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THE WEYL QUANTIZATION OF POISSON SU(2)

ALBERT JEU-LIANG SHEU

In this paper, we consider the problem of quantizing the
canonical multiplicative Poisson structure on SU(2) by C*-
algebraic deformation, a notion introduced by Rieffel, and
show that there is such a deformation which is also a coal-
gebra homomorphism. Parallel to the algebraic development
of quantum group theory, Woronowicz successfully quantized
the group structure of SU(2) (and other groups) through de-
formation in the context of Hopf C*-algebras. It is known
that there exists a C*-algebraic deformation quantization of
the multiplicative Poisson structure on SU(2) which is ‘com-
patible’ with Woronowicz’s deformation (of the group struc-
ture) on the C*-algebra level. Although that deformation
preserves the important symplectic leaf structure on SU(2)
in a natural way, it does not preserve the group struture in
the sense that it is not a coalgebra homomorphism. We show
that the Weyl transformation introduced by Dubois-Violette
gives a different C*-algebraic deformation quantization which
is compatible with Woronowicz’s deformation and does pre-
serve the group structure.

1. Introduction.

In recent years, there has been a fast growing interest in the theory of de-
formation quantization (initiated in [Ge], [BFFLS]), which fits nicely with
the concept of non-commutative geometry [C1]. There are many papers in
this area using different approaches, either analytic, algebraic, geometric, or
physical, and some of them have an extensive reference list [R5], [Wo2], [K],
[Gi], [Dr], [We-X]. We refer readers to these sources for a broad overview.

It is known [Sh1] that there exists a C*-algebraic deformation quanti-
zation, a concept introduced by Rieffel [R1], of the multiplicative Poisson
structure on SU(2) [Lu-We] which is compatible with Woronowicz’s C*-
algebraic deformation quantization of the group structure on SU(2) [Wol],
in the sense that the C*-algebras obtained in these two processes are isomor-
phic. This result shows that on the algebra level, the multiplicative Poisson
structure can be deformed in a way compatible with the deformed group
structure of SU(2) during quantization.
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However, Rieffel’s [R1], [R2], [R3] and Woronowicz’s [Wol], [Wo2] for-
mulations of (deformation) quantization are different in one aspect, i.e. in
Rieffel’s formulation most of the smooth functions (on the Poisson man-
ifold) must be explicitly deformed to specific operators (or elements in a
C*-algebra) for each Plank constant h, but Woronowicz’s formulation only
requires explicit deformation of (finitely many) generators of the commu-
tative function algebra (of the manifold) so that the deformed generators
satisfy some specific commutation relations. It is highly desirable to have a
Rieffel’s deformation of the Poisson SU(2) which when restricted to those
generators satisfies Woronowicz’s commutation relations. But the deforma-
tion found in [Sh1] does not seem to have this property. Furthermore, since
the coalgebra structure gives the group (action) structure, it is also desired
to have a deformation which respects the coalgebra structure. It is now
known that the above deformation is not a coalgebra homomorphism [Sh4].

In [Du], an interesting correspondence called the Weyl transformation
from regular functions on SU(2) to elements of the algebra C(S,U(2)) of
“functions” on the twisted SU(2) [Wol] is proposed, and is shown to be
a coalgebra isomorphism. In this paper, we show that this Weyl transfor-
mation gives indeed a C*-algebraic deformation quantization of the Poisson
SU(2). One obvious advantage of this deformation is that its restriction
to the generators of C(SU(2)) gives exactly the deformed generators in
Woronowicz’s theory and hence establishes a direct link between Rieffel’s
and Woronowicz’s deformation theories on the Poisson Lie group SU(2).
This strengthens our claim in [Sh1] that the group structure and the Pois-
son structure on SU(2) are not only compatible on the classical level, but
also compatible on the quantum level, since now they are not only compat-
ible globally (i.e. as algebras) but also locally (i.e. for individual functions
on SU(2)).

