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FACTORIZATION OF P-COMPLETELY BOUNDED
MULTILINEAR MAPS

CHRISTIAN LE MERDY

Given Banach spaces X;,..., Xy, Y1,..., YN, X,Y and sub-
spaces S; C B(X;,Y;)) (1 < i < N), we study p-completely
bounded multilinear maps A : Sy x --- xS; —» B(X,Y). We
obtain a factorization theorem for such A which is entirely
similar to the Christensen-Sinclair representation theorem for
completely bounded multilinear maps on operator spaces. OQur
main tool is a generalisation of Ruan’s representation theo-
rem for operator spaces in the Banach space setting. As a
consequence, we are able to compute the norms of adapted
multilinear Schur product maps on B({p).

1. Introduction and preliminaries.

1.1. Introduction. In a recent paper, Pisier [Pil] proved that the Witt-
stock factorization theorem for completely bounded maps (cf. [Hal, [Pal],
[Pa2], [W]) has a natural generalization to the more general framework of
p-completely bounded maps defined on sets of Banach space operators. The
main goal of this paper is to prove a version of the Christensen-Sinclair
theorem (cf. [CS, PS]) in this extensive setting.

Let us first recall the definition of p-complete boundedness as introduced
(or suggested) in [Pi]. Let 1 < p < 400 be a number. Let X,Y be Banach
spaces. We denote by B(X,Y) the space of all bounded operators from X
into Y. Let S C B(X,Y) be a subspace. We denote by M,, ,,,(S) the vector
space of all n x m matrices with entries from S. Any s = [s;;] € M, ,,,(S) may
be canonically identified with a bounded operator from ¢£*(X) into £;(Y).
Under this identification, s has the following norm:

(1) Msilliar,,.s)
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Then the usual concept of complete boundedness has the following natural
extension.
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Definition 1.1. Let Xi,..., Xy, Y1,...,Yn,X,Y be Banach spaces. For
each 1 <i < N, let S; C B(X,,Y,) be a subspace. Let A: Sy x---x S, —
B(X,Y) be a N-linear map. We will say that A is p-completely bounded if
there is a constant C' > 0 for which the following holds.

For any

SN € My gn_,(SN),5N-1 € My, kn_o(Sn=1)s- -+ 5
S9 € Mkz,k1 (52)?51 € Mkl,m(Sl)’

we have:

Z A(SN(i,rN_1)7S(N—l)(rN_l,rN_z)a B

1<I<N-1
1<r<ks
S2(re,r1)s S1(r ,j))
@D M, o (B(X,Y))
S COlsNIMu iy (smllSN-1 My, iy (Soa) o eee e ls1lim, misn)-

Moreover, we denote by || A, the least constant C' > 0 for which this holds.

We will prove that whenever p €]1, +o0o[, a p-completely bounded multi-
linear map A as above factors as a product of p-completely bounded linear
maps defined on each S; (see Theorem 5.1 for a precise statement). Thus
using Pisier’s generalization of the Wittstock theorem, we obtain a represen-
tation of A which is quite similar to the Christensen-Sinclair representation
for a completely bounded multilinear map on operator spaces. This answers
the question raised by Pisier in the Final Remark of [Pil]. Note that our
result is new only for N > 3. However, even in the case N = 2, we feel that
our proof is simpler than Pisier’s one.

The recently developped theory of operator spaces (see [B, BP, BS, ER1,
ER2]) has emphasized the role of the Haagerup tensor product in the study
of completely bounded multilinear maps. It is now well-known to specialists
(see [B, Theorem 2.4] for example) that the Christensen-Sinclair theorem
may be viewed as a combination of the factorization theorem for completely
bounded bilinear forms (which goes back to [EK]), Ruan’s representation
theorem for operator spaces (see [R, ER3]) and simple properties of the
Haagerup tensor product. In this approach, the crucial point is that given
two operator spaces, their Haagerup tensor product is again an operator
space. This essentialy follows from Ruan’s theorem. In order to prove our
main Theorem 5.1, we will follow the above scheme. We will especially
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prove a generalization of Ruan’s theorem (see our Theorem 4.1) which is of
independant interest.

Let us now explain the organization of the paper. In the two follow-
ing subsections, we recall Pisier’s result about p-completely bounded linear
maps and introduce necessary definitions about matrix normed spaces. In
Section 2, we define a generalized Haagerup tensor product ®, adapted to
our definition of p-complete boundedness and prove elementary properties
which will be needed later. In Section 3, we combine ideas from [E], [ER3]
and [Pil] in order to prove an abstract factorization theorem which is used
in the two following sections. Section 4 is devoted to our generalization
of Ruan’s theorem. We follow the same line of attack as Effros and Ruan
[ER3]. Our main result explained above is proved in Section 5. In the last
Section 6, we investigate some of the properties of our new tensor product
®nr- We then prove a theorem about multilinear Schur products on B(£, £y)
which generalizes previous works on this subject (see [ER4, Gr, Ha, S] for
example).

1.2. Pisier’s theorem. We wish to recall Pisier’s theorem as stated in
[Pil]. It will be formulated in the language of ultraproducts. We first
introduce a notation which will be frequently used in this paper.
Definition 1.2. Let E and X be Banach spaces. Let 1 < p < +o0 be
a number. We will write £ € SQ,(X) provided that E is (isometric to) a
quotient of a subspace of an ultraproduct of spaces of the form L, (p; X).
Let X,,Y; be Banach spaces and S C B(X;,Y;). Consider a number 1 <
p < 400. Let (Qj, 1;);es be a family of measure spaces and let I be an ultra-
filter on the index set J. Let us denote by )/(\1 and i’\l respectively the ultra-
products relative to U of the families (L,(u;; X1))jes and (Lp(p;; Y1))jeu-
For any a € B(X;,Y1), we may define 7;(a) : Ly(p;; X1) = Ly(p;; Y1)
by setting (7;(a)f)(w) = a. f(w). We denote by 7(a) : X, — Y] the map
associated to the family (7;(a));c;. Let N C M C X;and N'C M’ C Y, be
closed subspaces such that for any s € S, 7(s)(M) C M' and 7(s)(N) C N'.

Then letting G = M and G' = —-, we obtain that 7,5 canonically induces
amap 7: S — B(G,G'). Namely we may set m(s)(m+ N) = 7(s)(m)+ N’
for any (s,m) € S x M. Such a map will be called a p-representation from
S into B(G,G'). More precisely we state the following:

Definition 1.3. Let G € SQ,(X,) and G' € SQ,(Y1) be two Banach
spaces. Let 7 : S — B(G,G') be a bounded linear map. We will say that m
is a p-representation provided that it may be constructed as above.

