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THE QUASI-LINEARITY PROBLEM FOR C*-ALGEBRAS

L.J. BUNCE AND J.D. MAITLAND WRIGHT

Let A be a C*-algebra with no quotient isomorphic to the
algebra of all two-by-two matrices. Let y be a quasi-linear
functional on A. Then u is linear if, and only if, the restriction
of i to the closed unit ball of A is uniformly weakly continuous.

Introduction.

Throughout this paper, A will be a C*-algebra and A will be the real Banach
space of self-adjoint elements of \A. The unit ball of A is A; and the unit
ball of A is A;. We do not assume the existence of a unit in A.

Definition. A quasi-linear functional on A is a function p : A — R such
that, whenever B is an abelian subalgebra of A, the restriction of y to B is
linear. Furthermore p is required to be bounded on the closed unit ball of
A.

Given any quasi-linear functional 4 on A we may extend it to A by defining

Az +iy) = p(z) +ip(y)

whenever z € A and y € A. Then ji will be linear on each maximal abelian

*-subalgebra of 4. We shall abuse our notation by writing ‘4’ instead of ‘fi’.
When A = M,(C), the C* -algebra of all two-by-two matrices over C,

there exist examples of quasi-linear functionals on A which are not linear.

Definition. A local quasi-linear functional on A is a function p: A -+ R
such that, for each z in A, p is linear on the smallest norm closed subalgebra
of A containing z. Furthermore 4 is required to be bounded on the closed
unit ball of A.

Clearly each quasi-linear functional on A is a local quasi-linear functional.
Surprisingly, the converse is false, even when A is abelian (see Aarnes [2]).
However when A has a rich supply of projections (e.g. when A is a von
Neumann algebra) each local quasi-linear functional is quasi-linear [3].

The solution of the Mackey-Gleason Problem shows that every quasi-linear
functional on a von Neumann algebra M, where M has no direct summand
of Type I, is linear [4, 5, 6]. This was first established for positive quasi-
linear functionals by the conjunction of the work of Christensen [7] and

41



42 L.J. BUNCE & J.D. MAITLAND WRIGHT

Yeadon [11], and for o-finite factors by the work of Paschciewicz [10]. All
build on the fundamental theorem of Gleason [8].

Although quasi-linear functionals on general C* -algebras seem much
harder to tackle than the von Neumann algebra problem, we can apply the
von Neumann results to make progress. In particular, we prove:

Let A be a C*-algebra with no quotient isomorphic to My(C). Let p be
a (local) quasi-linear functional on A. Then p is linear if, and only if, the
restriction of p to A;, is uniformly weakly continuous.

1. Preliminaries: Uniform Continuity.

Let X be a real or complex vector space. Let F be a locally convex topology
for X. Let V be a F -open neighbourhood of 0. We call V' symmetric if V
is convex and, whenever x € V then —z € V.

Let B be a subset of X. A scalar valued function on X, u, is said to
be uniformly continuous on B, with respect to the F -topology, if, given
any € > 0, there exists an open symmetric neighbourhood of 0, V, such that
whenever z € B,y € B and z —y € V then

lp(z) — pu(y)| <e.

Lemma 1.1. Let X be a Banach space and let F be any locally convez
topology for X which is stronger than the weak topology. Let i1 be any bounded
linear functional on X. Then p is uniformly F-continuous on X.

Proof. Choose € > 0. Let

V={zeX:|ulz) <e}
=p YA\ <€}

Then V is open in the weak topology of X. Hence V is a symmetric
F-open neighbourhood of o such that z — y € V implies

lu(z) — )] = lplz —y)| <e

O

Lemma 1.2. Let X be a subspace of a Banach space Y. Let G be a locally
convezx topology for Y which is weaker than the norm topology. Let F be the
relative topology induced on X by G. Let B be a subset of X and let C be
the closure of B in'Y, with respect to the G -topology. Let p : B — C be
uniformly continuous on B with respect to the F -topology. Then there exists
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a function 1 : C — C which extends p and which is uniformly G-continuous.
Furthermore, if u is bounded on B then [ is bounded on C.