Comparing the deformation quantizations obtained here and in [Sh1], we
have the following remark. In [Sh1], the deformation quantization is ob-
tained by a (symplectic) “leaf~wise” quantization through pseudo-differential
operators and hence is “leaf-preserving” in the sense to be explained in Sec-
tion 5. This property allows us to view the quantization as giving some kind
of singular foliation C*-algebra [Sh3] resembling the important example of
foliation operator algebras in non-commutative geometry [C2]. Moreover
the approach used there, now, fits nicely in the far more general framework
developed in [R5] which is involved with external R%actions. All these
show some advantage in that approach. However, that approach does not
work well with the internal SU(2)-action or the comultiplication structure
[Sh4]. On the other hand, the C*-algebraic deformation quantization ob-
tained in this paper is compatible with Woronowicz’s quantization of group
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structure, and with the internal SU(2)-action and hence the comultiplica-
tion on C(S,U(2)) [Du]. But it applies to an agebra (consisting of regular
functions) smaller than the algebra of smooth functions dealt with by the
earlier approach, and it is not “leaf-preserving” with respect to the foliation
of SU(2) by symplectic leaves.

The author would like to dedicate this paper to the memory of Professor
John W. Bunce, an honorable colleague and mathematician whose contribu-
tion in the theory of C*-algebras, for example, the Bunce-Deddens algebra,
is already a fundamental part of the theory. After this paper was written, we
received Bauval’s preprint [B] with similar results. However the concepts of
universal Poisson algebra and leaf-wise deformation quantization introduced
in this paper are not discussed there.

2. Quantum SU(2).

In this section, we shall realize the C*-algebra family C(S,U(2)) of twisted
SU(2), introduced and studied by Woronowicz in [Wol], as a continuous
field of C*-algebras.

Let A be the universal C*-algebra generated by «, 7, and v, subject to
the relations

ata+yy' =1, aa*+viyy* =1,

(1) ay =vya, ay* = vy*a,
=7, va=ay, vy =qv,
vt =v, vv* < 1.

Clearly the C*-algebra C*(v) generated by v is a central subalgebra of A. It
is well known that C'([-1,1]) is the universal C*-algebra generated by a self-
adjoint element of norm bounded by 1, and hence there is a homomorphism
form C([—1,1]) to A identifying the identity function id : p — p with
v. On the other hand, the universality of A implies the existence of a
homomorphism sending a, v, and v to 1, 0, and id in C([—1, 1]), respectively.
From this observation, it is clear that C*(v) = C([-1, 1]).

Let Z, = {f € C([-1,1]) | f(u) = 0} for p € [-1,1]. Then the surjective
homomorphism 7, : A — C(S,U(2)) sending «, =, and v to «, v, and g,
respectively, factors through A/(Z,A) and hence induces a homomorphism
m, : A/(Z,A) — C(S,U(2)). We use the same symbols «, v to denote
the generators of C(S,U(2))for all ;. Hopefully the context will clarify any
possible ambiguity. When p =1, C'(S,U(2)) is identified with C(SU(2)) so
that «, v are identified with the canonical coordinate functions on SU(2)

sending (3 _C_;Y> in SU(2) to «, 7 respectively, and in this case, a* = a,
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v* = 4. But by the universality of C(S,U(2)), there is a homomorphism
sending «, 7y in C(S,U(2)) to the calsses of a, -y in A/(Z,A), respectively,
which can be easily seen to be an (the) inverse of 7). So we have A/(Z,A) =
C(S,.U(2)).

Thus by Proposition 1.2 of [R4], the family {C(S,U(2))}.e[-1,1 is an
upper semi-continuous field of C*-algebras over [—1,1] with g +— ||7,(a)||
upper semi-continuous for any a € A. Furthermore, since C([—1,1]) is
unital, A = C([-1,1])A is identified with a maximal algebra of cross sec-
tions of {C(S,U(2))}ue[-1,1) by identifying @ € A with the map p —
{mu(a)}uer-1,)-

Next we would like to show the lower semi-continuity of the field
{C(S,U(2))}pe(=1,5- In order to do so, it is helpful, as suggested in [R4],
to have a concrete faithful representation of A disintegrated into a field of
representations of C(S,U(2)).

