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STABLE RELATIONS II:
CORONA SEMIPROJECTIVITY AND DIMENSION-DROP
C*-ALGEBRAS

TERRY A. LORING

We prove that the relations in any presentation of the
dimension-drop interval are stable, meaning there is a per-
turbation of all approximate representations into exact rep-
resentations. The dimension-drop interval is the algebra of all
M, -valued continuous function on the interval that are zero at
one end-point and scalar at the other. This has applications
to mod-p K-theory, lifting problems and classification prob-
lems in C*-algebras. For many applications, the perturbation
must respect precise functorial conditions. To make this pos-
sible, we develop a matricial version of Kasparov’s technical
theorem.

1. Introduction.

Suppose R is a finite set of relations on a finite set G of generators so that
C*(G|R) is isomorphic to the dimension-drop interval

I, ={f € C[0,1] | £(0), f(1) € CI}.

For simplicity, we assume the relations are of the form p(¢;,... ,9,) = 0
for some *-polynomial p. Weak stability means that an approximate rep-
resentation (zi,...,Z,), meaning an n-tuple of elements in a C*-algebra A
such that each p(z;,... ,z,) is close zero, can be perturbed slightly within
A to an actual representation (Z,,...,Z,). That this (and a little more)
can be done was shown in [8], but only for one specific set of relations.
The relations R are stable if the pertubation can be done so that whenever
there is a *-homomorphism ¢ : A — B which sends (z,,... ,z,) to an exact
representation, then ¢(Z;) = ¢(z;).

There are several advantages to stability over weak stability. It is far more
useful when dealing with extensions of C*-algebras and it depends only on
the universal C*-algebra, not the choice of relations for that C*-algebra.
The reason for our focus on the dimension-drop interval is primarily that
this is the most complicated building block used in the inductive limits,
called AD algebras, that appeared in Elliott’s first classification paper [7].
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462 TERRY A. LORING

See [5] for an application of stable relations to the extension problem for AD
algebras. See [4] for a discussion of the role of the dimension-drop interval
in mod-p K-theory. Our results will be stated in the more general context
of dimension-drop graphs, but certainly the dimension-drop interval is the
most important case.

In §2 we give a characterization, in terms of lifting properties, of the uni-
versal C*-algebras for stable relations. Since this property, called semipro-
jectivity, depends only on the C*-algebra, this frees us from having to specify
generators and relations in many cases. We have a third, equivalent prop-
erty involving corona algebras. This characterization formalizes some of the
ideas used by Olsen and Pedersen [11] to show that nilpotents always lift.

For any C*-algebra A we let M(A) denote the multiplier algebra of A and
C(A) denote the corona algebra M(A)/A.

By a dimension-drop graph, we mean a C*-algebra of the form

{f € C(X,M,) | f(v) € CI for all vertices v}

where X is the underlying topological space for a graph and n is a positive
integer. We call this a dimension-drop interval in the special case where X
is the unit interval with 0 and 1 as vertices.

To handle these algebras we need several generalizations of Kasparov’s
Technical Theorem. The purpose of these results is to show that, inside
of a corona algebra, one can find good substitutes for elements that would
exist if only the corona algebra were a von Neumann algebra. For example,
there is an acceptable substitute for the logarithm of a unitary with full
spectrum. Also, if M,,(A) sits inside the corona algebra, there are elements
that function just like matrix units in the way they multiply against M,,(A),
even if A is not unital but only o-unital.

These technical lemmas are very similar to the second splitting lemma in
BDF [3, Lemma 7.3]. The basic form of these results is to show that every
¢ : A — C(E) factors through some injection A — A;. In the BDF case, A
and A; are commutative and C(F) is the Calkin algebra.

Once we have shown that a dimension-drop graph is universal for a stable
set of relations, a host of perturbation, lifting and homotopy results follow
regarding homomorphisms (and asymptotic morphisms) out of dimension-
drop C*-algebras. For most of these we refer the reader to [8] but we will
mention one of these, [8, Theorem 3.8]. If a separable C*-algebra A has the
property that any finite set of its elements can be approximated by elements
of a C*-subalgebra isomorphic to a quotient of a dimension-drop graph, then
A is the inductive limit of dimension-drop graphs.

