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A TYPE OF UNIQUENESS FOR THE DIRICHLET
PROBLEM ON A HALF-SPACE WITH CONTINUOUS DATA

HIDENOBU Y OSHIDA

Dedicated to Professor F.-Y. Maeda on his 60th birthday

In this paper, we shall prove a property of the harmonic
function H defined on a half-space T' which is represented by
the generalized Poisson integral with a slowly growing con-
tinuous function f on the boundary 0T of T. Then we shall
investigate the difference between H and more general har-
monic functions having the same boundary value f on JT.
These give a kind of positive answer to a question asked by
Siegel.

1. Introduction.

Let R and R, be the sets of all real numbers and of all positive real numbers,
respectively. We introduce the spherical coordinate (r,®), © = (0;,60,,... ,
6,_1), in the n-dimensional Euclidean space R™ (n > 2) which are related to
the cartesian coordinates (X,y), X = (z1,%2,... ,Zn_1,y) by the formulas

n—1
$1=7‘(H sinHj) , y = rcosb,
=1

and if n > 3,

k-1
Tpy1-k =T (H sin0j) cos 0 2<k<n-1),

Jj=1

where
0<r<+400, —27'1<8,_, <27 '3r

and if
n>30<60;<71(1<j<n-2).

The unit sphere (the unit circle, if n = 2) and the upper half unit sphere
{(1,01,6,... ,0,_1) € R*; 0 < 6; < I} (the upper half circle {(1,6;) € R?;
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—27'7r < 6; <27'n} if n =2) in R* (n > 2) are denoted by S™! and ST/,
respectively. The half-space

{(X,y) eR; XeR"Ly>0}={(r,0) eR*; ©€ST, 0<r < +o0}

is denoted by T,. Then the boundary 9T, of T,, in R* (n > 2) is identified
with R"~!, which is represented as

{Q=@t&eRY; |Q=t>0, (€St}

by the spherical coordinates, where 8S’ ™" is the boundary of S} in S™~! (if
n >3, then 8S} ™' =S"?and if n = 2, then 8S}, = {-%,2}, (¢,Z) =teR
and (¢t,-%) = -t € R (¢t >0)).

Given a continuous function f on dT,, we say that A is a solution of the
(classical) Dirichlet problem on T,, with f, if A is harmonic in T,, and

lim _h(P) = f(Q)

PeTA,P-Q

for every Q € 0T,,.

Helms [4, p. 42 and p. 158] states that even if f is a bounded continuous
function on 9T, the solution of the Dirichlet problem on T, with f is not
unique and to obtain the unique solution H(P) (P = (X,y) € T,) we must
specify the behavior of H(P) as y — +o0o. With respect to this fact, Siegel
[6, Theorems 1] proved the following result. Let F, (¢ > 0) be the set of
continuous functions f(z) on R such that

oo |f (=)
/_oo de < +00.

If f € Fy, then there exists a solution H,,(f)(P) of the Dirichlet problem on
T, with f satisfying

Hyo(£)(P) = o(r**'/ cos 6;) (r = +00)
(P = (rsinb,, rcosf,) € Ty).

If h(P) is a solution of the Dirichlet problem on T, with this f such that
h(P) = o(r**'/ cos 6;) (r = 400) (P = (rsin6;, rcosb,) € T,),

then
h(P) = Hea(f)(P) + U(R)(P)

for every P € T,, where U(h)(P) is a harmonic polynomial (of P = (z,y) €
R?) of degree at most £ vanishing on 9T, = {(z,0) € R?; z € R} . Further
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he stated the following result without proof (Siegel (6, Theorem 3]). Let £ be
a non-negative integer. If f is a continuous function on 0T, (n > 2) such
that

(1.1) If@I<F(z) (QedT.=R"", |Q=1)

for some F(z) € Fy, F(z) = F(—z) (z € R), then there ezists a solution
H, .(f)(P) of the Dirichlet problem on T, with f satisfying

(1.2) Hyo(f)(P) = o(r***/ cos 6;) (r = 400)
(P = (T', @) € Tna 0= (017027- .- ae'n—l)) .