First there is a well-known faithful representation o, of C(S,U(2)) with
|¢| < 1 which realizes o and v in C(S,U(2)) as the operators

ou(e) =1® (Z\/ 1- N%ek,kﬂ)

keN

and

o.(7)=7® (Z Hk_lek,k)

kEN

on the Hilbert space L?(T) ® ¢?(N), where 7 is the multiplication operator
on L%(T) by the identity map e on the unit circle T and e; ; is the matrix
element on ¢?(N) sending the canonical basis §; to d; if £ = j and to 0 if
k # j. Since 0,(a) and o,(7) are norm continuous in y, it is easy to see that
o,(a) is norm continuous and hence ||, (a)|| is continuous in p € (—1,1) for
any a € A. So we only need to show the lower semi-continuity at p = 1.

In [Wo1l], Woronowicz showed that 7, (afy™vy*™) and 7, (a**4"*™) form
a linear basis of the smooth algebra C(S,U(2))* of regular functions on the
twisted pseudogroup S,U(2) [V-So], i.e. the *-algebra generated by «,
(algebraically) in C(S,U(2)), for p € (0,1], and there exists a faithful state
h,, the Haar measure, on C(S,U(2))> satisfying

2 b)) =

and

(3) hu(ak7n7*m) = hu(a*k7n7*m) =0
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for kK # 0, or n # m, for 0 < p < 1. Since h, is faithful, C(S,U(2))>
is embedded in a Hilbert space 7, and the simple C*-algebra C(S,U(2))
is represented faithfully by extensions of multiplication operators on H,,
through the GNS construction [P]. Let o, be these representations. Clearly
afy"y*™ and a**y"y*™ with k, m, n nonnegative integers form a complete
linearly independent set in each H,.

The identification of a point (@,7y) in the unit sphere S* ¢ C* with

o —7

€ SU(2) gives an identification of the Lebesgue measure on the

sphere with the Haar measure on SU(2) (up to the constant factor 1/(87?)).
In fact, using the parametrization of S* by ¥ : D x [0,27] — S® sending

(o, 0) to (a,7) = (a, v/1—|al?e?), we can verify that

/ak nzm __ 0 ifk#0,orn#m
s3 Y= %ifk=0andn=m.

So the normalized Haar measure h, on SU(2) satisfies that

0 ifk#0,orn#m

n—i—lifk=0andn=m.

0 -]

Similarly the above equation holds when « is replaced by @. Note that the
faithful Haar measure h; on C(SU(2)) gives rise to the canonical faithful
representation o; of C(SU(2)) on H,; = L*(SU(2),h;) by multiplication
operators.

From Equations 2, 3, and 4, we have

l{x_rg hy(mu(a)) = hi(mi(a))
and hence

lim (m, (), 7, (b)), = lim h, (., (b)*7,(a)) = lim h,,(, (b"a))

p—1 p—1 p—1

(5) = hi(mu(b"@)) = hy(mu(b) " mu(a)) = (mu(@), 7 (b))

for any linear combinations a, b of a*4"y*™’s and a**4"y*™’s, where
(-,-), is the inner product on H,,.

Observe that for any a in the *-algebra A generated by v, @ and v in A,
i.e. a is a linear combination of monomials in v, a, 7, a*, and v*, there are

(finitely many) nonnegative integers k;, kj, n;, n}, m;, m; (independent of
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p) such that

mu(a@)m, (akymy ™) = Zfzu# ) (@it
+ 3 5, ) (@ Hymiy )
J

for all u € (0,1] with f;, g; polynomials in two variables, because of the
commutation relations in Equation 1. Similar formula holds for

(@), (a*Fymy ™),

too. Let K be a linear space with basis B consisting of finitely many mono-
mials of the form a*y"y*™ or a**4™y*™, and let K, be 7,(K) embedded
in H,. By the above observation, it is easy to see that there is a suitably
large K' with basis B’ consisting of monomials of the form a*ymy*™ or
o*kymy*™ guch that m,(a)m,(K) C 7,(K') and hence o,(n,(a))K, C K,,.
With respect to the bases m,(B) and 7,(B’) embedded in #,, the entries
in the matrix representation of o, (m,(a)) are polynomials f; ;(x, p~") which
are clearly continuous in x € (0,1]. Since K, K, are finite dimensional with
inner products satisfying Equation 5, we have

lim [lo, (. (@) ll0x,. ;) = llon (@)l iey)-
Since || (@)|| = |lo1(m1(@))||sx,) can be approximated by

llow (m1 (@)l By i)

with sufficiently large K and

low(mu(@Nllsi, k) < llow(mu(@)llsm,) = lImu(a)ll,

we get ||7,(a)| lower semi-continuous at x = 1. Since linear combinations
of monomials in a, « are dense in A, the conclusion holds for any a € A.
Summarizing, we have