Theorem 1.4 ([Pil, Theorem 2.1]). Let S C B(X,,Y1), let A : S —
B(X,Y) be a linear map and let C be a constant. The following assertions
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are equivalent:
(i) A is p-completely bounded and || A|per < C.

(ii) There are two Banach spaces G € SQ,(X1),G' € SQ,(Y1) and a p-
representation  : S — B(G,G") as well as operators V : X — G and
W: G =Y with |V||||W]| < C such that:

VseS, A(s)=Wn(s)V.

1.3. Matrix normed spaces. Let S be a complex normed space. Let us
denote by M,, ,,(S) the vector space of n x m matrices over S. As usual, we
just denote by M, (S) the space M, ,(S). In the case when S = C, we will
simply write M, ,, or M, for these spaces. We will say that S is a matrix
normed space provided that we are given norms || ||,,» on each M, ,.(S)
satisfying M, (S) = S and:

(i) For any s € M, ,(S),s" € M, x(S),

max {[lslp s 15"l } < 10858 g
(ii) For any s € M,, ,,(S),0 € M, +(S),

||s“n,m = ”(8, O)Hnym-«}-k = ”(0’ S)Nn,m-{—k *
(iii) For any s € M, .(S),s" € My .. (S),
s
8/
(iv) For any s € M, ,,(S),0 € My ,,(S),
@~ 1C)
0 “I\s
n+k,m

Actually, these are very weak conditions. They are chosen to ensure two
reasonnable properties. First, for any n,m < k, the canonical embedding of
M, (S) in M;(S) is isometric. Secondly, for any s = [s;;] € M, ,,(S5),

max {15l 15l } <
n+k,m

l8lln,m =

n+k,m

(1.2) sup [[siill < lsll, e < D_ llsisll-
,J i

Thus M, »,(S) and S™™ are isomorphic as normed spaces. From now on,
we leave the notation || ||, ,, and merely denote by || || the norm on all the
spaces M, ,,(S). We will have to distinguish a possible property of a matrix
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normed space S. For any s € M, ,(5), s' € My n(S), we set s® s’ =
s0
0s
following condition is fulfilled:
Dy: For any s € M, ,,(S5),s' € My i (S), |ls® s'|| = max {||s]|,||s']|}-
The latter property is one of the characteristic conditions in Ruan’s rep-
resentation theorem for operator spaces. It will play a similar role in our
Theorem 4.1.
Let us now introduce some standard definitions and traditional notation.
Let S, T be two matrix normed spaces and let v € B(S,T). We define u(™ :

M,(S) = M,(T) by u®([s;]) = [u(s;)]. We let |juf, = sup “u(")
n>1

€ Mpin' mim (S). We will say that S satisfies D,, whenever the

We say that u is completely bounded (in short c.b.) provided that |jul, <
+00. We denote by CB(S,T) the resulting normed space. We say that u is
completely contractive (in short c.c.) when |lu||_, < 1 and u is completely
isometric provided that for any n > 1, u(® is isometric.

2. p-matrix normed spaces.

We introduce a special kind of matrix normed spaces.

Definition 2.1. Let p,q €]1,+00[ be such that 117 + % = 1. Let S be a
matrix normed space. We will say that S is a p-matrix normed space if it
satisfies the condition D, above and the following:

(2.1) For any s € M, (S),s' € My u(S), (53)

(2.2) Forany s € Mym(S), s' € Mo (S), lI(s, sV < [Isll* +IIs'll"-
m 1/p

(2.3) For any s € My (S),0 € My, llsel < llsll (S5 leyl?) ™ -

(24) For any s € M, u(S), B € My, ||Bs] < llsll (T2, 18197

Example 2.2. Let X,Y be Banach spaces. Let S C B(X,Y) be a sub-
space. Let us equip each M, ,,(S) with the norm defined by (1.1). Recall
that this yields an isometric embedding M, »(S) C B(£;*(X),£;(Y)). Then
it is not hard to check that S becomes a p-matrix normed space. Let us em-
phasize for further that given a finite family (s;)1<j<n in S, the corresponding
column and row matrices have the following norms:

p
< lIslI” +1Is'lI"

S1

1/p
(2.5) ||| = sup (Znsj(mn”) JreX, ol <1

Sn
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n 1/q
(2.6)  [[(s1,++ ,5n)|| =sup {(2_: IISZ(y*)Hq) [y eY |yl < 1}.

Throughout the rest of the paper, we fix a number p €]1,+oo[ and let
q= ZTE—T (ie: >+, =1). Given a subspace S of some B(X,Y), we will
always assume that it is endowed with its p-matrix normed space structure
as defined in Example 2.2. As announced in the introduction, our purpose is
to define an adapted variant of the Haagerup tensor product. Although we
will be mainly concerned by matrix normed spaces S C B(X,Y') as above, it
is convenient to work in the slighly more general setting of p-matrix normed
spaces. We will only give short proofs of the results listed below since they
are all variants of known results of the classical theory of operator spaces.
We will use the following well-know fact :

6a? 671
_|_

(2.7) VY (a,b) € R, ab = inf { /6>0}.

Let S,T be two p-matrix normed spaces. Given s = [s;] € M, x(S) and

k
t = [tr;] € My m(T), we define st = {Z Sir ®t”}€ M, »(S®T). For any
r=1

z € M, (S ®T) we set:

(2.8) 1z[l,, = inf {{Isll [t / s € Mpi(5),t € Mim(T), 2 =501}

Proposition-Definition 2.3. The function || ||, is a norm on each space
M, m(S®T). Endowed with these norms, S®T becomes a p-matrix normed
space.

We will denote by S ®; T this p-matrix normed space.

