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GENERIC DIFFERENTIABILITY OF CONVEX FUNCTIONS
ON THE DUAL OF A BANACH SPACE

J.R. GiLes, P.S. KENDEROV, W.B. MOORS AND S.D. SCIFFER

We study a class of Banach spaces which have the prop-
erty that every continuous convex function on an open convex
subset of the dual possessing a weak * continuous subgradi-
ent at points of a dense G5 subset of its domain, is Fréchet
differentiable on a dense G subset of its domain. A smaller
more amenable class consists of Banach spaces where every
minimal weak * cusco from a complete metric space into sub-
sets of the second dual which intersect the embedding from a
residual subset of the domain is single-valued and norm up-
per semi-continuous at the points of a residual subset of the
domain. It is known that all Banach spaces with the Radon-
Nikodym property belong to these classes as do all with equiv-
alent locally uniformly rotund norm. We show that all with
an equivalent weakly locally uniformly rotund norm belong
to these classes. The condition closest to a characterisation is
that the Banach space have its weak topology fragmentable
by a metric whose topology on bounded sets is stronger than
the weak topology. We show that the space ¢, (I"), where I is
uncountable, does not belong to our special classes.

We say that a Banach space is a dual differentiability space (DD space)
if every continuous convex function on an open convex subset of the dual
possessing a weak * continuous subgradient at points of a dense G5 subset
of its domain, is Fréchet differentiable on a dense G; subset of its domain.
Spaces of this class include those with the Radon-Nikodym property, and all
those which can be equivalently renormed to be locally uniformly rotund. In
the paper [K-G, p. 472] it was shown that spaces which can be equivalently
renormed to have every point of the unit sphere a denting point of the
closed unit ball are spaces of this class, and in the paper [G-M1, p. 264]
it was shown that spaces which can be equivalently renormed to have every
point of the unit sphere an « denting point of the closed unit ball, (« is
Kuratowski’s index of non-compactness), are spaces of this class; Troyanski
[T1, p. 306] and [T2, p. 179] has shown that spaces with either of these
properties can be equivalently renormed to be locally uniformly rotund. In
paper [G-M2, p. 111], the denting point property was weakened using an
index of non-WCG.
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Information about the class of DD spaces is more easily obtained through
the study of a subclass defined by certain set-valued mappings having special
continuity properties. A set-valued mapping ® from a topological space A
into subsets of a topological space X is upper semi-continuous at t € A if
given an open subset W where ®(t) C W there exists an open neighbourhood
U of t such that ®(U) C W. If X is a linear topological space and ®(¢) is non-
empty compact and convex for each ¢ € A and ® is upper semi-continuous
on A we call ® a cusco on A. A cusco ® on A is said to be a minimal cusco
if its graph does not contain the graph of any other cusco on A.

We say that a Banach space X is a generic continuity space (GC space) if
every minimal weak * cusco ® from a complete metric space A into subsets
of the second dual X** for which the set {t €EA:B)NX # Q)} is residual
in A, is single-valued and norm upper semi-continuous at the points of a
residual subset of A.

An open subset of a complete metric space is itself completely metrisable
and a continuous convex function ¢ on an open convex subset of a Banach
space generates a subdifferential mapping z — 9¢(z) which is a minimal
weak * cusco. The subdifferential mapping being single-valued and norm
upper semi-continuous at a point is equivalent to the convex function being
Fréchet differentiable at the point . So the class of GC spaces is contained
in the class of DD spaces.

In Section 1 we show that for any Banach space X, minimal weak * cuscos
from a complete metric space A into subsets of the second dual X** which
satisfy a certain generic property are always single-valued and norm upper
semi-continuous at the points of a residual subset of A. We use this general
result to show that Banach spaces which satisfy certain geometrical proper-
ties are GC spaces. In particular, we show that those Banach spaces which
have an equivalent weakly locally uniformly rotund norm are GC spaces. In
Section 2 we show that a Banach space is a GC space if its weak topology is
fragmentable by a metric whose topology on bounded sets is stronger than
the weak topology. We conclude in Section 3 by showing that the Banach
space £, (I"), where I is an uncountable set, is not a GC' space.

1. A general property implying geometrical conditions for
membership of the class of GC spaces.

For our general result we need the following characterisations of a minimal

Cusco.

Lemma 1.1. [G-M1, Lemma 2.5]. Consider a cusco ® from a topological
space A into subsets of a separated locally convex space X. The following are
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equivalent
(i) @ is a minimal cusco on A,

(i) given any open set U in A and closed convez set K in X where ®(U) ¢
K there ezists a non-empty open set V.C U such that ®(V)N K = 0,

(iii) given any open set U in A and open half-space W in X where ®(U) N
W # 0 there exists a non-empty open set V. C U such that ®(V) C W.

We also use a continuity condition defined in terms of Kuratowski’s index
of non-compactness. Given a bounded set F in a metric space X such an
index is

a(E) = inf{r : E is covered
by a finite family of sets of diameter less than r}.

Given a set-valued mapping ® from a topological space A into subsets of a
metric space X we say that ® is a upper semi-continuous at t € A if given
€ > 0 there exits an open neighbourhood U of ¢ such that a(®(U)) < €. Such
« upper semi-continuous mappings have single-valued properties.

