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VALUES OF BERNOULLI POLYNOMIALS

ANDREW GRANVILLE 1 AND Z H I - W E I S U N 2

Dedicated to Emma Lehmer

Let Bn(t) be the nth Bernoulli polynomial. We show that
Bp-ι(a/q) — Bp-ι = q(Up — l)/2p (mod p), where Un is a certain
linear recurrence of order [q/2] which depends only on α, q and
the least positive residue of p (mod q). This can be re-written
as a sum of linear recurrence sequences of order < φ(q)/2,
and so we can recover the classical results where φ(q) < 2 (for
instance, Bp-ϊ(l/6)-Bp-1 = (3p-3)/2p+ (2p-2)/p (modp)). Our
results provide the first advance on the question of evaluating
these polynomials when φ(q) > 2, a problem posed by Emma
Lehmer in 1938.

Introduction.

It has long been known that the nth Bernoulli polynomial Bn(t) , where

and Bk, the A th Bernoulli number, defined by the power series

u

x

take 'special' values at certain rational numbers with small denominators:

(1) Bn{\) = Bn(0) = Bn, f o r n ^ l

Bn (§) = {2l'nn
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118 ANDREW GRANVILLE AND ZHI-WEI SUN

and for all even n > 2,

1

6

It is not known if Bn(a/q) has as simple a 'closed form' for any other
rational a/q with 1 < a < q — 1 and (α,g) = 1, though this has long been
considered an interesting question.

Following work of Friedmann and Tamarkin [FT], Emma Lehmer [Lh,
1938] considered Bernoulli numbers and polynomials modulo primes and
prime powers, and showed amongst other things that (1) and (2) imply

(3)

(mod p)

1 ίQΏ CΛ

(mod p)

(mod p)

"2 P
3 (2p - 2)

E 2 p

The "Fermat quotients", (2p-2)/p and (3p-3)/p play a central role in the
study of the first case of Fermat's Last Theorem (see Ribenboim's elegant
account [Ri]), and this connection with Bernoulli polynomials has recently
been explored in much greater depth by Skula [Sk] (see also [Gr]).

However, until now, no progress has been made in extending the table of
intriguing congruences given in (3). This is the intention here. (It should be
mentioned that recent papers of H. C. Williams [Wl, W2], of G. Andrews
[An] as well as of the second author and his twin brother Zhi-Hong Sun
[SS], each come close to doing this.)

Before stating our main result, which is of a somewhat technical nature,
let's discuss the next class of examples after (3). The two important things
to note about (3) are that,
(i): We've evaluated Sp_1(-) — J3p_i (mod p) where φ(q) — 1 or 2 (φ Is
Euler's totient function);
(ii): Each of the terms of the right hand side, like 2P, 3P, are numbers taken
from a first-order linear recurrence sequence (un+χ — 2un and n n + 1 = 3un

respectively).
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This is the viewpoint we need to generalize. We shall show, for q > 2, that
J5P_! (-) — Bp_ι (mod p) is congruent to a sum of multiples of terms, each of
which are numbers taken from a fcth-order linear recurrence sequence with

k < φ(q)/2.

Thus the next class of examples are those q for which φ(q) = 4, namely
q = 5,8,10,12. We shall show that, for 1 < a < q - 1 with (α, q) = 1 (there
being four such integers α), we have, when prime p does not divide q,

(4)

-T(I)ϊ
-χ - 1) 3 (2>p~ι

where (—) is the Jacobi symbol, and we define the following second-order
linear recurrence sequences:

Fo = 0, Fλ = 1, and F n + 2 - Fn+ι + Fn for all n > 0

Go = 0, Gi = 1, and G n + 2 = 2Gn + 1 + Gn for all n > 0

Ho = 0, iίi = 1, and # n + 2 = 4fίn + 1 - Hn for all n > 0.

({Fn} is, of course, the Fibonacci sequence.)
In general we fix residue classes a and b (mod q), with (ab,q) — 1. Then,

for each divisor o? of g, there exists a recurrence sequence un — un{d, α, b) of
order D = φ(d)/2, with characteristic polynomial

D-l

• _ 9 _1_ p2iπj/d _i_ p-2iπj" '

so that
/ f D - 2 H

for all n > 0. The values of n0, , WJD-I depend on o and 6 (mod d) and
are somewhat complicated to describe - see Section 2 for precise details.