Proof. Let z = s @t and 2' = 8 Ot € Mpn(S®T). Then z + 2’ =
(s,8")® (;) . Therefore, applying (2.2) to (s, s'), (2.1) to (;) and (2.8), we
deduce that || ||, is a semi-norm on M, ,, (S ®T). It is clear that these semi-
norms satisfy all the conditions (i), (ii), (iii), (iv) required in the definition
of a matrix normed space. Hence by (1.2), in order to prove that || ||, is a
norm on each M, ,,(S®T), it is enough to show that || ||, is non-degenerate

N
on SQT. Let z = ZST@tT € S®T. Let s* € S*,t* € T*. Since the
r=1

N

1/q
space S satisfies (2.3), we have: (Z l(s*,s,)ﬁ) < Is*l] Wl(s1y---ysn)ll-

r=1
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Analogoulsy,
t

N 1/p
(Z |<t*,tr>|p> < 17l

r=1

tn

Now,
1/p

N Ve , N
|(z,5*®t*)l§<§;|<S*,sr>{q> (Zl(t*,t,ﬂ”) ,

hence we obtain

13}
[(z, s @) < [ls™ll [IE°1] (s1,- .- 5 sn)]

tn

Therefore, ||z||, = 0 implies z = 0 and we are done.
It remains to check the condition D, and the four properties (2.1) - (2.4).
Let 2 = sOt € Mpyn(S®T) and 2/ = s' Ot € My (S ®T). Then

(zz’) =(s8s)0O (;) . Hence, applying D, to s ® s’ and (2.1) to <f,) we

obtain that S ® T satisfies (2.1). The proofs of (2.2), (2.3), (2.4) and D,
are similar, we omit them. ]

Remark 2.4. 1In the case when S and T are operator spaces, the space
S ®@p, T defined above is the usual Haagerup tensor product of S and 7.

Remark 2.5. The tensor product ®; is associative. Thus given p-
matrix normed spaces Si,...,Sy, we may define unambigously the space
SN ®p -+ ®, S;. Let us now come back to Example 2.2. Let N > 2
and Xi,...,XnN,Y],..., Yy be Banach spaces. For any 1 < 7 < N, we
give ourselves S; C B(X;,Y;). From above, we may consider the p-matrix
normed space S = Sy ®p, --- ® Si. Let X,Y be two Banach spaces and
let A: Sy x--- xS, — B(X,Y) be a multilinear map. It may be viewed
as a linear map A : S — B(X,Y) as well. Now it is easy to see that A
is p-completely bounded in the sense of Definition 1.1 if and only if Ais
completely bounded. Moreover, ”ﬁ“cb = | Al s -

Let E be a Banach space. The identification E = B(C, E) allows us
to define a p-matrix normed space structure on E. To conform with the
notation used in the operator space theory, we denote by E,. the p-matrix
normed space above. Similarly, we denote by E} the p-matrix normed space
structure on E* defined by the identification E* = B(E,C). Two simple
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facts should be noticed:

T3 " 1/p
(2.9) For any z;,...,z, € E, : = (Z lla:jll”) :
Jj=1
E

In

(2.10) For any z3,... ,z € E*,||(z},... ,z})]

o = (Z nx:||0> |

We end this section by two simple lemmas about these p-matrix normed
spaces.

Lemma 2.6. Let S be a p-matriz normed space and let E,F be Banach
spaces.
(a) Foranyu:S— E,,

S

1/p
llull,, = sup (ZIIU(SHH”) BIERIES

Sn

(b) Foranyv:S — Fr,
n 1/q
vll, = sup {(Z |1v($i)||q) [ (1,0 s sa)ll < 1}-

Proof. Apply (2.9), (2.3) to show (a) and apply (2.10), (2.4) to show (b).
g

Let S be a p-matrix normed space and let E, F be Banach spaces. Let
u: S — B(E,F**) be a linear map. We can regard u as a trilinear form 4
on F* x S x E by setting:

a(b", s, €) = (u(s)(e), b)
Lemma 2.7. The map u — 4 gives rise to the isometric identification

CB(SaB(EaF**)): (F: Qn S®h Ec)*'

Proof. Apply (2.9) to E and (2.10) to F. O

Remark 2.8. It should be noticed that the one-dimensional vector space
C may be endowed with several different p-matrix structures. Very natural
examples may be obtained as follows. We give oursleves a Banach space X.
Let us denote by Iy the identity map on X. Then we set

(2.11) C* =Span {Ix} C B(X,X)



P-COMPLETELY BOUNDED MAPS 195

and this provides us a p-matrix structure on C. We refer to Section 3 below

for more about CX. In the sequel, we keep the notation C to refer to the

p-matrix normed space C°. Now let S be a p-matrix normed space. We wish

to point out two simple facts.

(a) For any linear form £ : S — C, ||| = ||€]|,, - This is a straightfoward
consequence of the assertions (2.3) and (2.4).

(b) Let X,Y be Banach spaces. Let J (resp. Ji,J>) be the canonical
identification map from S onto CY ®; S ®;, CX (respectively S ®
CX, CY ®; S). Then it follows from (2.3) and (2.4) again that J, J;, J,
are isometric. Moreover they are obviously c.c. maps. However, in
general, they are not completely isometric. We will come back to this
problem in Remark 4.3.

3. An abstract factorization theorem.

Let X be a Banach space. Given a = [a;;] € M, ,, we let

n llm p\ 1/p
(3.1) lall, x = sup (Z > aiz; )
=1 (|j=1

where the supremum runs over all the z,,... ,z, in X which satisfy
Z flz;]I” < 1.
J

To understand the relation between this definition and preceding ones,
consider the subspace S = C¥ C B(X, X) defined by (2.11). Let s = a®Ix €
M, (S). Then the definitions (1.1) and (3.1) obviously give ||s|| = [la]|, x -

The following criterion of Hernandez will be used several times.

Theorem 3.2 [Hel, He2|]. Let E and X be Banach spaces. Then E €
SQ,(X) if and only if:

Vace Mn, “a‘“p,E < ”a”PsX :

Proof. We follow [Pil, Section 3] and refer to this for more informations.
Let A : C¥ — B(E,E) be defined by A(Ix) = Ig. Then A is c.c. iff
Va€M,, |a|,g <|all,x - Hence the result follows from Pisier’s theorem
1.4. Finally we should mention that in the particular case X = C, this result
goes back to Kwapien [K]. a

In order to prove our Theorem 3.4 below, we will need techniques used
by Pisier in the proof of Theorem 1.4. As in [Pil], the following form of the
Hahn-Banach theorem will prove useful.
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Lemma 3.3. Let A be a real vector space equipped with a cone A,. Let
A A = R be sublinear and let p : Ny — R, be superlinear. Assume that
1w < Xon A,. Then there is a positive linear form f : A — R such that u < f
on Ay and f < X on A.

We are now ready to prove the main result of this section.

Theorem 3.4. Let X, X,,Y,,Y, be Banach spaces and let T C B(X,,Y)),
Z C B(X,,Y) be subspaces. Let S be a matriz normed space and o : Z X
S xT — C be a trilinear map. Assume that S satisfies the condition Dy,
and that for any z1,... ,2m € Z, s =[si] € Mpn(S), t1,... ,tm €T :

t

(3.2) < lsll lI(z1, - -+ 5 zm)l

Z a(zz7sij7tj)

1<i,j<m

b

Then there ezist Banach spaces E € SQ, (Y1), F € SQ,(X2) and three com-
pletely contractive maps ¢ : S — B(E,F),u:T — E. andv:Z — F} such
that:

V(2,8,t) € ZxSXT, o(zs,t)= (p(s)u(t),v(z)).