Theorem 1. The universal C*-algebra A is identified with a mazimal alge-
bra of cross sections of {C(S,U(2))}uej-1,1) by the map @ — {m,(a)} pef-1,1)-
The family {C(S,U(2))}uei-1,1] s an upper semi-continuous field of C*-alge-
bras over [—1,1] with p —> |7, (a)|| continuous in p € (—1,1] for any
acA.

After this paper was written up, the author learned that G. Nagy has
obtained results which generalize the above theorem (c.f. [N]).
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Since our goal is to find a deformation quantization of SU(2), we are only
interested in the behavior of C(S,U(2)) for p close to 1, and so in the rest
of this paper we shall fix an ¢ > 0 and add

(6) Vv>E

to the identities in Equation 1. We use the same notion A to denote the
corresponding universal C*-algebra. Then it is easy to see that the above
argument still works and A is identified with a maximal algebra of cross
sections of {C(S,U(2))}ele,1) by the map @ — {m,(a)},c[,1)- The family
{C(S,.U(2))} e is a continuous field of C*-algebras over [e, 1] with p —
|7, (a)|| continuous on [¢, 1] for any a € A. Note that the generator v is
now invertible in A. So we now use A to denote the *-algebra generated by

v, 71, a, and v in A.

3. Weyl transformation.

Let T = C([¢,1]) be the C*-subalgebra generated by v in A. Then we
denote by A ®7 A the tensor algebra A ® A modulo the ideal generated by
r@1l—1®uwv. It is easy to see that fa® b = a ® fbin A ®; A for any
a, be Aand f € Z. As in [Wol], by the universality of A we can define
the comultiplication ® : A — A ®7 A on the algebra A as the C*-algebra
homomorphism determined by

la) =a@a—-17" ©y

and
P(y)=7@a+a" Q7.

Applying the commutation relation ay* = vy*a to the first factor in the
tensor product, we can easily see that, for n > 0 and 0 < k < n,

(D(O’.n_k’y*k) — (a ®Ra — V'Y* ®7)n-k(7* ® a* + o ®,Y*)k

is of the form
Z an—z,y*t ® w?k
0<2<n

where w? is a finite Z-linear sum of monomials in the elements v, v, a,

a* ~, and v* in A. (Although there may be several such representations
of w?, we fix one for each w, throughout the discussion.) For example, we
have

wpo =1, Woo = €,
(7) wip = vy, Wi = oot =Y,

2 __ %2 2 * K —1 k%
whp =72, wh=rvay +rlatyn.
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It is easy to see that {7m,(w}) | n >0, 0 <4,k < n} is the set of matrix
elements of all the canonical irreducible quantum group representations of
C(S,U(2)) found in [Wol].

In [Du], a notion of Weyl transformation W), is proposed. In the next sec-
tion, we shall show that this transformation actually defines a C*-algebraic
deformation quantization of the Poisson SU(2) in the sense of Rieffel [R1].
Here we recall its definition. It is well known that a regular function f on
SU(2) can be written in a unique way as a linear combination
Dok fr i (w?,) of the orthogonal matrix elements m (w%) € L*(SU(2))
of the irreducible representations of SU(2), where

fir= @il [ Fmw)

are the Fourier coefficients of f. The Weyl transformation defined in [Du]
(see the remark following Theorem 2) when restricted to the case of SU(2)
is the linear map W}, : C(SU(2))® — C(S,U(2))* with u = e~*/? and

(8) Z f e (w

n,i,k
By Theorem 3.1 of [Du], W}, is a coalgebra isomorphism. Note that we may
define a linear map W : C(SU(2))* — A by

