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THE QUASI-LINEARITY PROBLEM FOR C*-ALGEBRAS

L.J. BUNCE AND J.D. MAITLAND WRIGHT

Let A be a C*-algebra with no quotient isomorphic to the
algebra of all two-by-two matrices. Let μ be a quasi-linear
functional on A. Then μ is linear if, and only if, the restriction
of μ to the closed unit ball of A is uniformly weakly continuous.

Introduction.

Throughout this paper, A will be a C*-algebra and A will be the real Banach
space of self-adjoint elements of A. The unit ball of A is A\ and the unit
ball of 4̂ is 4̂χ. We do not assume the existence of a unit in A.

Definition. A quasi-linear functional on A is a function μ : A -» R such
that, whenever B is an abelian subalgebra of A, the restriction of μ to B is
linear. Furthermore μ is required to be bounded on the closed unit ball of
A.

Given any quasi-linear functional / ioniwe may extend it to A by defining

μ(x + iy) = μ{x) +iμ{y)

whenever x e A and y £ A. Then μ will be linear on each maximal abelian
*-subalgebra of A. We shall abuse our notation by writing 'μ' instead of cμ\

When A = M2(C), the C* -algebra of all two-by-two matrices over C,
there exist examples of quasi-linear functionals on A which are not linear.

Definition. A local quasi-linear functional on A is a function μ : A —> R
such that, for each x in A, μ is linear on the smallest norm closed subalgebra
of A containing x. Furthermore μ is required to be bounded on the closed
unit ball of A.

Clearly each quasi-linear functional on A is a local quasi-linear functional.
Surprisingly, the converse is false, even when A is abelian (see Aarnes [2]).
However when A has a rich supply of projections (e.g. when A is a von
Neumann algebra) each local quasi-linear functional is quasi-linear [3].

The solution of the Mackey-Gleason Problem shows that every quasi-linear
functional on a von Neumann algebra Λί, where M has no direct summand
of Type J2, is linear [4, 5, 6]. This was first established for positive quasi-
linear functionals by the conjunction of the work of Christensen [7] and
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Yeadon [11], and for σ-finite factors by the work of Paschciewicz [10]. All
build on the fundamental theorem of Gleason [8].

Although quasi-linear functional on general C* -algebras seem much
harder to tackle than the von Neumann algebra problem, we can apply the
von Neumann results to make progress. In particular, we prove:

Let Λ be a C*-algebra with no quotient ίsomorphίc to M2(C). Let μ be
a (local) quasi-linear functional on A. Then μ is linear if, and only if, the
restriction of μ to A\, is uniformly weakly continuous.

1. Preliminaries: Uniform Continuity.

Let X be a real or complex vector space. Let T be a locally convex topology
for X. Let V be a T -open neighbourhood of 0. We call V symmetric if V
is convex and, whenever x EV then — x G V.

Let B be a subset of X. A scalar valued function on X, μ, is said to
be uniformly continuous on 5 , with respect to the T -topology, if, given
any e > 0, there exists an open symmetric neighbourhood of 0, V, such that
whenever x £ B, y (Ξ B and x — y EV then

\μ(x)-μ{y)\ < e.

Lemma 1.1. Let X be a Banach space and let T be any locally convex
topology for X which is stronger than the weak topology. Let μ be any bounded
linear functional on X. Then μ is uniformly T-continuous on X.

Proof. Choose e > 0. Let

V = {xEX:\μ(x)\<e}

= μ-1{λ:\\\<e}.

Then V is open in the weak topology of X. Hence V is a symmetric

^-open neighbourhood of o such that x — y G V implies

\μ(x)-μ(y)\ - \μ(x - y)\ < e.

D

Lemma 1.2. Let X be a subspace of a Banach space Y. Let Q be a locally
convex topology for Y which is weaker than the norm topology. Let T be the
relative topology induced on X by Q. Let B be a subset of X and let C be
the closure of B in Y, with respect to the Q -topology. Let μ : B —> C be
uniformly continuous on B with respect to the T -topology. Then there exists
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a function ~μ : C —> C which extends μ and which is uniformly Q-continuous.

Furthermore, if μ is bounded on B then ~μ is bounded on C.