If h(P) is a solution of the Dirichlet problem on T, with this f satisfying

(1.3) h(P) = o(r**'/cos ;) (r = +00)
(P=(r,0) €T,, ©=(0,6...,0,_1)),

then
h(P) = Heo(f)(P)+UR)(P) (P €T,),
where U(h)(P) is a harmonic polynomial of P = (z1,Z2,... ,Zpn-1,y) € R*
of degree at most £ vanishing on 0T, = {(X,0) e R*; X e R*"'}.
In connection with these results, Siegel [6, p. 8] asked whether the condi-
tion (1.1) of f(Q) can be replaced by more natural condition

(1.4) /R 1‘% dX < +00  (£>0),

under which H, ,(f)(P) exists.

A special case of the following result of Yoshida shows that this question
is solved affirmatively in the case where ¢ = 0. To state it, we need the
following notations. Let ®(r, ©) be a function on T,,. We put

N(®)(r) = ®(r,0)cos,doeg (O =(0,,02,...,0,_1))
Si—l
and

Ho(®) = lim +~'N(®)(r),

T—>00

if they exist, where dog is the surface element on S™~*. Let G,(P;, B) (P,
P, € T,) be the Green function of T,. By K, ,(P,Q) (P € T,, Q € 9T,),
we denote the ordinary Poisson kernel of T,

2m, (n=2)
(n—2)sn, (n2>3)

, 0

c____
" Ov

G.PQ = ZP-QI™" = {
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0 . L .
where — denotes the differentiation at () along the inward normal into T,

ov
and s, is the surface area 27™/2{I'(n/2)}~! of S™~1.

Theorem A. (Yoshida [8, Theorem 3 and Lemma 3]). Let f(Q) be a con-
tinuous function on T, (n > 2) satisfying

+o0
(1.5) / t2 (/w_1 |f (2, §)|d0£> dt < 400,

where do; is the surface element of 8ST™' = S""2 (n > 3) and

[ seonas =] (D) + |1 (6-3)| @=2

+

Then the Poisson integral
Hon1)(P) = [ 1(QKon(P,Q)dog

is a solution of the classical Dirichlet problem on T, with f such that

Ho (HOn(lfl)) =0.

If h(P) is a solution of the classical Dirichlet problem on T, with this f,
then, two limits pio(h) (—00 < pio(h) < +00) and po(|A]) (0 < po(Jhl) < +00)
ezist, and if

(1.6) po(|R]) < +o0,
then
(1.7) h(P) = Hon(f)(P) + 2ns;" o(h)y

for any P = (X,y) € T,.

We remark that (1.5) is equivalent to

1£(Q)]
/Rn_ll_'_landQ<+oo.

If h is a solution of the Dirichlet problem on T, with this f such that
h = o(r/cosf;) (r — oo0), then uo(|h]) = 0, po(h) = 0 and hence h(P) =
Hy .(f)(P). This shows that Theorem A gives a positive answer to Siegel’s
question in the case where £ = 0. However Theorem A gives a form of h not
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only in the case where po(|h|) = 0 but also in the case where 0 < po(|h|) <
+00.

In this paper we shall show that a solution of the Dirichlet problem on T,
with f satisfying (1.4) satisfies a natural condition weaker than (1.2) (The-
orem 1) and other solutions with this f satisfying some growth condition
different from (1.3) are specified in a certain sense (Theorem 2), which con-
tains a positive answer to Siegel’s question in every case (Corollary 1) and
gives a generalized form of Theorem A (Corollary 2). We shall also state
Theorem 2 in more general form (Theorem 3).

I would like to thank the referee for suggesting a much simpler proof of
Lemma 3.

2. Statement of results.

We denote the origin of R* by O. Let & (kK > 0) and n (n > 2) be two
integers and let Ly 4o be the (n + 2)-dimensional Legendre polynomial of
degree k, where Lg 2 = 1. We also put

(k +n — 1)
Ck,n+2 = k‘ -

We note that ¢ 0Ly, 12(t) is equal to the ultraspherical (or Gegenbauer)
polynomial P”? of degree k associated with 2 (see Stein and Weiss [7, p. 148]).
The following theorem gives the Fourier expansion of Ky (P, Q).