Z kwlk

n,i,k

and then we have W, = m, o W.
Summarizing, we have

Theorem 2 (Dubois-Violette and Woronowicz). The Weyl transformation
Wy : C(SU(2))>®° — C(S,U(2))™ definde by Wj, = m, o W where W :
C(SU(2))>® — A is defined by

w (Z cz‘km(w?k)) =Y cpwk

n,i,k n,i,k

is a coalgebra isomorphism for each h = —21n(p). In particular, W, = m oW
is the identity map on C(SU(2))*

We remark that in [Du], the term, Weyl transformation, is reserved for
more restrictive transforms defined in the same way, but using only irre-
ducible unitary representations to get the matrix elements wf. It can be
shown that the irreducible representations w™ which we use here can be
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unitarized by conjugating the matrices (wf );x by some invertible diagonal
matrices with entries in C([¢,1]) (actually polynomials of v and v~1). We
denote the matrix elements of the irreducible unitary representations con-
structed in this way by u;.

The proof of our result on deformation quantization of Poisson SU(2),
namely, Theorem 3, does not depend on the choice of the representatives of
irreducible representations in defining Weyl transformations. That is, we can
define W), using u},’s instead of w},’s. One reason for using only unitary ir-
reducible representations to define Weyl transformations in [Du] is probably
the claim made there saying that there are suitable “consistent” choices of
the representatives of an irreducible unitary representation and its (presum-
ably non-equivalent) conjugate irreducible unitary representation, the Weyl
transformations will be *-preserving. This claim may actually be wrong since
each of the unitary irreducible representations 7,(u") mentioned above and
its conjugate representation are in the same equivalent class of representa-
tions, and there is no way to make “consistent” choices of representatives to
make the Weyl transform *-preserving. So the claim in [Du] that the Weyl
transformation is a *-coalgebra isomorphism is not true here.

4. Universal Poisson algebras.

In this section, we consider the idea of noncommutative Poisson algebras for
the convenience of later discussion. Usually, a Poisson algebra refers to a
commutative algebra P with a Lie bracket {-,-} : P x P — P such that
{a,-} and {-,a} are derivations of P, i.e.

9) {a,bc} = {a,b}c + b{a,c},
{ab,c} = {a,c}b+afb,c},

for all a, b, ¢ € P. But this definition does not need the commutativity of
P in order to make sense. In fact, a (noncommutative) algebra A endowed
with the commutator bracket [a,b] = ab— ba for a, b € A is an example. So
in this paper, Poisson algebra need not be commutative.

We consider the concept of universal Poisson algebra P(S) generated by
elements in a set S (with no additional relations imposed). More precisely,
P(S) is a Poisson algebra endowed with an embedding (i.e. an injection)
t: S — P(S) such that any function from S to a Poisson algebra A ex-
tends uniquely to a Poisson algebra homomorphism from P(S) to A. Such
a universal Possion algebra is clearly unique up to isomorphism. Actually
it exists and can be constructed in the following way. We take one repre-
sentative from each congruence class of morphisms f : S — Ay, where f
is a function, A; is a Poisson algebra which has no proper Poisson subal-
gebra containing f(S), and two such morphisms f, g are congruent if there
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is a Poisson algebra isomorphism h : Ay — A, such that g = ho f. Let
P be the Poisson algebra direct product [];; Ay with exactly one Ay from
each congruence class [f]. Then we define P(S) to be the smallest Poisson
subalgebra of P containing all J];, f(s), s € S. Because the free (noncom-
mutative) algebra generated by elements of S is such an A; containing a
faithful copy of S, the Poisson algebra P(S) is well-defined and clearly sat-
isfies the universality condition. It seems to be plausible but yet is not clear
how to construct such universal Poisson algebra using the constructions of
free Lie algebras and the enveloping algebras of Lie algebras.

Let a;, b; be some generators in S C P(S). Then by repeated applications
of Equation 9, we can check that {a;a;...am,b1bs...b,} is a finite sum of
monomials of the form s;s,...8¢{s0, So }t1t2..t; With s;, ¢t; genarators in S. In
fact,

{alaQ...am, blebn} = Zalag...ai,lble...bj_l{a.i, bj}bj+1...bnai+1..am.