A C*-algebra that will figure prominently in all this the cone CM,, =
M, (Cy(0,1]). By [8, Theorem 4.9] we know that C M,, is projective. This is
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a very useful fact as there are many copies of C M,, inside of a dimension-drop
graph.

The author is grateful to Gert Pedersen for discussions which lead to much
simplified proofs in Section four.

2. A characterization of stability.

We begin with a characterization of projectivity in terms of corona algebras
that is suggested by [11]. This then generalizes to give a characterization of
semiprojectivity and of stability for relations. One consequence is that two
finite sets of relations that determine isomorphic universal C*-algebras are
either both stable, or both not.

All our definitions are with respect to the full category of not-necessarily-
unital C*-algebras and *-homomorphisms.

Definition 2.1. A C*-algebra A is projective if, for every surjection
m : B — C and every x-homomorphism ¢ : A — C| there exists a *-
homomorphism @ : A — B such that mo @ = ¢. We call A corona projective
if this holds only in the special case where C = C(F) for some o-unital
C*-algebra E.

Theorem 2.2. Let A be a separable C*-algebra. Then A is projective if and
only if A is corona projective.

Proof. The forward implication is trivial. Suppose that A is corona projec-
tive and that ¢ : A — C and a surjection 7 : B — C are given. Replacing B,
if necessary, by the closed span of a lift of a dense sequence in p(A) reduces
the problem to the case where B is separable.

Let I = ker(w) and let I+ denote the annihilator of I in B. As INT+ =0
and I + It is an essential ideal in B, we have the following commutative
diagram with the left square a pull-back.

B ——  B/I* 2 M+ IH)/T+
A 2= B/I —— B/(I+1") —2—5 MUI+IY)/(I+1IY)
By the corona projectivity of A, we have
i A— M(I+IY)/T+

which is a lift of the composition of the bottom row:
We now claim that 75! (im(s,)) € im(¢;). Suppose b € 75 ' (im(t5)). Thus
7o (b) = 13(c) for some c. But ¢ = m;(a) for some a, so

T2 (t1(a)) = ta(mi(a)) = ta(c) = ma(b).
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This implies
u(a) — b € ker(my) = (I + I')/I* C B/I* = im(y,)

and hence b € im(¢;).

By the claim, we may regard 1) as a map into B/I*. The pull-back
property now shows that ¢ and 1 together determine the desired lifting
to B. O

Following Blackadar [1] we define semiprojectivity as a lifting property.
This turns out to have better closure properties than the version of semipro-
jectivity due to Effros and Kaminker [6], which is better suited to some
homotopy calculations.

Definition 2.3. A C*-algebra A is called semiprojective if, for every *-homo-
morphism ¢ : A = B/J1,,, where the I,, are increasing ideals in B, and with
Tt : B/I,, — B/UI, the natural quotient map, there exists, for some m, a
*-homomorphism ¢ : A — B/I,, such that 7, o = . We call A corona
semiprojective if this holds only in the special case where B/|J I, = C(E)
for some o-unital C*-algebra E. O

Theorem 2.4. Let A be a separable C*-algebra. Then A is semiprojective
if and only if A is corona semiprojective.

Proof. The proof is similar to that of Theorem 2.2 except that one uses the
following diagram, with I = |J L,.

B/I, — B/(I, + I*) —%— M+ IY)/I+

A —*— B/I —— B/I+I*) —2— M{I+IY)/(I+1Y)

Notice that |JI,, + I+ = I + I't, so corona semiprojectivity applies, and the
left square is still a pull-back since I N (I, + It) = I,,. O

If A is unital, then it is easy to see that one need only check the corona
semiprojectivity condition in the special case ¢(1) = 1.

We now recall the definition of stability from [8]. We shall assume that
G ={g1,--- ,9} is a finite set of generators and R = {pi,... ,ps} is a finite
set of *-polynomials with zero constant terms. By C*(G|R), we denote the
universal (not-necessarily-unital) C*-algebra generated by g, ... , g, subject
to

”gJ” <1 and pi(gh' . ng) =0.
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By C*(G|R), we denote the universal unital C*-algebra generated by g,,... , g
subject to
lgill <1+€ and |pi(gr,-.., @)l <e

Sometimes, to be more explicit, we will denote the generators of C*(G|R)
by g5,...,9;. We let P, denote the surjection

P, : C*(G|R) = C*(G|R)

which sends g5 to g;.