Proof. Since T is the relative topology induced by Q, μ is uniformly Q-
continuous on B. Let K be the closure of μ[B] in C. Then K is a complete
metric space. So, see [9, page 125], μ has a unique extension to ~μ : C —» K
where β is uniformly (/-continuous.

If// is bounded on B then K is bounded and so ~μ is bounded on C. D

L e m m a 1.3. Let X be a Banach space. Let X\ be the closed unit ball of X
and let Xx** be closed unit ball of X**. Let μ : Xι —> C be a bounded function
which is uniformly weakly continuous. Then μ has a unique extension to
~μ: XI* —> C where ~μ is bounded and uniformly weak*-continuous.

Proof. Let Q be the weak*-topology on X**. For each φ e X*

XΠ{xe X * * : \φ(x)\ <l} = {xeX : \φ(x)\ < 1 } .

So Q induces the weak topology on X. So μ is uniformly ^-continuous on

Xλ. Since X t is dense in Xf*, with respect to the (/-topology, it follows from

Lemma 1.2 that ~μ exists and has the required properties. D

2. Algebraic Preliminaries.

L e m m a 2.1. Let B be a non-abelian C*-subalgebra of a von Neumann al-
gebra Λ4, where Λ4 is of Type I2 Then B has a surjective homomorphism
onto M2(C)7 the algebra of all two-by-two complex matrices.

Proof. We have M = M2(C)0C(S) where S is hyperstonian. For each s e S
there is a homomorphism πs from Λ4 onto M2(C) defined by

Clearly, if πs[B] is abelian for every s then B is abelian. So, for some 5,

7rs[B] is a non-abelian*-subalgebra of M2(C) and so equals M2(C). D

Lemma 2.2. Let π be a representation of a C*-algebra Λ on a Hilbert
space H. Let Λ4 = Trjyt]" where the von Neumann algebra Λ4 has a direct
summand of Type I2. Then Λ has a surjective homomorphism onto M2(C).

Proof. Let e be a central projection of Λ4 such that eΛ4 is of Type I2. Since
π[y4] is dense in Λ4 in the strong operator topology, eπ[A] is dense in eλd.
Since eΛ4 is not abelian neither is eπ[^4]. So, by the preceding lemma, eπpl],
and hence A, has a surjective homomorphism onto M2(C). D
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3. Linearity.

We now come to our basic theorem.

Theorem 3.1. Let Λ be a C*-algebra which has no quotient isomorphic to
M2(C). Let π be a representation of Λ on a Hubert space H. Let Λ4 be
the closure of A in the strong operator-topology of L(H). Let μ be a local
quasi-linear functional on π[A\, which is uniformly continuous on the closed
unit ball of π[A] with respect to the topology induced on π[A] by the strong
operator topology of L(H). Then μ is linear.

Proof. We may suppose, by restricting to a closed subspace of H if necessary,
that π[A] has an upward directed net converging, in the strong operator
topology to the identity of H. Clearly π[A] has no quotient isomorphic to
M2(C) for, otherwise, M2(C) would be a quotient of A.

So, to simplify our notation we shall suppose that A = π[A] C L(iT).
Let Λ4 be the double commutant of A in h(H). Let Mλ be the set of all

self-adjoint elements in the unit ball of M. Then, by the Kaplansky Density
Theorem, Ax is dense in Mi with respect to the strong operator-topology of
h(H).

Then, by Lemma 1.2, there exists μ : Mi -» C such that μ is an extension
of μ I A\ and such that μ is continuous with respect to the strong operator
topology. Since μ{Aχ} is bounded so, also, is μ[Mχ].

We know that for each α E i i and each t £ R,

μ(ta) = tμ(a).

We extend the definition of μ to the whole of M by defining

μ(x) = \\x\\μ (jĵ ji *

whenever x E M with ||α;|| > 1. It is then easy to verify that if (αλ) is a
bounded net in A which converges to x in the strong operator topology of
h(H) then

μ(αλ) -*μ(x).

Also, whenever (xn)(n — 1,2..) is a bounded sequence in M, converging
to x in the strong operator topology, then

μ(xn) ->/j(z).