Lemma 1.2. [G-M1, p. 253]. Consider a minimal weak * cusco ® from a
Baire space A into subsets of the second dual X** of a Banach space X. If
® is o upper semi-continuous on a dense subset of A then ® is single-valued
and norm upper semi-continuous at the points of a residual subset of A.

The proof of our general theorem follows a similar method of proof as
was used to prove Lemma 1.2 which is similar to a theorem of Christensen,
[Chr, p. 651].

Theorem 1.3. A minimal weak * cusco ® from a complete metric space
A into subsets of the second dual X** of a Banach space X where the set

Ez{téA:(I)(t)QWw*}

1s residual in A, is single-valued and norm upper semi-continuous at the
points of a residual subset of A.

Proof. Given € > 0 consider the open set O, = |J{open sets U in A : a(®(U))
< 2¢}. Suppose that O, is not dense in A. Then there exists a non-empty
open set V, in A such that V; N O, = ). Consider a dense G subset D.of
A contained in E. Now D is completely metrisable and we consider it with
such a metric d.

We proceed by induction. Consider t; € Vo N D and Z; € ®(¢t;) N X.
Now ®(V,) € Z, + eB(X**) for otherwise V5 N O, # 0. Since ® is a minimal
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weak * cusco, by Lemma 1.1, there exists a non-empty open set V; such
that V, C V, and ®(V;) N (2, + eB(X**)) = 0. We may assume that the
d-diam(V; N D) < 1.

Suppose that the first n iterations of this procedure have been completed.
Then we have a non-empty open set V,, such that V,, C V,,_; and ®(V,,) N
(co{Z1,Z2,... ,ZTn} + eB(X**)) = 0 where Z; € ®(t;) N Xandt; eV,_,NnD
for i € {1,2,... ,n}. Now consider ¢, € V,N D and Z 41 € ®(tny1) N X.
Again ®(V,,) € co{Z1,Zs,... ; Tny1} +€eB(X**) for otherwise VoNO, DV, #
(. Since ® is a minimal weak * cusco, by Lemma 1.1 there exists a non-
empty open set V,; with d-diam(V,,; N D) < 21—" such that V., C V, and
®(Vipy1) N (co{Z1, Zay- .- yTnp1} + €B(X**)) = 0. Continuing in this way we
form a Cauchy sequence {t,} in D which converges to some t,, € NV, =
n V. C D neN

neN
Then for each n € N, ®(ty,) N (co{Z;,Za,... ,Zn} + €B(X**)) =0 and so

D(teo) N <co ULz + eB(X**))

neN

= ®(to,) N (U co{Zy, Tay- .. ,Tn} +eB(X**)> = 0.

neN

So there exists an f € X*, which strongly separates ®(t,,)NX and eo U {Z,}
neN
and so there is a weak * open half space W generated by f containing

—_———T"l, . —~

®(to,) N X and disjoint from ¢ |J {Z,}. Since t,, € E, we have ®(t,,) C
neN

W. Since ® is weak * upper semi-continuous at t., there exists an open

neighbourhood U of ¢, such that ®(U) C W. However, for n € N sufficiently
large, t, € U and then Z, € ®(t,) N X C W contradicting the separation by
f- We conclude that O, is dense in A and that ® is a upper semi-continuous

at the points of [} O1 a dense G; subset of A. Our result now follows from
neNn "
Lemma 1.2. O

We can now make the following deductions from Theorem 1.3.

Corollary 1.4. A minimal weak * cusco ® from a complete metric space
A into subsets of the second dual X** of a Banach space X where the set
{t €A:®(t)CX } is residual in A, is single-valued and norm upper semi-
continuous at the points of a residual subset of A.

A special case of a theorem of Namioka [N, p. 525] can be deduced from
Theorem 1.3.
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Corollary 1.5. A weakly continuous single-valued mapping from a complete
metric space A into a Banach space X is norm continuous at the points of
a residual subset of A.

A Banach space X is weak Asplund if every continuous convex function
on an open convex subset A of X is Gateaux differentiable on a residual
subset of A. A Banach space X belongs to Stegall’s class S if and only if
every minimal weak * cusco ® from a Baire space A into subsets of X* is
single-valued on a residual subset of A. It has been shown [K-O, Corol. 4.5]
that a Banach space X belongs to Stegall’s class S if and only if every
minimal weak * cusco @ from a complete metric space A into subsets of X*
is single-valued on a residual subset of A.

Corollary 1.6. A Banach space X is
(i) a DD space if its dual X* is weak Asplund,

(ii) e GC space if its dual X* belongs to Stegall’s class S.

Proof. We consider only the proof of (ii). A minimal weak * cusco ¢
from a complete metric space A into subsets of X** has the set {t € A :

®(t) is singleton} residual in A. So if the set {t EA:BH)NX £ (?)} is resid-
ual in A then the set {t cA:d(t)CX } is residual in A and we deduce from
Corollary 1.4 that X is a GC space. 0

We should note the Banach space ¢, has dual /., which is not weak As-
plund, [P, p. 13]. However ¢; has the Radon-Nikodym property and so the
property given in Corollary 1.6 is a sufficient but not necessary condition for
a Banach space to be a DD space or a GC space.