Note that, for each pair of monomials a = a,a;...a,, and b = b;b,...b,, this
finite sum expression of their Poisson bracket is not unique. But we shall fix
one summation formula

(10) p(a,b) = Z3132...8k{80,t0}t1t2..tl

for each pair of monomials a, b in the generators of P(S) where s, t are finite
sequences of generators in S of various lengths. Note that by the universality
of P(S), given any surjection F' : S — X with X a set of algebra generators
of a Poisson algebra A, then for any pair of monomials z, y in elements of
X, we can find monomials a, b in elements of S such that

{z,y} = ¢(p(a,b)),

where ¢ is the unique Poisson algebra homomorphism from P(S) to A ex-
tending the function F. In fact, any monomials a and b with ¢(a) = z and

¢(b) = y satisfy ¢(p(a,b)) = ¢({a,b}) = {$(a), (b)} = {z,y}.
5. Weyl quantization of Poisson SU(2).

It was shown in [Lu-We] that there is a Poisson structure on SU(2) com-
patible with the group structure, in the sense that the multiplication m :
SU(2) x SU(2) — SU(2) is a Poisson map where SU(2) x SU(2) is endowed
with the product Poisson structure. We refer readers to [We] for the theory
of Poisson manifolds.

We first give a definition of a C*-algebraic deformation quantization in
Rieffel’s sense [R1].
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Definition 1. Given a Poisson manifold (M, {-,-}) and a smooth Poisson
algebra A (of functions on M), i.e. a (sup-norm) dense Poisson *-subalgebra
of C°(M) C Cy(M), a family of linear surjections p, : A — A, with
0 < h < for some ¢ > 0 is called a C*-algebraic deformation quantization
of A if

(1) each A, is a *-subalgebra of a C*-algebra A, with A4, = A and p, the
identity map,

(2) llpn(f)]l is continuous in h € [0,4) for any fixed f € A,

(3) limyyo [lon(f*) — pu(f)*|| = O for any f € A,
(4) limp_o [|on(f)pr(g) — pr(fg)ll = 0 for any f,g € A,
(5) Timiso |(60) " [on (1), pn(9)] — pa({F, g})I] = 0 for any f,g € A

In the following, with u = e */2, we take A, = C(S,U(2)) and A, =
C(S,U(2))>, the *-algebra generated by o, v in C(S,U(2)). In particular,
A = A, is the algebra of regular functions on SU(2). We claim that

Pr = W,: Ay — A, C C’(SuU(2))

defines a C*-algebraic deformation quantization of Ay.

Clearly (1) in Definition 1 is satisfied, and Theorem 1 implies that ||W},(f)||
= ||m.(W(f))|| is continuous in p € [¢, 1] and hence in h € [0, — In(e)], which
is condition (2) in Definition 1.

Since W (f)W(g) — W (fg) is in A, we have

lim [|W (F)Wh(9) — Wa(fo)ll = lim ||m, (W (F)W (9) — W (f9))ll

= lmW ()W (g) = W(fa)Il = lm (W (£))m(W(g)) — m(W (f9))ll
=lfg—foll =0

by Theorem 1 and Theorem 2. So condition (3) is satisfied.
We also have

lim [|W,(£) = Wa(£)*ll = lim ||, (W (£)) = mu (W (£)")l

= lim [|m, (W (f) = W())l = Im(W () = W (/)]
= |mW () —mW ) I =1f-fll=0

by Theorem 1 and Theorem 2, since W(f) — W(f)* is in A and m is a
*_-homomorphism. (Note that W and W, are not *-preserving except for
h =0.) So condition (4) is verified.

Now it remains to show condition (5). First we get some basic result on
the limit behaviour of (¢h)~![r,(a), 7, ()] for generators a, b € {a, &, 7,7}
of A.
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Recall that the Poisson 2-tensor 7 on SU(2) is given by

(GE) - ) [ 2

L—Jof* ]y

(up to a constant factor) where ¢ = = Taf [Sh2]. Let us make
a

|af?
explicit the brackets of the generators «, @&, 7, and ¥ of C(SU(2))>. We
have
{ayv}=m @y -(da/\d'y)zli'ya
K ,y a 2 ?
N a =%y ' N
{a,a} = ((7 a >) (da A da) = —iyy",
. a—y\\ R
{a, 7} =m <<7 & )) (da A dy) = 507a,
and

vyt=mnx ((: ;7)> - (dy Ad¥) = 0.