Let x be a fixed element of M and let (αλ) be a bounded net in A which
converges to x in the strong operator topology. Then, for each positive whole
number n,a™ —> xn in the strong operator topology. So μ(άχ) —> ~μ(xn).
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Let 0i,02 be polynomials with real coefficients and zero constant term.
Then, since μ is a local quasi-linear functional,

μ {ΦΛax)} + μ {<f>2(ax)} = μ

Now

Φi(a\) -> <l>i(x

and

in the strong operator topology. So

μ{Φi(x)} +μ{φ2{x)} = μ{0iW + 02(z)} •

Let iV(α ) be the norm-closure of the set of all elements of the form φ(x),
where φ is a polynomial with real coefficients and zero constant term. Then,
since each norm convergent sequence is bounded and strongly convergent, μ
is linear on N(x).

Let Pi,P2? •••Pn be orthogonal projections in M.
Let

1 1 1 r i Ί

x = P i + 2^2 + - + 2^Γ^n + ^ {1 " P i - P 2 - - " P n }

Then (xk)(k — 1,2,...) converges in norm to pi. So pλ is in ΛΓ(x). Then

converges in norm to p2. Similarly, p $,p±, ...pn and 1 — p\ — p2 — ••• — Pn
all in N(x).

Let ι/(p) = ~β(p) for each projection p in M. Then z/ is a bounded finitely
additive measure on the projections of M.

Since Λ has no quotient isomorphic to M2(C), it follows from Lemma 2.2
that M has no direct summand of Type J 2. Hence, by Theorem A of [4] or
[6], v extends to a bounded linear functional on Λί, which we again denote
by v. Prom the argument of the preceding paragraph, ~μ and v coincide on
finite (real) linear combinations of orthogonal projections. Hence by norm-
continuity and spectral theory, ~μ{x) — v{x) for each x G M. Thus μ is
linear. D

As an application of the above theorem, we shall see that when a quasi-
linear functional μ has a "control functional", it is forced to be linear. We
need a definition.
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Definition. Let φ be a positive linear functional in A and let μ be a quasi-
linear functional on A. Then μ is said to be uniformly absolutely continuous
with respect to φ if, given any e > 0 there can be found δ > 0 such that,
whenever b £ Aλ and c £ Aλ and φ((b — c)2) < 5, then \μ(b) — μ(c)\ < e.

Corollary 3.2. Let Λ be a C*-algebra which has no quotient isomorphic
to M2(C). Let μ be a local quasi-linear functional on A which is uniformly
absolutly continuous with respect to φ, where φ is a positive linear functional
in A*. Then μ is linear.

Proof. Let (π, H) be the universal representation of A on its universal repre-
sentation space H. We identify A with its image under π and identify π[*A]"
withal**.

Let ξ be a vector in H which induces 0, that is,

φ(a) = (αξ, £)for each a E A.

Choose e > 0. Then, by hypothesis, there exists δ > 0 such that, whenever
b E Aι and c e Aλ with

then

So μ is uniformly continuous on Ai, with respect to the strong operator
topology of L(i/). Hence, by the preceding theorem μ is linear. D

Theorem 3.3. Let A be a C*-algebra with no quotient isomorphic to M2(C).
Let μ be a (local) quasi-linear functional on A. Then μ is a bounded linear
functional if and only if μ is uniformly weakly continuous on the unit ball
of A.

Proof. By Lemma 1.1 each bounded linear functional on A is uniformly
weakly continuous. We now assume that μ is uniformly weakly continuous
on A\. Let (τr,iϊ) be the universal representation of A. Let M = π[Λ]n.
Then Λ** can be identified with M and A** with M.

By Lemma 1.3 there exists a function ~μ : M\ —> C which is uniformly
continuous with respect to the weak*-topology on Mλ and such that ~β\Aι
coincides with μ\Aλ.

The weak*-topology on Mx coincides with the weak-operator topology of
L(iJ), restricted to Mλ. This is weaker than the strong operator-topology
restricted to Mλ. So ~μ is uniformly continuous on Mγ with respect to the
strong operator topology of L(ff). Thus μ is uniformly continuous on A1
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with respect to the strong operator topology of h{H). Then, by Theorem
3.1, μ is linear. •
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