Theorem B. (Armitage [1, Theorem E] and Gardiner [3, Theorem B]).
Let Q = (Z) = (t,&) e R*1 — {0}, |Q| =t, £ €S™ 2 (n > 2). The function
Jk,n,Q OfP = (Xay) = (T7®) € Rna 0= (017027' . a6n~l)7 given by

2.1) Jino(P) =r""cosf Ly ,io(sinb; cosy)
n,Q )
(v s the angle between (X,0) and (Z,0))

1s a homogeneous harmonic polynomial of degree k + 1. Further the function
independent of t and r

Ling(©) =" g no(P)

(which is the restriction to the surface S™™* of Jy. . o(P) and hence a spherical
harmonic of degree k + 1) satisfies

(2.2) [ T1.ne(©)] < cosby
for each P = (r,©) € R*. Ifr <t and © € ST™" then Ky (P, Q) is given by
2 o0
Kon(P,Q) = — Z Chntat T L £(©).

Sn k=0
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For an integer £ > 1 and two points P = (r,0) € T,,, Q = (t,£) € 9T,

we put
9 &1
Vt,n(P, Q) = s_ Z Ck,n+2t_k—n"'k+llk,n,€(@)-

7 k=0
We see from Theorem B that for any fixed @Q € 9T, the function V; ,,(P, Q) of
P € T, is harmonic on T, and vanishes on dT,,. We define another function

Ven(P,Q)  (PET,,Q=(t¢) € 9T,, 1 <t < +00)
0 (PET,Q=(4§ €dT,, 0<t<1).

In addition to Ky ,(P, Q), the Poisson kernel K, ,(P,Q) (P € T,, Q € 9T,)
of order £ (£ > 1) is defined by

Kl,n(P’ Q) = KO,‘H(Pa Q) - Wl,n(P’ Q)

(see Siegel [6, p. 7] and also see Armitage [1, p. 56]).
Let £ be a non-negative integer. Given a function ®(r,©®) on T,, we set

pe(®) = lim r~'N(®)(r),

Wl,n(Pa Q) = {

if it exists. By F;, we denote the set of continuous functions f(Q) on
9T, = R*! (n > 2) such that

/ 17 (Q)]
R

2.3 —_—
(23) o TH]QI

dQ < +o0,

which is equivalent to

+o00
/ 2 (/ If(t,£)|da§) dt < +oo.
asy™?

Hence F,, is equal to Fj.

Theorem 1. Let £(£>0), n(n > 2) be two integers and f € F;,. Then

Hen($)(P) = [ [(@Kun(P,Q)dog
is a solution of the classical Dirichlet problem on T, with f satisfying

(2.4) He (lHl,n(f)I) = 0.

Remark 1. Further, suppose in Theorem 1 that f € Fj. , for some ¢ less
than £. Then

-1
He al1)(P) = HonlD)(P) = = Y chmsadinl)(P),

n k=¢
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where
+o0o
TialPP) = rt [ gk (Asn_lzk,n,g(®)f(t,s>dag) dt P =(r,0).

We note from (2.2) that

T DP)| < P cosy [ 1742 ( /
1

Put Ji,no(P) = yYino(P), and observe from (2.1) that Yy, o(P) is a
polynomial of P = (z;,%5,... ,Z,_1,y) € R* of degree at most k£ and even
with respect to the variable y. Hence, if we set J; , (f)(P) = yY; .(f)(P),
then Y;  (f)(P) is a polynomial of P = (z1,%2,... ,Tn-1,y) of degree at
most k and even with respect toy (k=¢,0'+1,0' +2,... ,£—1). Thus

Hyo(F)(P) = He n(£)(P) +yL(f)(P),

where L(f)(P) is a polynomial of P = (z1,Zs,... ,Zn_1,y) € R* of degree
at most £ — 1 and even with respect to y.
Remark 2. If (1.2) is satisfied, then (2.4) also holds. Since Siegel assumed
(1.1) which is stronger than (2.3), he could obtain (1.2). It is interesting to
ask whether (1.2) follows under (2.3) or not.

The following result is just a generalization of Picard’s theorem stating
that a positive harmonic function in the Euclidean space is a constant. Let
H(r,0) be harmonic on R™ (m > 2). If, for some positive t > 1,

If(t,ﬁ)ldog> dt < +oo0.

n—1
S+

r T UM(HY)(r) -0 (r— +00), M(HT)(r) = H*(r,0)doe,

m~—1
S+

then for some positive integer £ less than t
¢
H(r,0)=C+ Y E(r,0) ((r,0) eR™),
k=1

where C is a constant and Zi(r,©) = r¥Y;(©) is a homogeneous harmonic
polynomial of order k (Y;(©) is a spherical harmonic function) (see e.g.
Brelot [2, Appendix; §26]).

