) — \{{t — βi){t —
/?.), Λ2(-l) - Π ( - l - A)(~l - A) = Π I - 1 ~ βi? w h i c h is > 0. Hence, we
need only show /ii(—1) has the correct sign. By (7.4.1), if 7 is a root then
so is 7" 1. If \β\ φ 1, then β~ι φ β. Supposing that Conjecture E holds, we
see that k is even. By (7.4.2) the real roots of h are negative. If h(—l) = 0,
then Conjecture D holds. So, suppose h(—l) Φ 0. List the real roots of h
as: α i , . . . ,Qfn_fc, ( α ^ ) " 1 , . . . (α^fc)"1, where — 1 < α^ < 0. Since

Λ1(-l) = Π(-1-«i)Π(-1-(α*)"1)'

the sign of /ii(—1) is (—1)"-* which is equal to (—1)" (since k is even).

D
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