If, for every n > 0, there exists € > 0 and a *-homomorphism
o.: C*(G|R) = C(G|R)

such that
”05(9;)—9;”S77, .7:1’)1
and P, oo, = id, then R is stable.

Theorem 2.5. For a finitely presented C*-algebra C*(G|R), the following
conditions are equivalent:
(1) R is stable.

(2) C*(G|R) is semiprojective.
(3) C*(G|R) is corona semiprojective.

Proof. The implication (1) = (2) follows from [8, Theorem 3.2] while (2) <
(3) is a special case of Theorem 2.4. For (2) = (1), applying semiprojectivity
to the identity map immediately gives a map 6. : C*(G|R) —C:(G|R) with
P.og; =1d. Let o, equal the composition of &, with the natural surjection
of C(G|R) onto C*(G|R) for e sufficiently small, 0 < e < €. O

3. Generalizations of Kasparov’s Technical Theorem.

Using the techniques of [8] and [11] we derive several generalizations of
Kasparov’s Technical Theorem (KTT). Our goal is to find the closest possible
thing to matrix units inside a corona algebra for C*-subalgebras of the form
A ® F where A is o-unital and F is finite-dimensional.

All our theorems involve a subset D with which these ersatz matrix units
are to commute. Easier proofs exist if one ignores D and sticks with the
separable case. Indeed, one may use the projectivity of C M,,, or @ Cy(0, 1],
and [12, Proposition 3.12.1] along the lines of an observation of Cuntz de-
scribed in [2, §12.4]. We will discuss this further in recent joint work with
Gert Pedersen [10].
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In this section, E will always denote a o-unital C*-algebra and C(FE) its
corona, algebra.

Theorem 3.1. Suppose Ay,..., A, are o-unital C*-subalgebras of C(E).
Let D be a separable, unital C*-subalgebra of C(E) such that

A;DA, =0, j#k.
There ezist g1,... ,9, in C(E)N D' such that
OSQJSL j:1,...,’fl,

9ig9x =0, J#k,
g;ja =ag; =a, VYa€A.

Proof. For n = 2 this is equivalent to KTT. Indeed, it is very close to
the equivalent result [11, Theorem 3.7]. An induction argument gives the
general case. O

Notice that A; A, = 0 implies that the C*-algebra generated by A; U A,
is isomorphic to A, @ A,. Therefore, Kasparov’s Technical Theorem implic-
itly involves a x-homomorphism A, & A, — C(FE). A natural setting for
generalization is M,(A) — C(E).

Theorem 3.2. Suppose A is a o-unital C*-algebra,  is a x-homomorphism
v: M,(A) - C(E)

and im(p) commutes with a separable subset D of C(E). There ezxists a *-

homomorphism
v:CM, - C(E)nD'

such that, setting q;; = Y(t ® e;5),

gijpla®en) =0rp(a®ey), Vac A

Proof. Without loss of generality, D may be assumed to be a unital C*-
algebra. Applying Theorem 3.1 to

D,()D(A ® 611)7 s ’(p(A ® enn)
we obtain g¢;,... ,g, in C(F) N D' such that

OSQ@SL gzg]‘:O(Z?éJ)a
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giv(a®ey;) = pla®ejj).
Let h be a completely positive element of A. Since, for any a in A,
gip(hah ® ejr) = gigjp(h ® ej;)p(ah @ ejx)
we conclude
(1) gip(a ® e;r) = dy50(a @ ejy)

for all 4,7,k and all a € A.
Let z = ¢(h ® w) where

Since z is normal and both z and |z| = ¢(h ® I) commute with D, we may
apply [11, Theorem 4.4]. Thus, there exists u in C(E) N D', with |lu|| <1,
such that z = u|z| and z* = u*|z|.