Proof. Let A be the set of all functions ¢ : X; x Y, — R for which there
exist a > 0,3 > 0 such that

(3:3)  V(z,y3) € X1 x Yy, |¢(z1,43)] < o Jlza|l” + B s l* -

Then A is a real vector space and the subset A, of non-negative functions in
A is a cone. We will apply Lemma 3.3 in this space. For any ¢ € A, we let:

M¢) = inf {%p + %}

where the infimum runs over all (o, 3) € R?? such that (3.3) holds. This
clearly defines a sublinear map A : A — R. For any ¢ € A4, we let:

H(¢)=SUP{ > RGU(ZnSij,tj)}

1<i,3<m
where the supremum runs over allm > 1, z,... ,z,, € Z, s = [s,5] € M, (5),
t1,... ,tm € T such that ||s|| <1 and

Y (21,95) € Xo x Yy, dlan,u3) 2 D It (@)l + D Mz (wa)l”-
j=1 i=1
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We claim that p is superadditive on A,. To check this, consider ¢,¢' €
/\+7(zi)1§i§n7 (Z )1<z<m in Z ( )1<]<n7(t;)1§j§m in T such that for any
(z1,y5) € Xy x Yy :

$(z1,93) >let 2 ||”+Z||z y)I"  and
1=1 i=1

#oni) 2 3 i)+

Then letting
(zz,'l)iﬁn-l—m = (21, <9 %0y Z{, s aZ;n)

and
(t_ljl)jﬁn-i-m = (tl) e 7tna tlh te 7t;n)7

we obtain for all z,,y; :

Z "(y3)

(¢ + ¢')(z1,95) Z “t” (71 I

Now the point is that if we consider s = [s;;] € M,,(S) and s’ = [s};] € M,,(S)
with norms less than one and let s” = s @ s’ = [s};] € M,y (S), we have
IIs"]] <1 (by our assumption on S) and

ZR@O‘ 2,855t ZRea Ziy Sijh b, +ZR60’ S5 t5)-
i,
We thus obtain p(p+¢') > u(¢)+wu(¢') as claimed above. Hence pp: Ay = R

is a non-negative superlinear map. Let us now prove that:

(3.4) Voen, p@d)<A(g)

We give ourselves (a,8) € R3?, (2;)1<i<m in Z and (t;)1<j<m in T such that
for any (z1,vy3) € X; x Y3 :

let (1 H"+ZI|Z y)ll” < ¢lar,3) < o llzall” + B Il 11°

1y
Then : < aand |[(z1,...,2m)]| < B by (2.5) and (2.6). Hence for

tm
any s = [s;;] € M,,(S) of norm less than one, we have by (3.2):

ZU(Zi,Sij,tj)

1,3

< apf.
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P q
Therefore ZRe o (2, sij,t5) < 4 l whence (3.4).
— D q
4.
By Lemma 3.3, we thus obtain a positive linear form f : A — R such that:

(3.5) Ve, f(d) <)

(3.6) Ve, ue) < f(g)

We now come to the definitions of F, F,u,v. We proceed with similar con-
structions as in [Pil].

Let G; be the set of all the functions % : X; — Y, for which there exists
a > 0 such that for any z;, € X, ||¢(z1)| < a||z;]| . Clearly G, is a complex
vector space. Moreover, for any 3 € G,, the function 12; Xy xYy - R
defined by ¥ (z1,y3) = || (z1)||” belongs to A, hence we may define:

Ni(¥) = f ().

The function N, is a semi-norm on G;. We denote by GG; the Banach space
obtained after passing to the quotient by the kernel of N; and completing
the resulting normed space.

For any t € T, let us denote by 1; € G; the function defined by ;(z,) =
t(z;). We may define a linear map u : T'— G, by setting (up to equivalence
classes): u(t) = p'/P1p, .

Let us regard u as a map from T into (Gi).. Then ||u||,, < 1. Indeed for
any finite family (¢,... ,t,) in T:

LY )P = S5y Ny, )? = £ (S5 )

p

t
< {\ f((zy,93) = llzal”) by (2.5)
t'ﬂ
t\ I
< : A((z1,93) = llzall?) by (3.5)
tn
a\ (I°
<1 :
<3 :
tn

Hence the result follows from Lemma 2.6 (a).
In the same manner, we can introduce the vector space G, of all the
functions ¢ : Y;" — X5 for which there exists 8 > 0 such that for any y; €
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Ys, ()| < Blgsll. Letting $(o1,53) = [w(e)]" and No(w) = F(@)Y,
we can similarly define a Banach space G, from (G,, N;). We then define a
map v : Z — G, by letting (up to equivalence classes) v(z)(y3) = q"/92*(y3).
Then using (2.6) and Lemma 2.6 (b), we obtain that v : Z — (G3)} satisfies
ol <1 -

Finally, we set E = u(T),F = v(Z)* and can consider that we actually
have u:T — E, and v:Z — F} with |lul, <1 and |j||,, <1.

In view of Theorem 3.2, we clearly have G; € SQ,(Y;) and therefore
E € 5Q,(Y1). Similarly, we obtain that G, € SQ,(X;). Thus by a simple
duality argument, we deduce that F' € SQ,(X3).

In order to complete the proof of Theorem 3.4, it remains to show that
for any z1,...,2, € Z,s = [s4] € My (S), t1,... ,tm € T, we have:

e 1/q
)| < llsll (ZHU(t H”) (lev(zi)llq) -

Indeed, such an inequality allows to define ¢ : S — B(E,F) by letting

(p(s)u(t),v(z)) = o(z,s,t) and proves that ¢ is c.c.. Let us now check (3.7).

By trivial scaling, we may assume that ||s|| = 1 and Za(zi,Sij,tj) € R*.
i,

We define ¢ € A by setting ¢(z1,y5) = Y IIt;(z)II” + D Il (43)]1° - Then
7 i

(3.7)

> oz, sij, t

1,j

we have:

<u(gp) < f(9) by (3.6)

< ﬁz lut)I” + 3; ozl

Z (zuszja )

i,J

Since we have Z oz, Sij,tj) = Z (072, s45,0t;) for any 6 > 0, the pre-
ceding mequahty implies for all 0 > 0:

Z (Z“S,J,t ) < —Z”U ”p+ ‘—‘—'Z”'U(Zt “q

2

From (2.7), we deduce that (3.7) holds. a

4. A generalization of Ruan’s representation theorem.

Let X and Y be Banach spaces and let S C B(X,Y) be a subspace. For any
n,m > 1, we may define (unambigously) a p-matrix structure on M,, ,(S)
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by letting My (M, . (S)) = Minim(S) for all k£, > 1. In other words,
this p-matrix structure is given by the canonical embedding M, ,,(S) C
B (X),£2(Y)). Now let X be a Banach space and let n > 1 be an integer.
Recall the definition (2.11). We set :

(4.1) RY = M, .(C¥).