It has recently been proved, that a Banach space belongs to Stegall’s class
S if it has an equivalent norm Géateaux differentiable away from the origin,
[P-P-N].

Corollary 1.7. A Banach space X is a GC space if the dual X* has an
equivalent norm Gateauz differentiable away from the origin.

We note that the equivalent norm on X* need not be a dual norm.

Corollary 1.8. A Banach space X is a GC space if it can be mapped into
a GC space Y, by a continuous linear mapping T whose conjugate T' has a
dense range.

Proof. Consider a minimal weak * cusco ® from a complete metric space A
into subsets of X** where the set {t EA:P(t)NX # (Z)} is residual in A. As
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a conjugate, T is continuous when X** and Y ** have their weak * topologies
80 T" o ®@ is a minimal weak * cusco from A into subsets of Y**. Since Y is a
GC space and the set {t EA:T"o®(t)N Y #* (Z)} is residual in A, so 7" o ®
is single-valued on a residual subset A. Since T has dense range then 7" is
one-to-one, so @ is single-valued on a residual subset of A and we have by
Theorem 1.3 that @ is single-valued and norm upper semi-continuous at the
points of a residual subset of A. O

It is well known that a closed linear subspace of a Banach space with the
Radon-Nikodym property has the Radon-Nikodym property. The following
is an extension of this result.

Theorem 1.9. If a Banach space X is a GC space then every closed linear
subspace Y of X is a GC space.

Proof. The conjugate of the inclusion mapping maps X* onto Y* and so the
result follows from Corollary 1.8. O

This subspace property holds for the larger class of DD spaces, but the
proof uses a different technique.

Theorem 1.10. If a Banach space X is a DD space then every closed
linear subspace Y of X is a DD space.

Proof. Consider ¢ a continuous convex function on an open convex subset
B of Y* where the set {g € B : 9¢(g) N Y # @} D E a dense G subset of
B. Consider T the inclusion mapping of Y into X. The conjugate 7" maps
X* onto Y*. Further, ¢ o T" is a continuous convex function on the open
convex set A = (T")~*(B) in X*. Since T" is onto it is an open mapping and
therefore D = (T")"!(E) is a dense G; subset of A. But further, if fo € D
then exists a yo € Y such that gp € 9¢(T" fp). Then

Go(T'f) = Go(T"fo) < $(T'f) — ¢(T"fo) for all f € A
$0

bo(f) = Bo(fo) < (¢ T")(f) = (¢ o T")(fo) for all f € 4;

that is, 7o € O(¢ o T")(fo)-

Then {f € A:0(poT")(f) NX# (Z)} D D a dense G; subset of A. Since
X is a DD space there exists a dense G5 subset G of A where ¢oT" is Fréchet
differentiable. That is, for f € G,

L (@0 T)( +9) = (B0 T)()

A—0 A
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exists and is approached uniformly for all g € X*, ||g|| = 1. Using the fact
the T" is the restriction of each element of X* to Y and that each restriction
has a norm preserving extension on X then

1 T +g)) = 9(T')

A—0 )\

exists and is approached uniformly for all 7"¢g € Y™, |[|T"g|| = 1. So ¢ is
Fréchet differentiable on 7"(G) which is a dense subset of B. Since the set of
points where a continuous convex function is Fréchet differentiable is always
a Gs subset, [P, p. 15], ¢ is Fréchet differentiable on a dense G subset of
B. We conclude that Y is a DD space. U

A Banach space X is said to be weakly locally uniformly rotund if for
each 7o € X, ||zo]| = 1, given € > 0 and f € X*, ||f|| = 1 there exists
a 0(€,zo, f) > 0 such that |f(z — zo)| < € for all z € X, ||z||] < 1 when
||z +zo|| > 2 — 0. A weakly locally uniformly rotund space is rotund but not
necessarily locally uniformly rotund. However, such a geometrical property
on a Banach space does have rotundity implications for the second dual
space.

Lemma 1.11. Consider a weakly locally uniformly rotund Banach space
X. Giwen zy € X, ||zo|| = 1, for every F € X** ||F|| =1, F # Z,, we have
[|F + Zo| < 2.

Proof. Suppose that there exists an F € X** ||F|| = 1, F' # Z,, such that
||F + Zo|| = 2. Since F # T, there exists an fo € X*, ||fo]| =1 and an r > 0
such that |(F — Zy)(fo)] > 7. Since X is weakly locally uniformly rotund,
given 0 < e < % there exists a (¢, zo, fo) > 0 such that |fo(z — z0)| < € for
all z € X, [|z|| <1 when ||z + z¢|| > 2 — 4. Since the norm on X** is weak *
lower semi-continuous the set {G € X** : ||G + Zo|| > 2 — J} is weak *open

~

in X** and contains F. By Goldstine’s Theorem B (X) is weak * dense in
B(X**) so there exists some T € B (X) such that [|Z + Zo|| > 2 — ¢ and

|(F —Z)(fo)| < €. Then for such an Z € B ()Z') we have |fo(z — z0)| < € and
therefore

[(F = 20)(fo)| < [(F = Z)(fo)l + | folz — o) <2e <7
which contradicts the initial separation property. O
We need the following property of minimimal weak * cuscos.