Multiplying z = u|z| by ¢(ah ® e;;) yields

up(hah ® e;;) = p(hah @ e;41 ;).

(Addition taken mod n.) Therefore, by this and a similar calculation based
on z* = u*|z|,

(2) upla®e;) =pla®eyr;) and u'pla®e;) =¢pla®e,y;),

for all 5,k and all a € A.
We now make a first approximation on what shall be the images, under
1, of the generators t ® e;; of CM,,. Let

an = gau" g1,
and then for j=n-1,...,2,
a1 = gj1w’ " ay].

Clearly a, € D" and

(3) las] < laz] <+ <la,| < L.
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By induction, a; € g;C(E)g,. This forces some of the relations determining
C M, (as in [8, Proposition 2.7]) to hold, namely

ajak=0, j,k=2,...,n,

(4) aja, =0, j#k.
We claim that, for all b € A and all ¢, j, k,
(5)  aip(b®ejr) = 61;p0(b®eix) and ajp(b ® ejx) = dijp(b ® exr).
For i = n this follows directly from (1) and (2). But then
lan]p(b ® ;i) = d1;0(b ® ;i)

so one may handle the case i = n — 1, et cetera.
As done in the proof of [8, Lemma 4.8], for j = 2,... ,n we define

;= lim ay(1/m) +a50,) ™ (a30) /2

By the calculations done in the proof of [8, Lemma 4.8] we conclude that
setting (¢ ® e;;) = @; defines a homomorphism

v:CM, - C(E)nD'.
For every b € A, (5) implies
(6)  aip(b®ejr) =d10(b® eix) and G;p(b ® ejx) = d;50(b ® exr)
whence

P(t®eij)p(b®en) = dirp(b® ey).

4. Interval stretching in corona algebras.

We continue in this section to assume C(F) is the corona algebra of some
o-unital C*-algebra.
Let us consider a simple case of Kasparov’s Technical Theorem. Given

hi,hs in C(E) such that

(7) 0 S hi S 1 (Z = 1,2) and h1h2 = O,
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the conclusion is there exists an additional element so that now

(8) hiz =0, hoz = hyand h;h, =0.
The universal C*-algebra for these relations are as follows:
C*(h1, hy | (7) holds ) = Cy([-1,0) U (0, 1])

and
C*{h1, ha, z | (8) holds ) = Co([~1,0) U (0,2]).

For this reason, we think of Kasparov’s Technical Theorem as a device for
stretching an interval algebra at a point.
We introduce some notation to be used for the rest of this section.
Let X C C denote the union of the unit circle and the interval [-2, —1].
Let
A, ={f €eC(X,M,) | f(—2) is scalar}

and let a : M,(Cy(0,1))~ — A, denote the inclusion of the subalgebra of
functions in C(X, M,,) that are constant and scalar on [—2, —1].

Lemma 4.1. Let B denote any separable, unital C*-algebra. Given a *-

homomorphism
¢ : Mn(Co(0,1))” ® B — C(E)

whose image commutes with a separable subset D C C(E), there exists *-

homomorphism

p: A, ® B— C(E)
such that o (a ® idg) = ¢ and whose image commutes with D.
Proof. Since A,, and M, (Cy(0,1))™~ are nuclear there is no ambiguity in the
tensor product. As the tensor products involve unital C*-algebras they are
characterized as the universal C*-algebras containing commuting copies of
the two factors. By altering the subset D one easily shows that it suffices to
prove this result only when B = C.

Proposition 2.8 of [8] shows that M,(Co(0,1))~ is the universal unital
C*-algebra generated by z,a,,as, ... ,a, subject to the relations

lo;ll <1, 7=2,...,n,

ajar, =0, 2<j,k<n,
aja, =0, j#Kk,
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* I
aja; = 1z,
'z =zz* = —xz — z*.

Similarly, one may show that A, is the universal unital C*-algebra generated
by z,bs,bs,... ,b, subject to the relations

il <1, j=2,...,m,
biby =0, 2<jk<n,
bjbp =0, j#Kk,

b;b; = brby, 2<j,k <n,
(b50; — 1)(zz" + z7z) =0,
zz* =z'r = —x — 2",

and the inclusion a corresponds to the *-homomorphism determined by the
assignment z — z,a; — b;|z|. Working with the same relations, but in
nonunital category, one sees that this is a special case of Theorem 3.2.