Actually, RX is a p-matrix structure on the Banach space a.
Indeed for any t = (£(£))1<e<n € £, let t: £2(X) — X be defined by

n n 1/q
{((€e)e<n) = 3 t()z¢. Then ||E‘| = (Zu(e)ri) = ||t|| and we clearly
£ =1

have:
RY ={t/ter} c BE(X)X).

In the same manner, given a Banach space Y, we set for any n > 1:

(4.2) CY = M, ,(CY).

n

CY is a p-matrix structure on 7. For any z = (z(k))1<k<n € ¢y, we may let
Z2(y) = (2(k)y)r<n € £5(Y) for all y € Y and:

cY ={z/ze;} c B, L(Y))

The spaces RX and CY will be used in the proof of Proposition 4.2.
The following is the main result of this section:

Theorem 4.1. Let X,Y be Banach spaces and let S be a matriz normed
space. The following assertions are equivalent:
(i) S satisfies the two following conditions:

Do: For any s € M, (S), s' € My v (S),
[ls & s'[| = max {[s]l, [|s"ll}.
M,y x: Foranya € M, ., s€ My,(S),b€ My,
lasbll < llall,y llsll 11bll, x -

(i) There exist Banach spaces E € SQ,(X),F € SQ,(Y) and a completely
isometric map J:S — B(E,F).

This statement will allow us to consider any matrix normed space S which
satisfy Do, and M,y x as a subspace of B(E, F') for some suitable Banach
spaces E, F. In the particular case when p = 2 and X =Y = C, we recover
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Ruan’s representation theorem [R, ER3]. However for 1 < p # 2 < +o0,
the particular case X =Y = C is already new. We will come back to this in
the last Section 6. We do not know whether Theorem 4.1 can be extended
to the case p = 1. Before coming into the proof of Theorem 4.1, note that a
matrix normed space S satisfying the condition (i) above for some Banach
spaces X and Y is obviously a p-matrix normed space as defined in Section
2. Although we could not find any convincing example, it seems unlikely
that the converse is true. The problem arising here is the following: given a
p-matrix normed space S, does there exist a couple of Banach spaces X and
Y for which M,y x holds ?

In order to prove Theorem 4.1, we will follow the approach of [ER3].
More precisely, we will deduce the non-trivial implication (i) = (ii) from a
convenient factorization of the linear forms & € M, (S)*.

Proposition 4.2. Let S be a matriz normed space satisfying the assumptions
Do and M,y x. Let n > 1 and £ € M,,(S)* with ||€]| = 1.

Then there ezist Banach spaces E € SQ,(X),F € SQ,(Y) and a com-
pletely contractive map ¢ : S — B(E, F) such that: ¥ s € M,(S), |[£(s)] <

lot™ ()]

Proof. We denote by T'= RX and Z = CY the two p-matrix normed spaces
defined in (4.1) and (4.2). Fix £ € M, (S)* with ||¢]| = 1.
Given z = (2(k))r<n € Z and t = (t(£))¢<n € T, we denote by 2t € M,
) i 2(1)
the matrix obtained by the product of the column matrix : with the
z(n)
row matrix (£(1),... ,t(n)). Namely, we have zt = [z(k)t(£)]. With the above
notation, we define 0 = Z x § x T — C by letting o(z, s,t) = £(2t ® s).
We claim that o satisfies the assumption (3.2) of Theorem 3.4. In order to
show that, consider zy,... ,2, € Z, t1,... ,t,m € T and s = [s;;] € M (S).
Let a = [ay;] € M,,,, and b = [b;s] € M,, , be defined by ay; = z,(k) and bj, =

t;(¢). Clearly we have Za(zl,sij,tj) = {(asb) hence Za(zi,sij,tj) <
%] 2
lasb|| . Note that from the definitions (4.1) and (4.2), we have |lall,y =
31
l(21,--- s 2n)|| and [[B]l, x = : . Therefore, the assumption M,y x
tm
implies that (3.2) holds.
Moreover we assumed that S satisfies D,,. Hence we may apply The-
orem 3.4 to the trilinear map o and this yields two Banach spaces E €
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SQ,(X),F € SQ,(Y) and three c.c maps u : T — E,,v : Z — F* and
¢ : S = B(E,F) such that o(z,s,t) = (@(s)u(t),v(z)) for all (z,s,t) €
Z x 8§ x T. Let us denote by (7;)1<j<n and (v;)1<i<n the canonical bases of
T and Z respectively. Then for any s = [s;;] € M,(S5),

&)=Y owi,siym) =D (elsi)ulng), v())

1<4,j<n 1,7

hence

n e 1/q
$)I < o) (Z Hu(m)ll”) (Z nvm)u") :

J=1

Now ZHu(nj)”p <1 and Z“’U(Vi)”q < 1 by Lemma 2.6. Hence |£(s)| <
j=1 =1
™ (s)]| . This achieves the proof. O

Proof of Theorem 4.1. We assume (i). Let I, be the unit sphere of M, (S)*
and let I = L>Jl I,. For any £ € I,,, we may apply Proposition 4.2 and thus

obtain E; € §Qp( ), Fe € SQ,(Y) and a c.c. map ¢, : S = B(Fg, F;) such
that for any s € M,,(S5), |£(s)| < ”<p(”) ”

Let E = GB E; and F = EBIFg Of course we have E € SQ,(X),F €
3

SQ,(Y). We now define J : S — B(E, F) by setting

J(s)((ee)eer)= ((e(s)(ec)) e p)-

Since each J(s) acts diagonally we have for any s € M,,(S) :

o] s ot
ger
Therefore, J is a completely isometric map. This proves (i) = (ii). The
converse implication is obvious. O

Remark 4.3. Let S be a p-matrix normed space. Note that S satisfies D, .

Therefore an obvious reformulation of Theorem 4.1 is that the two following

are equivalent:

(i) The canonical identification C¥ ®, S ®, C¥ =S is completely iso-
metric.