Lemma 1.12. [K-G, p. 471]. Given a minimal weak * cusco ® from a
Baire space A into subsets of the dual X* of a Banach space X, there exists
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a residual subset of A at each point t of which, ®(t) lies in the face of a
sphere of X*.

Theorem 1.13. A Banach space X is a GC space if it can be equivalently
renormed to be weakly locally uniformly rotund.

Proof. Consider X so renormed. Then since ® is a minimal weak * cusco
on A we have by Lemma 1.12 that there exists a residual subset D of A at
each point ¢ of which, ®(¢) lies in the face of a sphere of X**. So if the set

G = {t €EA:PH)NX # (D} is residual in A then G N D is residual in A.

But by Lemma 1.11, ® is single-valued on GN D and so ®(GN D) C X and
we deduce from Theorem 1.3 that X is a GC space. O

We do not need so strong a geometrical condition as weak local uniform
rotundity. To be a GC space it would be sufficient for the space X to
have an equivalent norm such that given z, € X, ||zo|| = 1, for every F €
X**\ X, ||F|| = 1 we have ||F + Z|| < 2. Such an equivalent norm is not
necessarily rotund. However, it is difficult to find a characterisation of this
property on X.

2. Fragmentability conditions for membership of the class of GC
spaces.

We aim to find fragmentability conditions which imply that a Banach space
is a GC space.

Consider a bounded subset E in a Banach space X. Given f € X*, ||f|| =
1 and § > 0, a slice of E defined by f and ¢ is the subset

S(E,f,0) ={z € E: f(z) > sup f(E) — ¢}.

A slice of a bounded set E in the dual X* defined by a weak * continuous
linear functional on X* is called a weak * slice of E.

We need the following local boundedness property of minimal weak *
Cuscos.

Lemma 2.1. A minimal weak * cusco ® from a Baire space A into subsets
of the dual X* of a Banach space X 1is locally bounded on a dense open subset
of A.

Proof. 1t is sufficient to show that there exists an open subset of A on which
® is bounded. For each n € N, consider the set

E,={te A:®(t) CnB(X")}.
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Clearly, U,cy En = A. Since A is Baire there exists an ny, € N such that
intE_n0 # (. Consider an open set U C E,,,. Suppose for some t, € U \ E,,,
there exists an fy € ®(to) \noB(X*). Then f, can be strongly separated from
noB(X*) by a weak * continuous linear functional on X* which generates a
weak * open half space W containing fo and noB(X*) C C(W). Then since
® is a minimal weak * cusco, by Lemma 1.1 there exists a non-empty open
set V' C U such that (V) C W. But this contradicts the fact that there are
points of E,, in V which map into nyoB(X*). 0

The following characterisation of the class of GC spaces simplifies our
computation.

Theorem 2.2. A Banach space X is a GC space if and only if every
minimal weak * cusco ® from a complete metric space A into subsets of
X** where ®(t) N X # 0 for all t € A is single-valued and norm upper
semi-continuous at the points of a residual subset of A.

Proof. Consider a minimal weak * cusco ® from a complete metric space A
into subsets of X** where {t EA:D)NX # @} D A, a dense G5 subset of
A. Then A, is completely metrisable, [K-N, p. 96]. Consider the set-valued
mapping ®; the restriction of ® to A;. Now ®; is also a minimal weak *
cusco on A; and @, (t)NX # @ for all ¢ € A;. So ®, is single-valued and norm
upper semi-continuous at the points of a dense G5 subset D of A, which is
also a dense G5 subset of A.

Consider ty € D. Since ®; is norm upper semi-continuous at ¢, there exists
an open neighbourhood U of ¢, such that ®,(U N A;) C B[®(¢o); €]. We will
show that ®(U) C B[®(ty);€]. Suppose not, then since ® is a minimal weak
* cusco, by Lemma 1.1 there exists a non-empty open set V C U such that
®(V) N B[®(ty); €] = 0. But this contradicts the fact that A; is dense in A
and @, is norm upper semi-continuous at ty.

The converse is obvious. U

The following norm fragmenting theorem generalises a characterisation of
Banach spaces with the Radon-Nikodym property.

Theorem 2.3. A Banach space X is a GC space if there ezxists a weak
* lower semi-continuous norm ||| - ||| on X** and every non-empty bounded
subset of X has slices of arbitrarily small ||| - |||-diameter.

Proof. Consider a minimal weak *Acusco ® from a complete metric space A
into subsets of X** where ®(t) N X # @ for all t € A. Consider the mapping
® from A into subsets of X defined by
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Given € > 0, consider the set
o, = U {open sets V such that ||| - ||| — diam ®(V) < e} .

Now O, is open; we show that it is dense in A. By Lemma 2.1 we may assume
that & is locally bounded. Consider any non-empty open set U in A where
®(U) is bounded. Then there is a weak * slice of ®(U) with ||| - |||-diameter
less than €. Since ® is a minimal weak * cusco, by Lemma 1.1 there exists
a non-empty open set V C U such that ®(V) lies inside this slice and so
||| -|||-diam ®(V) < €. So O, is dense in A. Then D = (),,cy O1 is a dense G,

of A and & is single-valued and ||| - |||-upper semi-continuous at the points
of D.