It is well known that many results on harmonic functions in R* can easily
obtained by a passage to R**%. By using this fact and the result with m =
n + 2 stated above, Kuran proved the following Theorem C. To state it, for
a function ®(r,0) on T, we define

Dyd,r) = ()™ [ yo(r,©)dst,
S
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if it exists, where S} = {(r,0) € T,; © € S}7'}, o} is the surface area of
the spherical part of S} and dS} is the surface element of S;.

Theorem C. (Kuran [5, Theorem 10]). Let h(X,y) (= h(r,0)) be a har-
monic function on T, such that h vanishes continuously on 0T,.
If, for some positive t,

(2.5) lim r~*"2D(yh*,r) = 0,

r—o0

then
h = yII(h)

in T,, where II(h) is a polynomial of (z1,z2,... ,Zn_1,y) € R™ of degree less
than t and even with respect to the variable y.

Remark 3. Let ®(r,©) be a function on T,. Then
(2.6) D(y®,r) = 2s;'rN(®)(r),
if they exist. Hence (2.5) is equivalent to

lim r~ Y N(RH)(r) = 0.

700

The following theorem answers affirmatively Siegel’s question in the case
where ¢ is a positive integer.

Theorem 2. Let £ (£ > 1), n (n > 2) be two integers and

If h(r,©) is a solution of the Dirichlet problem on T, with f satisfying

(2.8) pe(hT) =0,
then
(2.9) h(P) = Hen(f)(P) + yIL(h)(P)

for every P = (X,y) € T,,, where II(h)(P) is a polynomial of P = (z1, T2, ..
Zn_1,Y) € R" of degree at most £ —1 and even with respect to the variable y.

The result obtained by Siegel immediately follows from the remark fol-
lowing Theorem A (the case £ = 0) and Theorem 2 (the case £ > 1).
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Corollary 1. Let £ be a non-negative integer and f(Q) be a continuous
function on 0T, = R*! (n > 2) satisfying

If(QI<F(z) (QeR, |Q=2>0)

for some F(z) € Fy (£ > 0), F(z) = F(—z) (z € R). If h(P) is a solution of
the Dirichlet problem on T, with f such that

h(P) = o(r***/cos ;) (r —oc0) (P=(r,0)€T,),

then
h(P) = Hyo(f)(P) + U(R)(P) (P=(r,0)€eT,),

where U(h)(P) is a harmonic polynomial of P = (z1,Z2,... ,Zp_1,y) € R®
of degree at most ¢ vanishing on 9T,.

Theorems 1, 2 and Remark 1 also give a generalized form of Theorem A.

Corollary 2. Let £ be a positive integer and f(Q) be a continuous function
on 0T, (n > 2) satisfying f € Fy_; . Then the Poisson integral

Hesn(D(P) = [ [(@Ke1n(P,Q)dog
is a solution of the classical Dirichlet problem on T, with f satisfying

(2.10) s (HHy - a(£)]) = 0.

If h(P) is any solution of the classical Dirichlet problem on T, with this f
satisfying
/J'f(h‘+) = 0)

then
(2.11) h(P) = He_1,n(f)(P) = yII*(h)(P)

for every P = (X,y) € T, where II*(h)(P) is a polynomial of P with degree
at most £ — 1 and even with respect to the variable y.

Remark 4. Since
W—l(h) = W—l(yn*(h))

from (2.10) and (2.11) and

yI'(R)(P) = rp(h)(©){1 +o(1)}  (r — +00) (P =(r,0)€ T,)
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for some ¢(h)(©) on S} _,, it follows that
pes(h) = /S _(h)(8) cos by do
+

exists. Put £ = 1 in Corollary 2. Then II*(h)(P) is a constant C and

to(h) = Cue(y) = 2—0723,,. Thus we obtain (1.7) under the weaker condition
p1(h*t) = 0 than (1.6).

It may be more desirable to restate Theorem 2 in the following form.
Theorem 3. If h(r,©) is a solution of the Dirichlet problem on T, (n > 2)
with some f € F,, (£ > 0) satisfying

. +
Bm,, e N0 o
logr

then
h(P) = Hyu(f)(P) +yA(h)(P)

for every P = (X,y) € T,,, where A(h)(P) is a polynomial of P = (z,,%s, ... ,
Zn_1,Y) € R® and even with respect to the variable y.