Our main result is that, for any (α, q) — 1, 1 < α < g,

(5) βp_χ ( - ) - Sp_! = j ; l {np(d; α, 6) - (0(d) - /i(rf))} (mod p)
X(lJ d\q ZP
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where b is the least positive residue of p (mod q) (and μ is the Mόbius
function), provided prime p does not divide q. Each term in the sum is a
p-unit.

Our formula involves such an awkward sum of recurrence sequences though
each appears "naturally" in

(6)

μ ( I ) ( V J (jf) - Bp_i) = ̂  {up(q; a, b) - (φ(q) - μ(q))} (mod p)(I) ( (jf) )
where ad is the least positive residue of a mod d. Indeed this is the formula
we shall prove and then (5) is deduced by summing (6) over divisors of q.

We are unable to answer the question as to whether it is possible to give
such a congruence for Bp-χ(-) — JBP_I involving only lower order recurrence
sequences. Indeed this seems difficult, unless one can give a complete char-
acterization of all linear recurrence sequences (Xn)n>o for which Xp = 0 mod
p2 for all but finitely many primes p. However we do not even know how to
decide this for Xn = 2n - 2.

However, it is easily shown that any sum of recurrence sequences can be
written as one recurrence sequence, though of higher order. Thus (5) can be
rewritten

(7) 5p_i ( ^ - B^ = | - {Up(q; a, b) - 1} (mod p)

where, now, Un has characteristic polynomial

(X - 2 + e2iπj/q

Again it is complicated to compute the values of Un for small n.
It is tempting to provide one "concrete" example for arbitrarily large q.

We will now completely describe Up(q\ α, b) in the case that a~±.b (mod q)
(that is a ~ ±p (mod q)) and q is odd:

Theorem. If q is an odd integer > 3 and 1 < a < q with (a,q) = 1, then

(8) £„_! (^) - £„_! = ^ {xp - 1} (mod p)

whenever p = ±a (mod q) where {xn}n>o is the ^th order recurrence se-
quence given by

1 (2n\ q-\
X - = 2 n ' °^^-^-'
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and for D —1γ- we have

ΪD-2

(D-

where

0!

D-2j-k

Since this is the simplest general case, we hope the reader understands
why we suppress so many details in this introduction!

Finally we give the first example with φ(q) — 6, namely q — Ί\ Here we
have that, for 1 < a < 6, and any odd prime p φ 7,

Bv_γ φ - Bp_i = ^ W 7 ; α, b) - 1} (mod p)

where b — 1,2 or 3 with b = ±p (mod 7), and Un satisfies the recurrence
relation

The values of C/i, [/2, Ĉ3 are given in the table below:

±a
2

3

1

3

1

2

a

±b
1

2

3

1

2

3

a

u,
1

2

2

1

3

2

1

u22

7

6

2

11

5

3

5

26

19

6

41

13

10

Analogous results can be given for generalized Bernoulli numbers (for
Dirichlet characters) since they may be expressed in terms of values of
Bernoulli polynomials. It is perhaps more obvious that there should be
simple expressions for these since they can be described in terms of p-adic
L-functions which, in turn, can be written in a number of elegant ways. The
case of quadratic characters has been examined in [KS] and [W2], and here
we give a somewhat different proof of a result proved there:

Suppose that q is a prime = 1 (mod 4). Let hq and εq be the class number
and fundamental unit, respectively, of the real quadratic field Q{y/q) It is

well-known that ε̂  = U + PyfqV for some integers U and V, where
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f - J is the Legendre symbol. Thus the generalized Bernoulli polynomial

(9) *,-!,(;) := Σ (l) {B^ (l) - SP-I} Ξ - 2 (l) *W (™>d p).