Consider t, € D. Suppose that there exists an Fy € ®(,) \ X. For r =
|| Fo—%o|||, consider By.[Zo; 7]. Since |||-]| is weak * lower semi-continuous,
By)j.i[Zo; ] is weak * closed. So Fy and Byj.j|[Zo; r] can be strongly separated
by a weak * continuous linear functional which generates a weak * open
half-space W containing F, and By.;;;[Zo; 7] € C(W). Since ® is ||| |||-upper
semi-continuous at to, there exists an open neighbourhood U of ¢y, such that
U ND) C Byjjj1[Zo; 7). Now @(U) N W # 0 and since ® is a minimal
weak * cusco, by Lemma 1.1 there exists a non-empty open set V C U such
that ®(V) C W. But this contradicts the fact that ®(t) N C(W) # 0 for
each t € V N D. So we conclude that ® is single-valued on D and maps
into X. It follows from Theorem 1.3 that ® is single-valued and norm upper
semi-continuous at the points of a residual subset of A. O

We note that the weak * lower semi-continuous norm || - ||| on X** need
not be an equivalent norm for X**.

A Banach space has the Radon-Nikodym property if and only if every non-
empty bounded subset has slices of arbitrarily small diameter, [P, p. 72]. So
we could deduce the following known result from Theorem 2.3.

Corollary 2.4. A Banach space with the Radon-Nikodym property is a GC
space.

It is possible to give a characterisation for GC spaces in terms of the
behavior of set-valued mappings from a complete metric space into subsets
of the original space. To do this we generalise the idea of minimality for
set-valued mappings from the characterisation of minimal cuscos given in
Lemma 1.1.

We say that a set-valued mapping ® from a topological space A into
subsets of a separated locally convex space X is minimal if for any open
half-space W in X and open subset U in A where ®(U)NW # ( there exists
a non-empty open set V C U such that &(V) C W.
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We use the following selection property of minimal set-valued mappings.

Lemma 2.5. Consider a Banach space X with a separated locally convex
topology T where the norm closed balls are also T-closed and a T-minimal
set-valued mapping ® from a topological space A into subsets of X. If there
exists a selection ® on a dense set D in A which is norm continuous on D
then @ s single-valued and norm upper semi-continuous at the points of D.

Proof. Suppose that at t; € D, ® is not single-valued and norm upper
semi-continuous. Then there exists an r > 0 and in every neighbour-

hood U of ¢, there exists a t, € U such that ®(¢,) € B (Els(to);r) . Now

z, € ®(t,)\ B (i)(to);r) can be strongly separated from B [Els(to); —2"-} by a
T-continuous linear functional which generates a 7-open half-space W con-
taining z, and B [@(to); g] C C(W). Since ® is norm continuous at ¢, there

exists an open neighbourhood U of ¢y, such that ®(U N D) C B (513(150); %) .
But ® is 7-minimal and ®(U) N W # . So there exists a non-empty open
set V C U such that ®(V) C W. But this contradicts ®(V ND) C C(W). So
we conclude that ® is single-valued and norm upper semi-continuous at the
points of D. O

The following theorem characterises a GC space X by the behavior of
weakly minimal mappings into X.

Theorem 2.6. For a Banach space X the following are equivalent

(i) X is a GC space,

(ii) every weakly minimal locally bounded set-valued mapping ® from a
complete metric space A into subsets of X is single-valued and norm
upper semi-continuous at the points of a residual subset of A,

(iii)  every weakly minimal locally bounded single-valued mapping ¢ from a
complete metric space A into X is norm continuous at the points of a
residual subset of A.

Proof. (i) = (ii). Consider a weakly minimal locally bounded set-valued
mapping ® from A into subsets of X, and weak * cusco ® from A into
subsets of X** generated by ® where

d(t) = ﬂ {E‘o”“*@/(-[?) where U is a neighbourhood of t} , [B-F-K, p. 472].

Since ® is weakly minimal then from Lemma 1.1 we see that ® is minimal
weak * cusco. But also ®(£) N X # 0 for all ¢ € A. Since X is a GC space
we deduce that ® is single-valued and norm upper semi-continuous at the
points of a residual subset of A, and then so is ® also.
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(ii) = (iii) Obvious.

(iif) = (i) Consider a minimal weak * cusco ® from a complete metric
space A into subsets of X** where ®(t) N X # 0 for all ¢ € A. By Lemma
2.1, we may suppose that @ is locally bounded on A. Consider a selection ®
from A into X. Now @ is a weakly minimal, locally bounded single-valued
mapping from A into X so is norm-continuous at the points of a residual
subset D of A. It follows from Lemma 2.5 that @ is single-valued and norm
upper semi-continuous at the points of D. O

Although this characterisation enables our computation, it is somewhat
unsatisfactory in that it does not give us significant information about the
specific properties which identity GC spaces. When looking for a charac-
terisation of GC spaces, it is logical to look for a condition which includes
the sufficiency conditions which we have already given. A unifying condi-
tion can be found in the concept of fragmentability and its generalisation,
[R1, p. 247].