Proof. Since F is the relative topology induced by G, p is uniformly G-
continuous on B. Let K be the closure of u[B] in C. Then K is a complete
metric space. So, see [9, page 125], 4 has a unique extension to g : C — K
where 1 is uniformly G-continuous.

If 41 is bounded on B then K is bounded and so fz is bounded on C. O

Lemma 1.3. Let X be a Banach space. Let X; be the closed unit ball of X
and let X1* be closed unit ball of X**. Let pu: X; — C be a bounded function
which is uniformly weakly continuous. Then p has a unique extension to
7 X7 — C where i is bounded and uniformly weak*-continuous.

Proof. Let G be the weak*-topology on X**. For each ¢ € X*
XNn{ze X :|p(z)] <1} ={z e X : |¢(z)| < 1}.

So G induces the weak topology on X. So p is uniformly G-continuous on
X,. Since X; is dense in X;*, with respect to the G-topology, it follows from
Lemma 1.2 that & exists and has the required properties. O

2. Algebraic Preliminaries.

Lemma 2.1. Let B be a non-abelian C*-subalgebra of a von Neumann al-
gebra M, where M is of Type I,. Then B has a surjective homomorphism
onto My(C), the algebra of all two-by-two complex matrices.

Proof. We have M = M,(C)®C(S) where S is hyperstonian. For each s € S
there is a homomorphism 7g from M onto M, (C) defined by

T T11 T12 |\ _ T11(8) T12(s)
5\ @21 T2z T1(8) Ta2(s) |
Clearly, if 7g[B] is abelian for every s then B is abelian. So, for some s,
ms[B] is a non-abelian*-subalgebra of M,(C) and so equals M, (C). O

Lemma 2.2. Let w be a representation of a C*-algebra A on a Hilbert
space H. Let M = [ A]" where the von Neumann algebra M has a direct
summand of Type I,. Then A has a surjective homomorphism onto M, (C).

Proof. Let e be a central projection of M such that eM is of Type I,. Since
n[A] is dense in M in the strong operator topology, en[A] is dense in eM.
Since eM is not abelian neither is e[ A]. So, by the preceding lemma, en[A],
and hence A, has a surjective homomorphism onto M,(C). g
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3. Linearity.
‘We now come to our basic theorem.

Theorem 3.1. Let A be a C*-algebra which has no quotient isomorphic to
M, (C). Let m be a representation of A on a Hilbert space H. Let M be
the closure of A in the strong operator-topology of L(H). Let p be a local
quasi-linear functional on n[A], which is uniformly continuous on the closed
unit ball of w[A] with respect to the topology induced on w[A] by the strong
operator topology of L(H). Then p is linear.

Proof. We may suppose, by restricting to a closed subspace of H if necessary,
that m[A] has an upward directed net converging, in the strong operator
topology to the identity of H. Clearly m[.A] has no quotient isomorphic to
M,(C) for, otherwise, M,(C) would be a quotient of A.

So, to simplify our notation we shall suppose that A = n[A] C L(H).

Let M be the double commutant of A in L(H). Let M; be the set of all
self-adjoint elements in the unit ball of M. Then, by the Kaplansky Density
Theorem, A, is dense in M; with respect to the strong operator-topology of
L(H).

Then, by Lemma, 1.2, there exists 7z : M; — C such that 7z is an extension
of | A; and such that 7 is continuous with respect to the strong operator
topology. Since u[A,] is bounded so, also, is E[M;].

We know that for each a € A; and each ¢ € R,

p(ta) = tp(a).
We extend the definition of &z to the whole of M by defining

(o) = ol (1)

[l
whenever z € M with ||z|| > 1. It is then easy to verify that if (a,) is a
bounded net in A which converges to z in the strong operator topology of
L(H) then
p(ax) = fiz).
Also, whenever (z,)(n = 1,2..) is a bounded sequence in M, converging
to z in the strong operator topology, then

fi(za) = B(x).