The organization of the paper is as follows: In the next section we shall
develop basic identities and results about Bernoulli polynomials that we
shall require in our proofs. In Section 2 we shall see how the values of
Bernoulli polynomials can be expressed in terms of certain functions of roots
of unity. This leads to the proof of a number of the cases mentioned in
the introduction; though, because of the computations needed, we give the
complete proof of the Theorem in Section 4, and the complete proof of (4)
in Section 5. In Section 3 we develop the analogous formulae for those
generalized Bernoulli numbers with quadratic characters, which leads to (9)
above.

We thank Emma Lehmer, Hugh Williams and the anonymous referee for many
useful comments.

1. The (regular) theory of Bernoulli polynomials.

The nth Bernoulli number Bn is defined by the power series

n>0

The nth Bernoulli polynomial Bn{t) is defined by the power series

n>0

so that Bn(0) — Bn and

(1.3, «.<«>-£(>"•
j=Q \ J )

Perhaps the most important property of Bernoulli polynomials is that

(1.4) Bn{t + 1) - Bn[t) = ntn~l for all n > 1

as is easily deduced from (1.2). From (1.4) we notice that Bn(l) = Bn(0) =
Bn for all n φ 1, and that it is "easy" to deduce the value of Bn(t) for any
real number £, once we understand the value of Bn{t) for t in the interval
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It is thus of interest to determine Bn(t) for 'special' values of t in [0,1),
for instance those rational t with small denominator. We already have

and from the

B

identity

n(0) =

2xex

e2x —

Bn

I

(1)

9
Z

= Bn

X

ex — 1

for n 7̂

2x
,02a; 1

we easily deduce that

and thus we have proved (1). We next observe that

(1.5) Bn(l-t) = (-l)nBn(t)

from the identity

eχ _ i e(-χ) _ i '

so we study only t G (0, | ) .
The next important observation is due to Lerch [Lr]: By taking the iden-

tity

qxeax qxe^a+ι)x qxe{aJt2)x qxe{a+q~1)x qxea

eqχ — i eqx - 1 eqx — 1 eqx — 1 ex — 1

we obtain

B. (ί±i) +B.(ψ)+... + B.

and, in particular if a — 0,

(1.7), J5n + Bn {^

In order to remove those Bn(j/q) in which j/q is not in lowest terms we may
use the standard Mόbius inversion formula, as follows: Take Σμ{d)(1.7)q/d

d\q

for q > 3, so that
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Using (1.5) we have, for all q > 3 and n even,

(1-9)

Taking q = 3,4 and 6 we deduce (2).

The seven values | J | J | J | J | J ^ ? |
 a r e the only rationals with small de-

nominators for which such "straightforward" values of Bn(t) are known, with
0 < t < 1. It has, however, been recently observed [AM] that Bn{t) — Bn

shares one surprising property with polynomials which have integer coeffi-
cients: namely that qn(Bn(a/q) — Bn) is an integer whenever a and q are
non-zero integers.

One of the most important, and elegant, applications of these valuations
is to the study of Bernoulli polynomials modulo p for p prime. The Von
Staudt-Clausen theorem asserts that

pB2k = -l (modp)

whenever 2k is divisible by p — 1. In 1850 Eisenstein observed the following
(easily proved) congruences:

(ab)p~l - 1 OP'1 - 1 If-1 - 1 , J ,
^—'- ΞΞ + (mod p)

P P P

and
αi-(p-D_α (αP_α)

= - (mod p).
P P

Thus we deduce (3) from (2) with n—p—l. Such congruences fit elegantly
into the general overview of the first case of Fermat's Last Theorem (see
Chapter 8 of [Ri]).

Actually, by the same method, we can transform (1.9) to read, for any
even n > 2,

Taking n = p — 1 we thus obtain

= i Y (Q {(g/^)p - (q/d)}

d\q V

| ( m o d p )
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However such a formula allows us to evaluate Bn(a/q) only for particular
values of a coprime to g, provided φ(q) < 2. It is the main purpose of this
paper to determine the value of

?) - Bp^ (mod p).