O

Lemma 4.2. Suppose J is an ideal in A and A is a sub-C*-algebra of B.
Let Jg denote the ideal of B generated by J. There is an isomorphism

&:B/Jg — Bxy (A)J)

defined by ®(b+ Jg) =b.

We will need to prove technical results regarding maps from general di-
mension-drop graphs into corona algebras. For clarity we will concentrate
on the most important case, that of the dimension-drop intervals, I,,. Recall

I,={f € C[0,1] | £(0), f(1) € CI},

this being the unital version of the dimension-drop interval.
Although isomorphic to I,, we also consider

J.={f €C[-1,2]| f(-1) and f(2) are scalar}.
Let ¢ : ﬁn — J,, denote the inclusion that extends a function to be constant
on [—1,0] and on [1,2].

Theorem 4.3. Suppose ¢ : I, — C(E) is a x-homomorphism whose image
commutes with a separable subset D. Then there ezists a x-homomorphism
@:J, = C(E)ND' such that po. = ¢.
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Proof. Consider M,,(Cy(0,1))~ ® C[0, 1] which we identify with
C.={f € C([0,1]*, M,,) | f(0,t) = f(1,t) € CI, Vt}.
Restriction to the diagonal gives us a surjection
p: M,(Co(0,1))~ ® C[0,1] — 1.
One can check that by the last lemma we have the commutative diagram

T(a@id)*id TL

Cn *Cn ]In —5> ]In

and so this result thus follows from Lemma 4.1. O

Remark. The generalization of Theorem 4.3 to the case of extending maps
of dimension-drop graphs into corona algebras follows by the same methods,
but the notation is significantly worse.

5. Stability for dimension-drop graphs.

Suppose X is a graph. We denote the associated dimension-drop C*-algebra
by

Coert(X, M,)) = {f € C(X,M,) | f(v) € CI for all vertices v}.

Theorem 5.1. For every graph X, and every positive integer n, the C*-
algebra Coer (X, M,,) is universal for a stable set of relations.

Proof. We may reduce to the case of X connected using Proposition 3.10
and [8, Theorem 5.1]. For connected graphs, the proof is by induction on
the number of vertices. If there is but one vertex then

Cvert(Xa Mn) = (é Mn(00(07 1)))

=1

where J is the number of edges. This has stable relations by [8, Theorem 5.1].
Now suppose X has at least two vertices, vy and v;. We will need an
auxiliary space, X, which is obtained from X by stretching all edges attached
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to vy or v;. Topologically, X will be a copy of X. We shall use vy and v; to
denote the appropriate vertices in X.
Choose a function
ho: X —[-1,2]
such that hy'([~1,0]) consists of the union of half-closed subintervals, con-
taining v,, of each edge adjacent to v,. We may assume a similar statement
holds for hy'([1,2]) and v;.

We will identify X with the quotient of X obtained by collapsing
hs'([=1,0]) to a point and hg'([1,2]) to a different point. We will also
consider two copies of the graph obtained from X by collapsing the two des-
ignated vertices together. We let ¥ denote the quotient of X obtained by
identifying vy with v; and Y denote the quotient of X obtained by collapsing
he*([=1,0]) U hg*([1,2]) to a point.

Accordingly, we will be making identifications of the various dimension-
drop algebras with subalgebras of C (X, M,,). Of course, Cvert(f( , M) is de-
fined as such a subalgebra. The remaining identifications are:

Cvert(X7 Mn) = {f ' f($) = f('UO) if ho(il?) S 0

and f(z) = f(v,) if ho(2) > 1},
Crert(Y, M) = {f | f(z) = f(vo) if ho(z) <0 or ho(z) 2 1}
Cvert(f,7Mn) = {f l f('UO) = f('vl)}

Our strategy is based on the observation that C.. (X, M,,) is generated
by the subalgebra Cie. (Y, M,) and the element

h=h; ®I where h;(z)=max(min(ho(z),1),0).
A way to express the relation between h and Clr (Y, M,,) is that
e21rz'h — 621rih1 ® I

By Theorem 2.6, our task is reduced to proving corona semiprojectivity
for Cyert(X, M,,) while assuming it for Cyer (Y, M,,). So suppose that we are
given a unital *-homomorphism

¢ : Cyert(X, M,) = C(E) = B/| I
By Theorem 4.3 and the remark following, there is an extension of ¢ to
@ : Chert(X, M,) — C(E).