(if) There exist Banach spaces E € SQ,(X), F € SQ,(Y) and a completely
isometric embedding S C B(E, F). This complements Remark 2.8 (b).
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Remark 4.4. It is not hard to modify the proofs of Proposition 4.2 and
Theorem 3.4 in order to settle an isomorphic variant of Theorem 4.1. Con-
sider the three following properties depending on some constants C1, Cs, Cs.
(a‘) For any s; € Mnl,m1 (51)7 S € an,m2 (52)7 <58k € Mnk,mk (Sk)7

lsi@...@skll < Cimax {||s]l,...,[Isll}-
(b) For any a € M, ;n,s € M,,(S),b € My, »,
llasb|| < Cyllall,y sl 118l x -

(c) There exist Banach spaces E € SQ,(X),F € SQ,(Y) and a complete
Cjs-isomorphic embedding J: S — B(E, F).
Then, the assertion (c) implies that (a) and (b) hold with C; = C, = Cs.
The converse (and more significant result) is that if (a) and (b) hold, then
condition (c) is fulfilled with C3; = C,C,.

5. Representation of p-completely bounded multilinear maps.

In this section we show how to deduce a representation theorem for p-c.b.
multilinear maps from our previous work. We will give two formulations of
this result. Here is the first one:

Theorem 5.1. Let X;,... ,Xn,Y1,...,Yn, X, Y be Banach spaces. For
each 1 <i < N, let S, C B(X,,Y;) be a subspace. Let S = Sy Q-+ Qn Si
(see Remark 2.5 for the definition) and let A: S — B(X,Y) be a c.b. map.
Then there are Banach spaces K; (1 <1 < N—1) and c.b. maps A, : S; —
B(X,K:), 4;: S; = B(K; 1, K;) (2<j < N—1), Ay : Sy = B(Kn_1,Y)
such that
”A1“cb T ”AN”cb < “A”cb

and:
V(SN,... ,S])ESNX"’XSl,

A(sn,- .- y81) = An(sn) 0+ -+ 0 Az(s2) 0 Ay (s1)-

The proof of Theorem 5.1 will rely upon two lemmas which are now simple
corollaries of Section 3 and 4.

Lemma 5.2. Let X,,Y;, X,,Y, be Banach spaces and let T C B(X,,Y;) and
Z C B(X,,Y,) be subspaces. Then there are Banach spaces E € SQ,(X1),
F € 5Q,(Y2) and a completely isometric map J:Z ®, T — B(E, F).

Proof. Let z € My, 1 (Z),t € My m(T),a € My n,b € My, .. Then a(z0t)b =
az © tb and [lazl| < lall,y, 211, itbll < Ifl [1bll, x, - Hence we may apply
Theorem 4.1 with S=Z @, T, X =X, Y =Y. O
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Lemma 5.3. The statement of Theorem 5.1 holds in the case N =2, X =
Y =C

Proof. We consider a c.c. map A: S, ®, S, = C. Let S = C" Cc B(Y},Y))
and let 0 : Sy X S x S} = C be defined by o(ss, Iy,,s1) = A(s2,51). Then
we may clearly apply Theorem 3.4 with T'=S; and Z = S, and this yields
the result. g

Proof of Theorem 5.1. We follow the approach of [B, Theorem 2.4]. Since
Lemma 5.2 allows us to use induction, we only need to consider the case
N = 2. We thus consider a c.c. map A : S, ®, S; = B(X,Y). Let us define
A: (Y* @ S2) ®r (S1 ®r X.) = C by setting:

(5.1)

V (4%, 82,81,2) EY* x S5 x S1 X X, A(y* @ 55,8, @ x) = (A(ss,81)2,y").

From the associativity of ®, (see Remark 2.5) and Lemma 2.7, we have
“Z‘,cb < 1. Apply Lemma 5.2 to S; ®, X, and Y* ®, S, together with
Lemma 5.3. This yields a Banach space K and two completely contractive
maps A; : S} ®, X, — K. and A, : Y. ®, S; = K such that:

(5.2) VzeY ®,S,VteS @ X, Alzt)=(A(t),A:(2)).

We now proceed with converse identifications. We define A; : S; — B(X, K)
and A, : S; = B(K,Y™**) by setting

(5.3) V (s1,z) € 1 x X, Ai(s1)(z) 22(1(51 ® ).

(5.4) V (82,97) € Sa x Y7, (Aa(s2))"(y") = As(y* @ s52).
Clearly, (5.1), (5.2), (5.3), (5.4) imply that for any (ss,s1) € S» x S,
A(Sz,Sl) = AQ(S‘Z) o AI(Sl)-

Now it is easy to see that we may as well assume that K = A;(S;)(X) and
then, A, is actually a c.c. map from S, into B(K,Y). This concludes the
proof. O

Remark 5.4. The converse of Theorem 5.1 obviously holds. Namely,
given c.c. maps A; : S} - B(X,K,), Ay : Svx = B(Kn-1,Y) and A; :
S; = B(K;_1,K;) (2<j<N-1),themap A: Sy x--- xS = B(X,Y)
defined by A(sy,...,81) = An(sy)o---0 A;(s;) provides a c.c. map from
SN ®p -+ ®p Sy into B(X,Y).
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Remark 5.5. In view of Lemma 5.2, we could have been more precise
in the statement of Theorem 5.1. For example we may write that for any
1<j<N-1, K; € 5Q,(Y;). However, we shall see in Theorem 5.6 that
such an information is not really an improvement.

We now turn back to the terminology of p-completely bounded maps
defined in the introduction (see Definition 1.1). Recall that given S C
B(X1,Y1) and two Banach spaces G € SQ,(X1),G" € SQ,(Y1), it made
sense to define a notion of p-representation from S into B(G,G') (see Defi-
nition 1.3).

Then by an obvious combination of Theorem 5.1, Remark 5.4, Remark
2.5 and Theorem 1.4, we obtain:

Theorem 5.6. Let X,,...,XN,Y1,..., YN, X, Y be Banach spaces. For
each 1 <i < N, let S; C B(X;,Y;) be a subspace. Let A: Sy x -+ xS —
B(X,Y) be a N-linear map and let C be a constant. The following assertions
are equivalent:

(i) A is p-completely bounded and ||A||,., < C.

(ii) There ezist Banach spaces

p-representations w; : S; = B(G;,G)) (1 < j < N) and operators
Vo: X -G, Vn:Gy =Y andV;: G = G (1 <j< N —1) such
that |[Voll ... IVNIl £ C and V¥ (sn,...,81) € Sy X -+ X Sy,

A(SN, e ,81) = VNWN(SN)VN—l P 1/271'2(82)1/17'(1(51)1/0.