3. Proofs of the Theorems 1, 2, 3 and Corollary 2.

For a set E, E C R, U {0}, we denote {(r,©) € T,; r € E} and {(,©) €
OT,.; r € E} by T,E and 0T, E, respectively.

Lemma 1. For a positive integer £ we have

|Kon(P,Q) — Veu(P, Q)| < Cir**t't ™™t cos 6,
for any P = (r,0) € T,, © = (6,,0,,... ,0,_1) and any Q = (t,€) €
T, — {O} (n > 2) satisfying 0 < 2% < 1, where C; is a constant depending
only on £ and n.

Proof. Take any P = (r,0) € T, and any Q = (¢,£) € 9T, — {O}. Put

R1=2Tr,a=~;—and91=9in

a"*G, ((aRy,0,),(aR;,02)) = G, ((R1,01), (R, 02))
(0, € RI-) (Rl’el) I (R2762) € Tn) .
When (Rz, ©,) approach to (2,£) € 9T, along the inward normal, we obtain

2r

60 (2)" Kn:0), 06) = Ko (%.0), 2,0)).
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2
Suppose that 0 < ?T < 1. From Theorem B and (2.2) we have that

(3.2)
2r = 2\ k1
Kon ((F:0), 29) =25 T armna? " (F)  Fune(®)
k=0
[e o] 2,,. k+1
<8127 Y o027 (“t‘) [ k,n,e(O)]
k=¢
T £+1 oo
< g2 <—i—) cos 6, Z Chn22 "
k=£
Since
& _ +e-1) (V21 =1
Ck,n 2'“:—-—(”_/ (——u) 1—uw) " ftdu=C"
kzzl_, hnt2 (n—-D-1)/ \2 ( ) !
is finite, we immediately have
-1
KO,n((Ta @)» (ta §)) - 23;1 Z Ck,n+2t—n_krk+1Ik,n,§(®),
k=0

< Gt it cos 6, (Cy, =21s71Cy)
from (3.1) and (3.2), which is the conclusion. o

Lemma 2. Let ¢ be any positive integer. Let f(Q) be a locally integrable
function on 0T, (n > 2) satisfying (2.3). Then Hy,(f)(P) is a harmonic
function on T,.

Proof. For any fixed P = (r,0) € T,, take a number R satisfying R >
max(1,2r). Then from Lemma 1 we have
(3.3)
[ 11@IIKen(PQ)] do
OTn[R,+00)

= I (@] Kon(P, Q) — Ven(P, Q)| dog

AT [ R,+00)

+oo
< Cyrtt cos 6, / 2 /
R as

Thus Hy,(f)(P) is finite for any P € T,. Since K,,(P,Q) is a harmonic
function of P € T, for any fixed Q € 0T,,, He,(f)(P) is also a harmonic
function of P € T,,. O

1£ (2, €l dUg) dt < +oo.

n—1
+
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Lemma 3. Let £ be any positive integer. Let f(Q) be a locally integrable
and finite-valued upper semicontinuous function on 9T, (n > 2) satisfying
(2.3). Then

lim p_yq+, per. Hen(f)(P) < £(Q7)

for any Q* € OT,,.

Proof. Let Q* = (t*,£*) be any fixed point of 0T, and € be any positive
number. Take a positive number §, § < 1, such that

(3.4) f(Q) < f(Q) +e

for any Q € 9T, N Us(Q*), where Us(Q*) = {P € R*; |P — Q*| < ¢} . From
(3.3), we can choose a number R*, R* > 2(t* + 1), such that

(35) L s V@ Eea(P,Q)] dog <,
for any P € T, NUs(Q*). Now we write
HalP)= [ [(@Ken(P.Q)dog
T .NUs(Q*)

+ f(Q)Kf,n(P’ Q) daQ

8T ,[0,R*)—Us(Q*)

+ F(Q)Kn(P,Q) dog
8T n[R*,+00)
= Ii(P) + I(P) + I;(P),

wpy= [ J@Kon(PQdog
- / F(QWin(P,Q) dog
8T .NUs(Q")
=11(P) + I 2(P)
and

L(P) = / F(Q)Kon(P,Q)dog
8T »[0,R*)-Us(Q*)