2. Working with roots of unity.

Key Proposition. //1 < a < q and odd prime p does not divide q then

P

Proof. If j q = 1 then

Σ ,
V j=l V \J

since

= Σ - , 1 (-!)v Ξ - Σ - ( m o d p)

P W P X 2 0 - l ) J

We also have

i ^ Ί

Ξ _ i ( m o d ί ? ) .

by substituting x = ηv and m = α/p mod 9 into the identity

(2.2) S . 2 +

Therefore the righthand side of (2.1) is

ί
m Ί P y

m + ̂ (m- i ) (7 ί p + 7-ip) Σ - ( m o d P)
ί

1=1 J j=l

ί 1 ™ /" 1 ! Λ Ί
= —q < m Y^ - + y ^ ( ^ - i) ^ : - Y^ : > (mod p),

o<i<P J i = 1 I o<J<P ψ-rj 0<j<P Ψ J ] \
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using the fact, for 7 = 1, that Y^Z\ l/j = 0 (modp). Now, since ip <
ip + j < (i + l)p and (i — l)p < ip — j < ip, we replace q/(ip dr j) by 1/k so
that the above is

1 m / 1
Ξ - < m Σ Γ+Σ^-ol Σ τ~ Σ

•<£ i=l

— ( m o d p)
A:

Ξ ( P - 1 ) Y, kP~2 (modp).
'—a

But this equals the coefficient of xp ι /(p — 1)! in

(mp-α)/ςr ^(mp-o+g)/ga;

Σ Λ T

'r 1

which is B p _! (mP-«+q\ _ J5p_1 by (1.2). However the Von Staudt-Clausen

Theorem tells us that p divides the denominator of Bn if and only if p — 1

divides n; and so, by (1.3), the denominators of the coefficients of Bp-ι(t) —

Bp^ι are not divisible by p. Therefore

= βp_i - ~ βp-i (mod p),

by (1.5), and the Proposition follows. D

Corollary 1. If I < a < q — 1 and ode/ prime p does not divide q then

(2.3) S p _! ( - ) - B p _!

= - V^ ( 1 I - f 1 I (mod p) .
2 ^ ^ I 2 / p I 2 - 7 P - Ύ~~P /

Proof. It is evident that

(1 - 7 ) p ΞΞ 1 - 7P = 2P~1(1 - 7P) (mod p).
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Therefore

0 = {(1 - Ίγ - 2 ^ ( 1 - 7P)}7(27)P (mod p2)

= -(^1 ^—J + ( l - 7 ) P + ( l - 7 y - 2 p ^ 1 - J.

Thus

P

(l- *£)' - (l-
p P

(modp).

Now, adding each term to its conjugate in (2.1) we get the following congru-

ence modulo p:

Λ
P

Since the two terms in the final brackets are both units mod p we may

multiply the first by 2P~X = 1 (mod p) to get

p V 2-7P-7-P / V P

Ξ ~ ( 2 - Ίv - -P ~ l ) (mθdp">

The result follows.- D

The next result follows immediately by applying Mόbius inversion to (2.3)

and associating the 7 and j ~ λ terms.

Corollary 2. If q > 3 ; 1 < a < q and odd prime p does not divide q then
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where w = e2ιlΊq and ad is the least positive residue of a (mod d).

Next note that if (α, q) = 1 then

5 ] (2 - ^ α - w~n = φ(q) - Σ w* = φ(q) - μ(q).
3=1 t = l

Thus if we define

where α, δ are taken (mod g), then by Corollary 2,

Σ ^ f ^ ) ^ P - 1 ("T ) ~ o ~ {up(^aiP mod(l) ~ (Φ(q) -M(?))} (modp).

Now un so defined is a recurrence sequence with characteristic polynomial

q/2

Note that

Fff((l - X-1)^ - X)) = Π (

where φq(X) is the gth cyclotomic polynomial.

If F(X) = X D - Σ fτX1 where JD - φ(q)/2, then

^n+^D = fD-lUn+D-l + /^-2^n+D-2 H 1" /θ^n for all Π > 0.