6. Complements.

6.1. Some remarks about ®,. The Haagerup tensor product of operator
spaces has been extensively studied recently (see [B, BP, BS, ER2, PS]). A
main feature of this tensor product is that it is both injective and projective
in the category of operator spaces. It is then natural to study similar prop-
erties in our more general framework. We will easily obtain that our tensor
product ®), is projective and is not injective. Let us make these statements
precise.

Let S be a matrix normed space and let 7' C S be a closed subspace. We
S ) M, .(S)

7 Enm\F)

S .
may define a norm on each M,, ,, (f) by setting M, ( (T
Endowed with these norms, T becomes a matrix normed space. Moreover,
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. . . S . .
if we assume that S is a p-matrix normed space, then T is also a p-matrix

normed space.
The announced surjectivity of ®,, is:

Proposition 6.1. Let S;,S, be two p-matriz normed spaces. For i = 1,2,

let T; C S; be a closed subspace and let g; : S, — _'51 be the associated quotient

map. Consider Q = ¢, @ q; : Sy @ S1 — % ®h %

Then Q is a complete quotient map, i.e. for anyn > 1, Q™ is a quotient
map.

Proof. Mimic the proof of [ER2, Proposition 3.1]. O

Remark 6.2. The tensor product ®;, is not injective. Indeed let E, F, G be
Banach spaces such that E C F. Let j: G:®,E. — G;®,F. be the canonical
embedding. We wish to prove that j is not isometric in general. Assume for
simplicity that G is reflexive. Then (G: ®,, E.)* = B(E,G), (G:®, F.)* =
B(F,G) and j*: B(F,G) — B(E,G) is the restriction map. Therefore, j*
is onto if and only if any bounded linear map from E into G has a bounded
linear extension to F. This fails in general and then, j is not even isomorphic
in general.

We now fix two Banach spaces X,Y. Let us denote by Cx y the class of
all p-matrix normed spaces S defined by a completely isometric embedding
S C B(E,F) for some E € SQ,(X) and F € SQ,(Y). Note for further the
following straightforward consequence of our Theorem 4.1:

(61) % € CX,y whenever S € CX,y.

The end of this subsection is devoted to a convenient identification result
about Cx y. Let S be a p-matrix normed space. Recall from Section 4 that
given z € CY and t € RX, we may define 2zt € M,, ,, as a matrix product.
Thus we can introduce a canonical map

J: C,}L, Qn S®h Ri — Mn’m(S)
by letting J(2 ® s ®1t) =2t Q® s.

Proposition 6.3. Assume that S € Cxy. Then the above map J induces a
completely isometric identification

(6.2) CY @, S @, RX = M, .(S).

Proof. 1st step. Under our assumption, it is clear from the proof of Propo-
sition 4.2 that the map J is isometric (see also Remark 4.3).
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2nd step. We claim that for any &k, N,n >, 1, we have canonical isometric
identifications :

(6.3) My i (C) ®, Cy) = My i (CR,)

(6.4) My, (R ®n Ry) = My (Ry) -
Let us check (6.3). We have the following isometric identifications

M, (Ck ®,CY)=CY ®,CY ®, Rf by the first step
= My (CY) by the first step
=My (Cry) by (42)

whence (6.3). The proof of (6.4) is similar.
3rd step. We now prove that (6.2) is indeed a completely isometric iden-
tification. Fix N > 1. Then we have (isometrically):

My (CY ®, S®, RY) = CY @1 C¥ ®, S Q, RX ®, RX by the first step
=CY,®, S®, RXy Dby (6.3) and (6.4)
= Mnnnm(S) by the first step

and thus MN (C}: Rn S®h Rﬁ) = MN(Mn,m(S)) D

6.2. Multilinear Schur products on B({}). Although Schur products
have been studied for a long time (see [Gr, Be]), Haagerup [Ha] was the
first to realize the link between Schur products and the theory of completely
bounded maps. Namely he proved that for any Schur product map ¢ :
B(£3) — B(¢3), we have ||@|| = ||¢|l., . This approach was lately exploited
in [PPS]. We refer to this paper for further information. Recently, Effros
and Ruan [ERA4] proved that multilinear Schur products may be naturally
defined on B(¢}) and that their ¢.b. norms may be easily computed from
the Christensen-Sinclair theorem. Moreover, it is not hard to deduce from
[S] that for such a multilinear Schur product map ¢ : B(£2) x --- x B(£2) —

B(£%), we have ||¢]| = ||¢]l_, as in the linear case. In this last subsection, we
will indicate how to generalize all these results to multilinear Schur products
on B(£7).

In the sequel, we will simply denote by R, and C,, the p-matrix normed
spaces RC and CS defined by (4.1) and (4.2). Similarly, the notation SQ,
will stand for SQ,(C) and C will stand for Ccc. Let (€;)1<i<n and (69)15]5”
be the canonical bases of R,, and C,, respectively. We set:

Gn=Span {&;®¢) /i # j} C Ry ®; Co.
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Recall that (R, ®, C,)* = B({}) (see Lemma 2.7 for example). In this

duality, G+ is clearly identified with the space of diagonal operators on
B(£}). Thus G = £2, and therefore we have isometrically:
n Rn ®h Cn

Now the quotient formula (6.5) defines a p-matrix structure on ¢7 (see the
Subsection 6.1). In the sequel we will always consider £} as the p-matrix
normed space defined above. Note that from Lemma 5.2, we have R, ®;,C,, €
C. Thus by (6.1) we obtain that £} € C. Note also that when p = 2, this space
is nothing but Max (¢}). Thus the following is not really surprising.

Lemma 6.4. Let E, F be Banach spaces and let A : {} — B(E, F) be a linear
map. Assume that E € SQ, and F € SQ,. Then we have |4, = [A].