-/ FQWen(P,Q) dog
8T n[0,R*)-Us(Q*)
= IQ,I(P) + I2’2(P).
First we see from (3.5) that

(3.6) |I(P)| < €
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for any P € T, N Us(Q*). Since

1 _/ KO,n(P, Q) daQ
AT .NUs(Q*)

- / Ko (P,Q)dog
JOT —Us(Q*)

21 ,
== P — Q™" dog
Sn JOT.—Us(Q*)

for any P = (X,y) € T,, we have

lim / Ko (P,Q)dog =1
PeT,, P>Q* aTnﬁU,s(Q*) O’n( Q) Q

and hence from (3.4)
(3.7) lim per,, pog-11,1(P) < f(Q) +e.

Also observe that

69 nae<Z(3) e ( [ If(t,§)|d05> dt

for any P = (X,y) € T, NUs,2(Q*). Since
[ @) Win(P,Q) dog < Cacost,
9T A[0,R*)

for any P = (r,0) € T, NUs(Q*), © = (61,05,... ,0,_1), where

-1 R*
@=%#Z%WW+Nﬁ/f+%/ vmmwﬁﬁ
k=0 1 sy
we obtain that

(39 P [ @I Wen(P.Q)] dog

AT .NUs (Q*)
< Cycos6, — 0

and

(3.10) I1,2(P)| < /

0Tx[0,R*)-Us(Q*
< Cycos6; — 0,

)If(Q)I Wen(P,Q)| dog
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as P = (r,0) = Q*. All (3.6), (3.7), (3.8), (3.9) and (3.10) give
im per,, poo- Hen(f)(P) < £(Q) + 2,
from which the conclusion immediately follows. O

Proof of Theorem 1. If £ = 0, then Theorem 1 is included in Theorem A.
Hence we can assume that £ > 1. It immediately follows from Lemma 2 and
Lemma 3 that H,,(f)(P) is a harmonic function on T,, and

lim Hn(f)(P) = f(Q)

pETy, P2Q

for any Q* € IT,,.
To prove (2.4), we see first that

(31)  N(Hea (D) ()
< [ ([ /@I Kea(P.Q) dog) cosr doe
=I,(r) + L(r)

for any P = (r,©) € T,,, © = (6,,0,,... ,0,_1), where
L) = ( [ QI Ke(PQ) daq) cos 6, doe
s \JoT,[2r,4o0)

and

By = [ ([ 1£(@QI1Kea(P, @) dog ) costy doe.
s3~1 \JorT.[0,2r)

Let € be any positive number. Take a sufficiently large number r¢ such

that
+o0
[ (/ lf(t,é)ldog> dt <n(Cisn) e,
2 asy!

To

where C] is the constant in Lemma 1. Since

(3.12) / cos®> 0, dog = (2n)'s,,
s3!
we have from (3.3)

(3.13) Li(r) < =rtH?

IA
| ™
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for any P = (r,0) € T,,, 7 > 70.
Suppose P = (r,0) € T,[1,+00). For any Q = (¢,£) € 9T, (0 < ¢t < 2r)
we obtain

-1
[Ven(P,Q)| < 25t "rcos 6, Z 27 npa(2r/t)F

k=0
< Cgt-n—l+1'f'e COS 91 O = (01, 92, Ce 7011—1)

from (2.2) and hence

Kon(P,Q) + Csrtt™" " cos by, (t>1)

|Kl,n(P’ Q)I < {Ko,n(Pv Q)7 (O <t < 1)7

where

Cs =¢2%s7! max 27 %¢ .
3 n 0<k<l—1 k,n+2

Hence we have
(3.14) I(r) < L(r) + La(r)
from (3.12), where

L(r) = / 1£(@)] </ . Ko,»(P, Q) cos 6, dUe) dog
8T ,[0,27) ST

and

Lalr) = Ca(2n) s [ T ( | E)Idas> dt.