We get the same recurrence relation for all un with a given g, but the starting
values, IA0, Wi, , ̂ D - I 5

 a r e different.
Let's define
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This satisfies the same recurrence relation. Moreover since for m = a/b
(mod q) we have

— - = \ ( m - k W ,
k= — m

thus

un(q;bm modg, b) = - Y^ (??2— | A; |)yn(g;6A; mod#);
k= — m

so we may find the starting values, IA0, • , u^-i given those of Vo, * " 5 VD-I-
Now, for 0 < n < φ(q)/2 — D, we have

Q q

Vn(q]k)= Σ wjkb{2-wJ -w~J)n= Σ (-l)nwj{bk-n)(l-wj)2n

3=1 3=1

U,q) = l O',9) = l

= y M n (_l)n+m V-
m—0 \ / J=I

O,ςf)=i

(2;)- Σ (2;)(-ir- Σ
m = 0

since

taking r — q/d. This is computable (though not too beautiful!).

3. Generalized Bernoulli numbers.

For any even character χ (mod q) define

Bp-ι,x = Σ χ ( α ) (B^ fa) - B p λ .

Assume that g is prime, so that from Corollary 2 we have for w — e2ϊ7Γ//ςί,

Ξί \έS / V 2-WPI -W-PJ J y }
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However

ί _ q~ι

ST ( wo ja -ja\ ) ~2XU) Σ X(b)wb for x non-principal
2χ{a)(2w3a w Ja) = (

q for x principal.

If x is principal we thus obtain from (1.7)^,

(modp 2 ),

using the Von Staudt-Clausen theorem. On the other hand if x is even and

non-principal then, for g(χ) = Σi<b<q x(b)wb, we have

_hx Ξ -29{X)
j=0

As an example we'll consider χ5 the real non-principal character (mod g);

that is χ(a) = ί-V the Legendre symbol. We will need q to be 1 (mod 4)

to ensure that χ is an even character. Then

q-l

Σ
α = l

3=υ

We will examine Σq using p-adic logarithms (see Chapter 5 of [Wa] for

definitions): Since

~ - 1 = logn : — (mod p2) ,
~P3 *P \ 2 Wpj W~P3 J

^ : 1 logn
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we deduce that

2 -

= logp

J = l

\i=l

= logpm(2-w*-w-ψ*)(v-

/β-i

= 2 logP

(mod p2)

(mod p2)

')) j (modp2)

(modp 2 ) ,

since q = l (mod 4). Now, as Dirichlet discovered (see Ex. 4.6. of [Wa]),

where εq,h(y/q) are the fundamental unit and class number of Q(y/q), re-
spectively. Thus

(modp).

So, as εq — u + υ^/g where w2 — υ 2 ^ = — 1, then

εP.=up (mod p)

so that εq

 q = (£) (mod p) and thus εq

 q = 1 (mod p). Suppose that

2(p_(£)) l i t 2\

ε9

 9 = 1 -f- p ^ + pv Λjq (mod p ).

Then

1 = εq

 P~ ? ~εq

 P~ q = (1 + p n ' ) 2 - (p^'v^) 2 Ξ 1 + 2pτx' (mod p 2 ),

so that p divides ^ ; . So if
εn ~εn

x -II 13. then (modp 2 ) .
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Therefore logp(4 P~ * ]) = vx2{p_{L))λ/q (mod p2), and since # ( ( - ) )

(which was proved first by Gauss), we have

q-l

this is equivalent to (9).

4. Proof of the Theorem.

Take p = ±α (mod q) in Corollary 1 to get

B^ = Σ { V Ί T Ύ ( ϊ Ί r )

Now i Σ (2 - 7P - 7~p) = 9- Thus, for xn =h Σ (2 - 7 - 7" 1)", we

obtain (8). Now if 0 < n <^y- then

"2 Uλ
If tί; — e227Γ/g then the characteristic polynomial for xn is

The anonymous referee noted that this polynomial seems to be closely related
to the Chebyshev polynomial of the first kind; and we should be able to
determine its coefficients directly from known results. Although we agree
with this opinion we have been unable to do so. To compute the coefficients
we thus proceed as follows: First note that
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taking i + j = k. The inner sum

k

= Σ c o e f f o f TJ i n (1 - τ ) k * c o e f f o f Tm'k-j in (1 -
3=0

= coeffofT » - * i n ( l - T ) - 1 = ( 1 i f k ~ ™
[0 otherwise.