Let z be a fixed element of M and let (a)) be a bounded net in A which
converges to z in the strong operator topology. Then, for each positive whole
number n,a} — z™ in the strong operator topology. So u(a}) — m(z").
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Let ¢1, ¢, be polynomials with real coefficients and zero constant term.
Then, since yu is a local quasi-linear functional,

p{1(ax)} + p{d2(ar)} = u{(¢1 + $2)(ar)} .

Now
$1(ax) = d1(z), d2(ar) — ¢2(z).

and

(¢1 + #2)(ar) = (d1 + ¢2) ()

in the strong operator topology. So

B{d(2)} + B {da(2)} = B {dr(2) + ¢2(2)} -

Let N(z) be the norm-closure of the set of all elements of the form ¢(z),
where ¢ is a polynomial with real coefficients and zero constant term. Then,
since each norm convergent sequence is bounded and strongly convergent, iz
is linear on N (z).

Let py,p2,...p, be orthogonal projections in M.

Let

1 1 1

Then (z*)(k = 1,2,...) converges in norm to p;. So p; is in N(z). Then
{2z -2p)*} (k=1,2,..)

converges in norm to p,. Similarly, ps, p4,...p, and 1 — p; —ps — ... — p, are
all in N(z).

Let v(p) = f(p) for each projection p in M. Then v is a bounded finitely
additive measure on the projections of M.

Since A has no quotient isomorphic to M,(C), it follows from Lemma 2.2
that M has no direct summand of Type I,. Hence, by Theorem A of [4] or
[6], v extends to a bounded linear functional on M, which we again denote
by v. From the argument of the preceding paragraph, & and v coincide on
finite (real) linear combinations of orthogonal projections. Hence by norm-
continuity and spectral theory, z(z) = v(z) for each z € M. Thus u is
linear. |

As an application of the above theorem, we shall see that when a quasi-
linear functional p has a ”control functional”, it is forced to be linear. We
need a definition.
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Definition. Let ¢ be a positive linear functional in .;l and let u be a quasi-
linear functional on A. Then y is said to be uniformly absolutely continuous
with respect to ¢ if, given any € > 0 there can be found § > 0 such that,
whenever b € A; and c € A; and ¢((b — c)?) < 6, then |u(b) — u(c)| < e.

Corollary 3.2. Let A be a C*-algebra which has no quotient isomorphic
to My(C). Let u be a local quasi-linear functional on A which is uniformly
absolutly continuous with respect to ¢, where ¢ is a positive linear functional
in A*. Then p is linear.

Proof. Let (w, H) be the universal representation of .4 on its universal repre-
sentation space H. We identify A with its image under 7 and identify 7[.A]"
with A**.

Let £ be a vector in H which induces ¢, that is,

¢(a) = (a&, &)for each a € A.

Choose € > 0. Then, by hypothesis, there exists 6 > 0 such that, whenever
be Al and c € Al with
(=)l <6

then
ln(b) — pu(c)] <e.

So p is uniformly continuous on A;, with respect to the strong operator
topology of L(H). Hence, by the preceding theorem p is linear. O

Theorem 3.3. Let A be a C*-algebra with no quotient isomorphic to My(C).
Let p be a (local) quasi-linear functional on A. Then p is a bounded linear
functional if, and only if, p is uniformly weakly continuous on the unit ball

of A.

Proof. By Lemma 1.1 each bounded linear functional on A is uniformly
weakly continuous. We now assume that p is uniformly weakly continuous
on A;. Let (m,H) be the universal representation of A. Let M = =[A]".
Then A** can be identified with M and A** with M.

By Lemma 1.3 there exists a function  : M; — C which is uniformly
continuous with respect to the weak*-topology on M; and such that 1|4,
coincides with p|A,;.

The weak*-topology on M, coincides with the weak-operator topology of
L(H), restricted to M;. This is weaker than the strong operator-topology
restricted to M;. So @ is uniformly continuous on M; with respect to the
strong operator topology of L(H). Thus p is uniformly continuous on A,
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with respect to the strong operator topology of L(H). Then, by Theorem
3.1, p is linear. O
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