The others can be gotten from these three since the Poisson bracket on
SU(2) commutes with the conjugation and is alternating.
For each pair (a, b) of generators a, &, v, and 7, we fix an element (a, b)
in A satisfying
m((a,b)) = {m(a), m (B)}.

(For the convenience of presentation, we choose the obvious lifts 1(a,b) of
{m1(a), m(b)} suggested by the above formulae for brackets of generators
in C(SU(2))*, although the choice of 1(a, b) does not affect the following
claim, Equation 11, which we need later.) For example, we set ¢(a,vy) =

tiva.
We claim that
(11) ’111_{1'(1) ”(ih)_l[ﬂ'u(a)’ﬂ'u(b)] - Wu(w(a,b))” =0

for any pair (a,b) of generators o, &, -, and 4.
In fact, by noting that

lim 2L = #)

pm ———— =1
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and using the commutation relations in Equation 1, we have

lim ||(ih) ™ [r, (@), 7, ()] = 7 (%”a) H
= lim ||(2i(1 - )" mu(fos ) = 7 (%”a) “
— m (2i(1 = p)) ey —ya) — 7, Gha) “

— lim | (2i(1 - ) (v = 17@) — iy

p—1

= lim ||—(2i) 7, (ya) — li7r#('701)” =0.

p—1 2

Similarly, we have

and

lim [|(ih) ™ [, (er), mu(ee")] = mu(—iyy”)

= lim [|(2i(1 = )" mu((er, @]) = mu(—iyy")

= lim [|2i(1 — p)) "'mu(@a” — a”a) + m,(ivy7)
= lim | (2i(1 = 1) m((1 = 2)y7) + iy )|

= lim [|m,(((20) " (1 + ) +i)yy)] =0,
,lli_r)% (ih)—l[ﬂu(a)aﬂu('Y*)] — Ty (%h’*a)l

= tim || (2i(1 - ), (f,v7) - 1zvru(’r*a)]]

p—1 2

= tim | 2iC1 - )y fer” — @) - gimu ()

pu—1 2

= tim | @i = ) "m0~ Dy°e) - gim(r7a)|

p—1

1
— lim ||~ (2i) 'y (v a) Eiﬂu('y*a)“ ~0.

p—1
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Clearly Equation 11 holds for the pair (v,4) since [y,5] = 0 in C(S,U(2))
for each p # 1 and ¥(v,%) = 0. Now Equqtion 11 holds for other pairs of
generators, too, since all the Poisson brackets involved here commute with
the adjoint operation and are alternating. So we get Equation 11 verified.
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Consider the universal Poisson algebras P(.S) with four free generators in
S ={&,%,a",7"}. Let ¢ ( resp. ¢,) be the Poisson algebra homomorphism
from P(S) to the Poisson algebra A (resp. C(S,U(2))*°) extending the map
sending &,%,a",y" to a, v, a*, v*, (resp. a, v, a*, v*) respectively. We
note that

(12) ¢y =m,0¢

on the subalgebra generated by S in P(S) for all u since 7, ¢,, and ¢ are
algebra homomorphisms, and on P(S) for u < 1 since the Poisson brackets
on A and C(S,U(2)) with p < 1 come from the algebra commutator bracket
and hence m,, ¢,, and ¢ are Poisson algebra homomorphisms. For each
monomial z in a, v, a*, and 4*, we fix a unique monomial Z in elements
of S such that ¢(Z) = . Let =, y be monomials in a, v, a*, and v* with
a =1Z,and b =9y. Then
{mu(nz), . (Cy)}, = n(p)(p ){%(¢(a)) u((0))},

= n(p)C(n){du(a), #.(0)}, = n(k){(1)¢u.({a,b})
= ()¢ (1) $u(p(a, b)) = 28182 se{s0, to}tuta. tz)
= Z¢u(51 $6){u(s0), bu(to) },,bu(ts.
= n(p)¢ (1) Zm(qﬁ s1.:8k) {7 (B(80)), T (B (t0)) } 70 (B(E2---11))
Zﬂu 8){mu(s0), mu(to)},mu(t)
by the fact that ¢, is a Poisson algebra homomorphism for any u, where
si, t; are in S as defined in Equation 10, {-,-}, is the Poisson bracket on