Thus

i)J (m 7 = Σ χι -
~~ z=m (mod 2)

So define

(4.1) Fq(y) := £ ( - ! ) J ( ^ ~J ) (2 - ί/)^" 2 ' '

/<7-3

Then i^(y) is a polynomial in y of degree ^ . For any k, I < k <

Fq{2 -wk - w~k) -

2

by (4.1). Thus Fq(y) is our characteristic polynomial, and

Fί(y) = Σ π (-*/)* w h e r e

Actually Fq(X) — Ri^±(X) where Rn(X) satisfies the recurrence

Rm(X) = (2 - XjiC-iPO + Rm-2(X).
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5. Proof of (4).

A Lucas sequence {xn}n>o is defined by x0 — 0, xλ — 1 and xn — &En_i —
cxn_2 for &U ̂  > 2, for some integers b and c. As is well-known, if we let
D — b2 — Ac then the roots of the characteristic polynomial t2 — bt + c of {xn}
are α, /3 = (6 ± vΊ5)/2; and xn - (αn - βn)/{α - β). Let yn = (α n + /3n) be
the 'companion sequence', which satisfies the same recurrence relation; and
we have αn,βn = {yn ± xny/D)/2.

We shall be considering these recurrence sequences modulo powers of any
prime p that does not divide 2cD: Now, since p divides (p) except when
j — 0 or p, we have

Thus

\ 2 )

Therefore x

(mod p).

(D) = 0 (mod p) and
f \ p )

= ap~{f ^ p "( f ) = — (mod p2).
4 4

( c P

 2

1 + 1 j (mod p2). In fact c — ± 1 in every

i f c = l ;

ifc = - l .

When 0(g) = 4, we let t be the unique integer in the range 1 < t < q/2
that is coprime to q. Fix a primitive qth root w of 1, and let α^ = 2—w-7 —w~j.
By Corollary 2

Therefore yp-^) =

case below so that

(5.1)

α P _ ( f ) φ

2p [αp apt

(5-2) (modp)

where 5 = 0 ! + ^ , C = αiα t and C = C if ( j) = - 1 , with C" = 1

otherwise.
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The cases q = 5 and q = 10: When q — 5 we have t = 2, (x—αi)(#—a 2) =

# 2 — 5a; + 5, so that B = C — 5 and we may take OLJ = |Λ/5 ΓΛ/5 + ( | ) J for

1 < j < 4. Let α = (1 + \/5)/2 and /? = (1 - y/E)/2. By substituting into
(5.2) and then using (5.1) (with 6 = 1 , c = —1 so that xn = Fn) we get

giving the first congruence in (4), since

5 ^ Ξ g ) ( l + i (5-1 - 1)) (modp2).

It would be possible to obtain the congruence for q = 10 in a similar way.
However, by taking q = 2 and a = 1/5 and α = 3/5 in (1.6) we get the
identities

By substituting in the first congruence in (4), and by using the Von Staudt-
Clausen theorem, we get the third congruence in (4).

The case q = 8: Now t = 3, (x - ctχ)(x - α3) = x2 - 4x + 2, so that

5 = 4, C = 2 and we may take aό = y/2 (\/2 + ( j ) ) for any odd j . Let

a = (1 + Λ/2) and ^ = (1 - \/2). By substituting into (5.2) and then using
(5.1) (with 6 = 2, c = — 1 so that xn = Gn), we see that the right side of
(5.2) is

( m o d p )
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since 2 ^ ΞΞ (j) (1+ | (2ί?"1 - 1)) (mod p2). Adding this to the third con-

gruence in (3) gives the second congruence in (4).

The case q = 12: Now t — 5, (x - αi)(aj — α3) = x2 - 4x + 1, so that

6 = B = 4, c - C - l a n d w e may take α, = 2 + ( y ) \/3 for j - 1, 5, 7,11;

and let a — a1 ? /? = a2. Therefore, by using (5.1), the right side of (5.2) is

The final congruence of (4) follows by adding the last two congruences of (3)
and subtracting the first.
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