Here, consider the function K, ,(P,Q) of P = (r,0) € T, for any fixed
Q = (t,&) € OT,,. Then we see from (2.5) that

n—1
+

Sn
N (KO,n) (7") = Z"’D (yKO,n’ 7")
and from Kuran [5, Lemma 2] and Helms [4, p. 109; Example 2] that

2r2sip—m, (t<r)

nD (yKon,T) = {27’23;175-717 (r <1%) ’

which gives

n”irtr, t<r) ~1,1-n

Ko (P, 0, doe =
on(F, Q) cos b, doe {n‘lrt‘", (r<t)

n—1
S+
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Hence we obtain

(3.15)
2r
La(r) <n7iri | w*(éﬂduu@nmﬁ)w

1
=n"lr —"/0 " (/851_1 If(t’§)|d05> dt
2r

2r
< Cun it 4 n~1,,,1—n/ ¢=t-1(2r)mHe-t (/‘ﬁn_1 |F(t,6)] d05> dt
+

1

— C4n—1,,,1—n + n—12n+£—1r£,‘/)(r),

where |
&=Lﬂ”(&TU@mWJﬁ
and
P(r) = /1 §e1 ( /381_1 | f(t,f)ldog) dt.
Then
(316) Im(r) = C3(2ﬂ)_18nrl¢(T).

Thus if we can show
(3.17) P(r) = ofr) (r = o0),

then we have
L(r) = o(r*™) (r = o)

from (3.15),
L 5(r) = o(r**h) (r = 00)

from (3.16) and hence from (3.14) we can find a number r; such that
(3.18) I(r) < Sptt

for any r > ry.



DIRICHLET PROBLEM ON A HALF-SPACE 607

To see (3.17), we note that ¥ (r) is increasing,

+o00 M _ +oo -
dr = 2/2 ¢ </881_1 |f(t,§)|do£) dt < 2C;

1 r

and

'L/)(T) < 2/1“T 42 <-/6§1_1 lf(t’€)| dU{) dt < 2C5,

Cy = /loo 2 </8§"_1[f(t,§)|da£) dt.

From these we see

where

+00
/ r~2(r) dr < +oo

by the integration by parts. Since

M gy [Terars [ e @),

T

this gives (3.17).
If we put r, = max(rg,r;), then we finally have from (3.11), (3.13) and
(3.18)
r= N ([Hen(f)]) (r) < e

for any r, r > ry, which gives (2.14). 0

Proof of Theorem 2. Consider the function h — H, ,,(f). Then it follows from
Theorem 1 that this is harmonic in T, and vanishes continuously on OT,,.
Since

(3.19) 0< {h—Hen(f)} (P) < BT (P)+ {Hea(f)} (P)
for any P € T, and
pe ({Hean(£)} ) =0
from (2.4) of Theorem 1, (2.8) gives that
pe ({h = Hen(£))) = 0.
From Remark 3 and Theorem C we see that

h(P) = Hy(f)(P) = yI1(h)(P)
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for every P = (X,y) € T,, where II(h) is a polynomial in R" of degree at
most {—1 and even with respect to the variable y, which gives the conclusion
of Theorem 2. O

Proof of Corollary 2. The first part follows from Theorem 1. Since f € Fy ,,
Theorem 2 gives
h(P) = Hen(f)(P) + yIL(h)(P)
for every P = (X,y) € T,, where II(h)(P) is a polynomial of P € R* with
degree at most £ — 1 and even with respect to the variable y. Remark 1 also
gives
Hyn(f)(P) = He1,2(f)(P) + yL(f)(P)

for every P = (X,y) € T,, where L(f)(P) is a polynomial of P € R* with
degree at most £ — 1 and even with respect to the variable y. From these, we
evidently obtain (2.11). O

Proof of Theorem 3. Put
— log N(ht)(r)

1 r—00 =

logr

It immediately follows that pa)41(h™) = 0. Take an integer £* satisfying
¢* > max(¢, [a] + 1). Since f € Fp. , and pe(h*) = 0, Theorem 2 gives that

(3.20) h(P) = Hp (f)(P) + yII(h)(P),

where II(h)(P) is a polynomial of P and even with respect to y. If £ = ¢*,
then (3.20) gives the conclusion. Suppose that £* > £. From Remark 1 we
also see

(3.21) Hy n(£)(P) = Hen(f)(P) + yL(F)(P),

where L(f)(P) is a polynomial of P and even with respect to y. From (3.20)
and (3.21) we have

h(P) = Hen(f)(P) +yA(R)(P), A(h)(P) =TI(R)(P) + L(h)(P),

which is also the conclusion of Theorem 3. d
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