Given a topological space X we say that a function A : X x X - Risa
premetric on X if

(i) A(z,y) >0forall z,y € X and

(i)  A(=,y) =0 if and only if z = y, [Sc, p. 225].

We define what we will call the A-topology on X as follows. A subset U
of X is said to be A-open if for every z, € U there exists an r > 0 such that
{z € X : A(z,20) <7} CU. Given zo € X and € > 0, a subset of the form
{z € X : M=, z) < €} is fundamental in defining the A-topology but it is
not necessarily A\-open. We say that A fragments X if, given € > 0, for every
non-empty subset E of X there exists a relatively open subset U of E such
that

A —diam(U) = sup{A(z,y) : z,y € U} < e.

We note that the A-topology on a subset E of X is stronger than the
relative topology on E if for every zo € E and open set W containing z,
there exists a § > 0 such that {z € E : A(z,z¢) < §} C W.

If a topological space X has a fragmenting premetric then there exists
a fragmenting metric on X, [R1, p. 246]. A Banach space which has an
equivalent rotund norm has a fragmenting metric for its weak topology, [R2].
We recall that £, (N) can be equivalently renormed to be rotund but £, (T),
where I' is uncountable, cannot, [D, p. 120; 123].

Theorem 2.7. A Banach space X is a GC space if it possesses a pre-
metric A\ where every non-empty bounded set has slices of arbitrarily small
A-diameter, and where the A-topology on bounded sets is stronger than the
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weak topology.

Proof. Consider a weakly minimal locally bounded set-valued mapping ®
from a complete metric space A into subsets of X. Given ¢ > 0, consider the
set O, = U{open sets V in A such that A\-diam ®(V) < €}. Now O, is open
in A; we show that it is dense in A. Consider any non-empty open set U in A
where ®(U) is bounded. Then there is a slice of ®(U) with A-diameter less
than e. Since ® is weakly minimal, there exists a non-empty open set V' C U
such that ®(V') lies inside this slice and so A-diam ®(V) < €. So O, is dense
in A. Then D = (] O1 is a dense G subset of A where @ is single-valued.

neN
Since the A-topology is stronger than the weak topology on bounded set, ®

is single-valued and weakly continuous at the points of D. Now D is a dense
G subset of the complete metric space A so D is completely metrisable,
[K-N, p. 96]. Then by Corollary 1.5 there exists a dense G5 subset E of D
and so of A where ®|p is norm continuous . We conclude from Lemma 2.5
that ® is single-valued and norm upper semi-continuous at the points of E.
Our result now follows from Theorem 2.6. O

We show that Theorem 2.7 includes Theorem 1.13. We do this using the
following premetric. Given a rotund normed linear space X and using the
notation [z,y] = {az + (1 — a)y : 0 < a < 1}, we define the function
A: X xX —>Rby

Az, y) = max{l|[z, y]||} — min{||[z, y]||}, [Sc, p. 226].

Clearly, \(z,z) = 0. If z # y then by rotundity A(z,y) > max{||[,y]||} —
|z + y|| > 0. So A is a premetric on X.

We need the following properties of this premetric. Given z, € X and
r > 0 we use the notation

By(zo;r) ={z € X : AN(z,z0) <T}.
Lemma 2.8. Given a rotund normed linear space X,
(i) MKz,y) < Az,y) +2|]1 — K|||z|| for all K #0 and z,y € X,
(ii) Ba(z;r) C (||z|| + r)B(X) for all z € X,
(iii) gwenz € X, for K > 1 and 0 <1 < (K — 1)||zl],

Bi(z;r) C Ba(Kzir + 21 — K|||z]) N K||z||B(X).
Proof. (i) For 0 < a < 1, |laKz+ (1—a)y|| < |laz+ (1—a)y||+a|l - K] ||z]|,

so max{||[Kz,y]||} < max{]|[z,y]|[}+]1-K]||z||. But also, |laz+(1—a)y|| <
llaKz+ (1 - a)yl|+all - K| ||z||, so min{||[z,y]||} < min{||[[Kz,y]||}+[1-
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Klllz||. Therefore, max{||[Kz,y]|[} — min{[|[Kz,y][|} < max{[|[z,y]|[} -
min{||[z, y]||} + 2[1 — K[]||z|.
(ii) and (iii) come directly from the definition of A and (i). O

We notice that if X is a weakly locally uniformly rotund normed linear
space then given zp € X, 2o # 0 and € > 0 and f € X*, ||f|| = 1, there
exists d(e, zg, f) > 0 such that |f(zo — )| < ||zo||e when z € ||z,||B(X) and
||z + zo|| > [|zo]|(2 — 6). So if A(z,z0) < ||Zo||$ and z € [|zo]|B(X) then

2l +zoll > minflllz, zolll} > max{lliz, zo]ll} ~ llzoll3

> lfaoll (1~ 3)

80 ||z + zo|| > ||zol|(2 — 9) and it follows that |f(zo — z)| < ||zo]le.

Proposition 2.9. A Banach space X which has an equivalent weakly
locally uniformly rotund norm has a premetric A where every non-empty
bounded subset of X has slices of arbitrarily small A-diameter and where the
A-topology is stronger than the weak topology.