Proof. Let (1;)1<.<n be the canonical basis of £7. For any 1 < ¢ < n, let
T, = A(n;) € B(E, F). We define A: Fr®,R,®,C,Q®,E. - C by setting:

V 1 S”/a] Sna A(f 751751"6) :61‘]‘< i(e)af*)‘

By Lemma 2.7 and Proposition 6.1, we have Hﬁ“ = ||A]|,, - Since E, F' € SQ,,

Proposition 6.3 implies that C, ®, E, = (£;(E)). and F} ®, R, = (£;(F));
completely isometrically. Thus by Lemma 2.7 again:

(Fr* ®n R, ®, Cp, @ Ec)* = Mn(B(E,F**))-

Ty
Under this identification, A becomes the diagonal matrix . . There-
T,
fore “j“ = Sup,<,, ||| - Since || A|| = Sup,<, |Ti||, the result follows. g
We now turn to multilinear Schur products. Let N > 1 and let ng,... ,ny

be some fixed positive integers. We give ourselves a finite family of complex
numbers a = (aiN,,,,,iO)log]-SN Note that any m(j) € B (Z;‘f—l,ﬁ;”) has a

<ij<ny
canonical matrix representation m(j) = [m(j),, ., .)i;,i,_, With respect to
the canonical bases of £77-* and £;7. We define the N-linear Schur product

. B (v, ) @y @4 B (6, 0) @ B (40,62) — B (6°,6%)

PP
associated to a as follows. Forany 1 < j < N, let m(j) = [m(5)s,5,_)i,,_1 €
B (Z’,}f‘l,ﬁgf) . Then we set

®o(m(N),...,m(1)) =
[Z 1<J<1<V 1 Aoy, g (N)iN,iN—l : m(2)12 i1 (1)i17i0:} .

1< in,io

€B(ge, o).
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We now introduce another map naturally asociated to a. For any 0 < j <
N, let us denote by (m;,)i<i,<n; the canonical basis of £;”. Then we define
Oo TN ®p ... Qp LT @4 £7° — C by setting o (Min s« -+ 3Mip) = Gin.... i WE
are now ready to state our last result. We keep the notation above.

Theorem 6.5. The following are equivalent.

(i) N2l <1

(ii) [|Pall, <1

(i) [leall <1

(iv) There are Banach spaces K, ... , Ky which are all in SQ, and there

are linear contractions T;) : C = Ky (1 < ig < mg), T, : K; —
Kitn(l<j<N-1,1<4;<m), T : Kn = C(1 <iy <ny) such
that for all ig,... ,in:

Proof. Recall that for any 0 < j < N, the p-matrix normed space £;” belongs
to C. Thus the equivalence (iii) <= (iv) follows from Theorem 5.1, Remarks
5.4, 5.5 and Lemma 6.4. Let us now check that (ii) <= (iii).

Let S =B(ev,0v) @ ... B (6, 6) @, B (€0, 6)

By Proposition 6.3, each B (ﬂgﬂ“‘,ﬁ;}f) may be completely isometrically
identified with C,,; ®; R,,_,. Thus by Lemma 2.7, this yields:

CB (s, B (2"0 e"N)) = (Ruy ®h Cry ®h -+ ®p Cny ® Ry ®3 Cp)"

p 2 Yp
Now since ®j, is projective (see Proposition 6.1), (¢7" ®p, -+ - ®p €7 ®p £7°)"
may be viewed as a subspace of (R, ® Cny ®p - ®n Cr,)” . As a con-

sequence, we obtain an isometric embedding p : ({1 ® - @, £1°)" —
CB (S, B (EZO,ZZN )) . Now it is not hard to see that the range of p is ex-

actly the set of N-linear Schur products from S into B (E;}O,Z;’N) and that
p(pa) = ®,. This achieves the proof of (ii) <= (iii).

Since (ii) = (i) is obvious, it remains to show that (i) = (ii). We
follow the approach of [S, Theorem 2.1]. First note that given § € B (Zl',‘” ) ,
a€B (@;}0) and m(j) € B (fgf—l,égi> (1 < j < N), we may set S(m(N)®
—-@m(l))a = pm(N)®---®m(1)a. By linearity this allows us to consider
the product Bsa for all s € S. It is easy to check that for any a4,... ,a,, €
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B(£2),81,.. Bn€B (ﬁ;}”) .5 = [su) € My (S) :

<llslhj{ : 1By, -5 Bl -

Qm

(6.6)

Z Beserty

1<€,k<m

We now define D,,, C B (£$0> (resp. D,, C B({;~)) as the space of all

the diagonal operators on B (EZO) (resp. B (EZN)). A main feature of Schur
products is that:

(6.7) V(B,s,a) € D,y X S XD,y P, (Bsa)=p0P,(s)c.

We are now ready to show that ||®,|., < 1. In order to achieve this, take
5 = [su) € Myn(S) and zy,... ,2m € £3°, yi,... ,y5 € (Z;N) = {7~ such
that ||s]] <1 and

(6.8) Sollzll” <1and ) Jlypll* < 1.
k=1 =1
We thus have to show that:

(69) Z (@a(Sgk)iEk,y;) Sl

1<6,k<m

For any 1 < £,k < m, write 2 = (7 (d0))1<io<n, and ¥; = (Y7 (in))1<in <nn -

m i/p
We define z € £° and §* € £;~ by letting Z(ip) = (Z |xk(i0)|p) and
k=1
m 1/‘1
7 (in) = (Z Iy;(iN)|q> . Thus (6.8) imply:
=1
(6.10) [zl <1 and [y*]| <1.
Now we define oy, € D,,, as follows. We set a(ig) = %%ZL))_ for any 1 <1y <
0
ax(1)
g (With the usual convention 8 = O) and we let oy, = :
ai(no)
Bi(1) D
Similarly we define G, = € D, by Be(in) = %ﬁg;—zg

ﬂz("N)
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Obviously, we have for all 1 <k, ¢/ <m: =z, = ax(Z) and y; = G5 (¥*).
Hence we have:

|1 ctem(®alsen)zi 1) = S @alser)on @), B (7))

= (P, (Ze,kﬂesmak) Z,y*)| by (6.7)
ay

<HBrs -5 Bmll ||| by (6.6) and (6.10).
an

Clearly we have

(831 m 1/p
| = sup (Z;ak(z‘o)l") .

a,, 1<9<m k=1
Hence we have
(831
<1
an
Similarly, [[(B1,-..,Bm)|l <1 and therefore, (6.9) follows. O

Remark 6.6. In the particular case N = 1, the previous factorization
theorem can be refined as follows. We give ourselves a family a = (a, ;) 1<:<»

1<y3<m
to which we associate a Schur product map @, : B(¢)', £y) — B(£), E;}j as
above as well as the linear map u, : #{* — £ of canonical matrix a. Then
the following are equivalent:
(i) ®.ll<1
(i) The map u, factors contractively through L,-spaces, i.e. there exist a
measure space (2, u) and linear contractions 77 : 7* — L,(Q,p), Ty :
L, (9, p) — £ such that u, = T>T;.

Indeed by Theorem 6.5, ||®,|| < 1 if and only if u, factors contractively
through SQ,-spaces. From the lifting property of ¢; and the extension prop-
erty of £, this is equivalent to (ii).

The (linear) result mentioned in this remark was learned to me by G.
Pisier. It is stated in [Pi2, Chapter 5] where explanations on its origine are
given.
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