Ap = C(S5,U(2))®, 8 = ¢(s1...5¢) and t = ¢(t;...t;) are monomials in o, 7,
a* and v* of A, and sy = ¢(sy) and £, = ¢(to) are from {a,vy,a*,v*}. In

particular, we have
{m:(n fv) ! (Cy)h

Zm (to)}lﬂl( )
Z m1(8)m1(1(S0, to))m1 ()

(13) (Zn 1)s¢(so,to)t)
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Recall that each w], is a finite sum ) nx of monomials = in «, v, a*,
and vy* with coefficients n € C([e, 1]) C A. So any two elements f and g of
Ao = C(SU(2))* are now written as finite sums >, m (n;2;) and 3, 7, ((;y,)
with 7;, (; € C([¢,1]) and z,,y; monomials.

Before we proceed to finish the proof, we observe that if elements a, b of
A satisfy 7 (a) = 7 (b) then

lim [ W (r1(@)) = m,(B)] = limy I, (W (s (a)) — b)]
= [m (W (m1(@)) = b)]| = (@) — m(b)]| = 0

by Theorem 1 and Theorem 2. With this in mind, we get, for f = Y, m (n:;)
and g = Z]‘ ﬂl(gjyj)>

hm

Wh {f)g} (ZZ%C]S?/) SOatO)t>

2,j St

because

Wi({f,g}) = Wh (Z {m (niwi)’ﬂl(ciyz)})

= (771 (zznz 1)CJ S’l,[) sOatO)t>>

by Equation 13. Here, in each summand, s, s¢, t, £y all depend on the
corresponding pair (7,7). Now in order to prove condition (5), we only need
to show

lim

h—0

=0,

2,7 St

(ih)_l{Wh( ) Wh( (EZ% ,U*)CJ N)S¢(307t0) )
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which is verified in

lim (i)™ (Wi (1), Wa(0)},, = (szgswwmto)t)

= lim || (s
h—0

h)~! E {m.(mz:), ”u(CJ'yj)}”

=33 ()G ()T (8)m ((80, to))ma (2)

,j st

= hm

(ih)~ 2772 )G (1) Z”u(s {m.(s0), Wu(to)} mu(t)

=202 )G ()mu(8)m (80, b)) (2)

3,J St

L (S 0% ()¢ () mu(8) ((ih) 7 {m, (s0), mu (o)},

= lim
1,7 St

— 7, (¥(80,0))) ()] =0

by Equation 11.

Theorem 3. The Weyl transformations Wy, : C(SU(2))> — C(S,U(2))*
form a C*-algebraic deformation quantization of the Poisson algebra
C(SU(2))*® of regular functions on the Poisson Lie group SU(2).

It is not hard to check that the above proof works well for a quite general
class of transformations, and in particular, if we replace wj.’s by u};’s in
defining the Weyl transformations, Theorem 3 still holds. The same tech-
nique used in this paper seems to work for other Poisson Lie groups, espe-
cially the twisted SU(n)’s, on which the author is currently investigating.

We remark that this Weyl deformation quantization of Poisson SU(2) is
not a “leaf-preserving” quantization (with respect to the canonical symplec-
tic foliation [We] of the Poisson SU(2)) in contrast with the deformation
quantization W, : C*(SU(2)) — C(S,U(2)) found in [Sh1], which is leaf-
preserving in the sense that if f = g on a symplectic leaf L of SU(2) then
T (Wh(f)) = m(Whi(g)) where 7, is the irreducible representation of the
C*-algebra C(S,U(2)) naturally associated with the leaf L [V-So]. In fact,
we can actually find explicitly a regular function f on SU(2) vanishing on
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a specific symplectic leaf L such that 7y (W,(f)) # 0 for all h # 0. For
example,
f=aa—yy+2¥* -1

is a regular function on SU(2) vanishing on the symplectic leaf

LO:{(:;?) 6.5'U(2):|a|<1and’y>0}.

But
7L, (Wa(f)) = (1 — 1?) ZM2(k_1)ek,k #0
kEN
for all A # 0. Finally, we note that this example is still valid when the Weyl
transformation is defined by using u’s instead of w,’s, so the unitarized
version is still not leaf-preserving.
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