Proof. Consider X so renormed and the premetric A defined above. Consider
a non-empty bounded subset A of X and write s = sup{||z|| : z € A}. If
s = 0 then it is trivially true. If s # 0 then given € > 0 there exists an
f € X*, ||f|| =1 such that the set E = ANS(sB(X), f,e) #0. For z,y € E
and writing r = max{||z||,||y||} < s we note that z,y € S(rB(X), f,e+r—s)
and so A-diam E < e.

To show that the A\-topology is stronger than the weak topology it is
sufficient to show that each subbasic weak open set is A-open. At 0 the norm
and A-topologies agree so we consider neighbourhoods of z, € X, z, # 0.
Given € > 0 consider the weak open subbasic set

W ={z€X:|f(z) - fzo)| <3ellwo||} where f € X7, [[f]| =1.

Now we have that there exists a d(e,zg, f) > 0 such that |f(z, — z)| <

[|zolle when A(z,zo) < ||zoll} and z € ||zo]|B(X). Choose 1 < K <

2 such that K — 1 < min{é, ——M} and then choose 0 < r <
8" |f(zo)| +1

min {||zo|$, (K — 1)||zo||} . From Lemma 2.8(iii) we have that

B(awi) € By(Kzoyr -+ 2(K ~ 1)zoll) 0 Kllzol| BX)
€ By (Keos aoll3 ) 0 KllaallB(X)
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by the choice of K and .
So By(zo;7) € By (Kzo; K||zo||3)NK||zo||B(X). Therefore | f(Kzo—z)| <
K||zo||e when = € By(zo;r). But then

£ (o) — £(2)] < |f(za) — K f(m0)] + |f (Kmo) — f(2)]
< (K = 1)|f (z0)] + K]Jzo]¢
el ]| | £ (x0)|
< o) + 1

< 3el|zoll.

+ K||zo||€

So By(zo;7) € W and we conclude that the A-topology is stronger than the
weak topology on X. O

It is straight forward to show that Theorem 2.7 includes Theorem 2.3.
This follows directly from the following lemma.

Lemma 2.10. A Banach space X where there exists a weak * lower semi-
continuous norm |||- ||| on X** has the |||-|||-topology stronger than the weak
topology on bounded subsets of X.

Proof. Consider a bounded subset A of X, z, € A and a subbasic weak open
neighbourhood of z, in A, W = {z € A: |f(z) — f(zo)| < €} for € > 0 and
f € X", |If|l = 1. Given r > 0 the closed ball Bjif| [Zo; ] is weak * closed
so Bt [Zo;r] N (A\ W) is weak * compact. If Bjif| [Zo; ] N (A\ W) # 0
for all n € N then there exists an F € QNBI‘mH[EO; 1N (A\ W). But this

would contradict the fact that F' # Z,. So there exists an r > 0 such that
Bt (zo;r) € W and we conclude that the ||| - [||-topology is stronger than
the weak topology on A. ]

3. A Banach space which is not a GC space.

The Banach space £, ('), where I' is uncountable, is not a GC space. To
show this we exhibit a complete metric space P and a weakly minimal, locally
bounded set-valued mapping ® from P into subsets of £, (I') where for each
p € P, ®(p) is not singleton. Our argument is completed by an appeal to
the characterisation given in Theorem 2.6. The construction is based on an
example of Talagrand [Tal. .

We denote by X the set of characteristic functions of countable subsets
of I with the topology of uniform convergence on countable subsets of I". A
base of neighbourhoods for z, € X is given by sets of the form U (zo,J) =
{z € X : z|; = zo|;} where J is a countable subset of I'.
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We use the technique of the Banach-Mazur game played on the topological
space X, [C, p. 115]. This is a game between two players a and 3 where
each player chooses alternately a non-empty open set contained in the other’s
previously chosen set. Player 8 begins by choosing U;. When (3 chooses U,
then « chooses V,, where U,, D V,,; when «a chooses V,, then 8 chooses U,
where V,, O U,,.1. The sequence of open sets

is called a play. The player a wins this play if ) V, # 0. The game is said
neN

to be a-favourable if there exists a winning tactic by which a chooses V,
dependent only on how 3 chooses U,, so that a always wins.

Although the following lemma was proved in [Ta, p. 160], we will subse-
quently need to refer to the a-winning tactic used in our proof.

Lemma 3.1. The topological space X is a-favourable.

Proof. We define an a-tactic as follows:
For each open set U in X choose a point z € U and a basic neighbourhood

V=U(z,J) CU.

Each play, Uy DV, DU, 2V, D --- DU, DV, D --- generates a decreasing
sequence of basic neighbourhoods

Vi=U(z, 1) 2Va=U(z,J2) 2 Vo =U(zpy Jn) 2 -+

Clearly, J,, C J,,, for each n € N and each z,,, is an extension of z,|;, to
Jpy1- So we can define a function z, on I as an extension of z,|;, for each
n € Non J= | J, and zero on I'\ J. Since J is countable, z, € X. But

neN
also z, € N U(zn, Jn) so we have an a-winning tactic. O
neN
We note that U(z.,J) € N U(z,,J,) and U(z,,J) has infinitely many
neN
elements.