By the induction hypothesis, the restriction of ¢ to C’Vm(f/,Mn) can be
lifted to _
Y : Cyers(Y,M,) = B/I,,
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for some m. This leads to the following commutative diagram:

Cvert(?)Mn) L4 B/Im

Cvert (X, Mn) Tm .

AN

Cvert(Ya Mn) - vert(Xa Mn) z C(E)
Let H be any lift of ¢(h) to B/I,, such that 0 < H < 1. Now define
H = 9(i(ho) ® I) + (m(ho)"/* ® ) Hip(m(ho)'* & )

where [ and m are the functions

0, ¢<0, —t, t<0,
I(t)=4 t 0<t<1, m)={ 0, 0<t<1,
2-¢1<t<2, t—1,1<t<2.

These are defined so that [ + mh, = h, where h, is the function

0, t<0,
ho(t) =4 t,0<t<1,
1,1<t<2.

Notice also that ha(ho) = hy.
Clearly H is selfadjoint. In fact, it is also a lift of ¢(h) since

m(H) = @(U(ho) ® I) + @(m(ho) ® I)@(ha(ho) ® I)
= @((l + mhy)(ho) ® I) = p(h).

For any f ® T' € Cyert(Y, My,)
(f®T)(m(he)*@1) =0 = H(f®T)H =Hy(fRT).

By replacing H by h,(H), we have found a lift of o(h), with 0 < H < 1, and.
a lift of ¢|c,...(v,m,) that commute.
Expressing this conclusion differently, we have shown that given a unital

map
Cvert(Xa Mn) - C(E)
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we can find an m and a map making the diagram commute where D is the
universal unital C*-algebra generated by a copy of Cier (Y, M,,) and a central
element A such that 0 < h <1. Le,,

D = Coe(Y, M,) ® C|0, 1].

We have no further need for X so v, and v; again denote the specified
vertices in X. We regard Y as the quotient of X, with quotient map n: X —
Y which collapses v, and v; to a single vertex we call wy.

Let us identify D with

{g e C(Y x[0,1], M,) | g(v,t) € CI for all vertices}.

The copy of C.er (Y, M,,) and the extra element h appear as functions in D
constant in one variable or the other. There is a sort of diagonal map

A: X —-Y x[0,1], A(z)=(n(z),hi(z))

which induces a surjection 8 : D — Cler (X, My,).
We need also a quotient of D where the relation (9) holds approximately.

Consider
Zs = {(n(z),t) €Y x [0,1] | |2 @) — 2mit| < 6},
where ¢ is a small number to be named later, and let
Ds ={ge C(Z,M,) | g(v,t) € CI for all vertices}.
Since A maps into Z it induces
Bo : Ds = Cuert (X, My).

By increasing m we may assume that the map D — B/I,, factors through
D;. Therefore, we are done if we exhibit a right-inverse to (. This exists
because there is a retraction of Z; onto im(A) which sends (v,t) to (v,t')
for every vertex v. To be able to describe this retraction we break up Z; as
Zs = Zy U Zy, U Z3 where

Zy = {(n(x),t) | |(z) —t| £1/4,0 <t <1},
Zy ={(n(z),?) | | (z) +1 1| < 1/4},
Zy ={(n(z),?) | |m(z) — 1 —t] < 1/4}.

The retraction sends Z, to (wp,1) and Zs to (wp,0). Each point (n(z),t)
in Z; is sent to (n(z),s) where s is the unique number in (0,1) such that
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e?mis = 2mhi(2) By choosing § sufficiently small, we ensure that (v,t) ¢
Zy U Z3 for any vertex v except for v = wy. Therefore this is the desired
retraction. O
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