In Lemma 3.1 we produced an a-winning tactic. We now consider the set
P of all plays

p=Un,Va)=U2Vi 20, 2V, 2--- 20U, 2V, 2 -+~
which follow such an a-winning tactic, with metric p defined by
p(p,p) =0 for each p € P and
ifp'=(,,V,) # (U,,V,)) =p" then

1
p(p',p") = - where n is the first integer where U,, # U,..
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If for some n € N, U, = U] then from the definition of the play for such an
o-winning tactic, V, = V.

Lemma 3.2. The metric space P is complete.

Proof. Consider a Cauchy sequence {p* = (U¥,V¥)} in P. Then for every
n € N there exists some k, > n such that U/~ = UF, V;* = V;* whenever
1 <i<nandk?>k,. So we can define a new play p* € P by

p* = (U, V¥ and p(p*,p*) = 0 as k — oco.
|

A similar metric space was studied in [K-O, Prop. 2.1].

We now consider the natural embedding 7 of the topological space X into
the Banach space £, (T). For z;,z, € X, z; # z, we have that ||n(z,) —
7(22)]lo = 1 and so it is clear that this embedding is nowhere norm contin-
uous on X. However, the natural embedding 7 of X into ¢, (I") with its weak
topology is continuous at every point of X. We will establish this through
two preliminary lemmas.

Given z € X, we denote by s(z) the support of z; that is, s(z) = {t € I :
z(t) = 1}. Our first result follows from Zorn’s lemma.

Lemma 3.3. Given f € £ (T') which is not identically zero on w(X)
there exists a non-empty subset A of X which is mazimal with respect to the
properties
(1) {s(z) : z € A} is disjoint family in T; that is, for z,,z2 € A, T1 # 2,
we have s(z;) N s(zy) =0, and

(it) f(n(z)) # O for each z € A.
Lemma 3.4. The set A is countable.

Proof. Given € > 0, consider the set A, = {z € A : |f(n(z))| > €}. Now

A = | A1 so it is sufficient to prove that for every ¢ > 0, A, is finite.
neN "
Suppose that for some r > 0, A, is infinite. Then one of the sets AT = {z €

A: f(m(z)) >r}or Ay ={z € A: f(n(z)) < —r} will be infinite. We may
suppose that A} is infinite. For any finite subset A’ of A} we have from
property (i) of Lemma 3.3 that ) .4 7(z) belongs to the closed unit ball
B(£(T)). But f (X,cqa 7(x)) = Ygea f(n(z)) > |A’|r where |A’| denotes
the number of elements in the finite set A’. But this implies that f is not
bounded on B({.(I')) which contradicts the continuity of f. (]

We are now in a position to establish our continuity property.
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Lemma 3.5. The natural embedding w of the topological space X into
L (T') with its weak topology is continuous at every point of X.

Proof. Consider f € €% (T"). If f is identically zero on w(X) then the result is
obvious. Suppose f is not identically zero on 7(X). Then from Lemma 3.4,

Jr= U{s(x) :x € A} is a countable subset of T'.

Denote by z* the characteristic function of J* on I'. For every z € X we
have z = z.z* + z.(1 — z*), so f(m(z)) = f(w(z.z*)) + f(7(z.(1 — z¥))).
But s(z.(1 — z*)) C s(z) N (I'\ J*) so z.(1 —z*) € X \ A. Since A is
maximal with respect to properties (i) and (ii) of Lemma 3.3, we deduce that
f(n(z.(1 — z*))) = 0. Therefore, f(n(z)) = f(n(z.z*)) for all z € X. Now
consider z, € X and a basic neighbourhood U(z, J*). For any z € U(zq, J*)
we have z|;. = zp|;+ and so z.2* = zo.z*. Then f(n(z)) = f(n(z.z*)) =
f(m(zo.z*)) = f(m(zo)). This implies the required continuity of the natural
embedding . O

We now consider the set-valued mapping ® from P into subsets of £, (T")
defined for the play p = (U,,V,)) € P by

®(p) = n m(Un) = ﬂ m(Va)-

neN neEN

It is this set-valued mapping which establishes that £,.(T') is not a GC space.

Theorem 3.6. The set-valued mapping ® from P into subsets of £ (I') is
weakly minimal, locally bounded and for each p € P, ®(p) is not singleton.

Proof. Clearly, for each p € P, ®(p) C B(£«(I')). For each play p = (U,, V,)

we note from Lemma 3.1 that the set E, = N U, = [V, is a subset of X
neN neN

which contains more than one point. So for each p € P, ®(p) = N n(U,) is
neN

not singleton.

Consider f € £ (I') generating a weak open half-space W in £, (I") and
play p° = (U2, V%) € P such that z° € ®(p°) N W. Now by Lemma 3.5, the
natural embedding 7 of X into £, (') is weakly continuous so 7~*(W) is a
non-empty open subset of X. Given § > 0 and ng € N such that ny > %
consider any play p' = (U,,V,)) € P such that U] = U2, V] = V? for all
1 <4< ngand Uypyy = Uy N1 (W). Now p(p',p°) < ;- < J. But since
n(U},+1) € W we have ®(p') C W. So ® is weakly minimal. a

Note added in proof
Professor Isaac Namioka has recently given an example to show that £, (N)
is not a GC space.
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