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TRACE IDEAL CRITERIA FOR TOEPLITZ AND HANKEL
OPERATORS ON THE WEIGHTED BERGMAN SPACES

WITH EXPONENTIAL TYPE WEIGHTS

PENG LIN AND RICHARD ROCHBERG

Let φ : D —» R be a subharmonic function and let AL2

φ(Ώ))
denote the closed subspace of L2(D, e~2φdA) consisting of ana-
lytic functions in the unit disk D. For a certain class of subhar-
monic ψ) the necessary and sufficient conditions are obtained
for the Toeplitz operator Tμ on AL2

φ (D) and the Hankel oper-
ator Hb on AL^iW) in order that they belong to the Schatten
ideal Sp.

1. Introduction.

Let dA denote the area measure for the unit disk D in the complex plane C.
Let L2(D) denote L2(D, dA) and let L°°(D) denote L°°(O, dA). Let ψ : D ->
IR be a subharmonic function. Let L™(D) be the space of all measurable func-
tions / on D such that e~φf G L°°(D) and let H™(B) denote the subspace
of L™(B) consisting of analytic functions. Let l£(O) be the Hubert space
of all measurable functions / on D such that ||/||L2 =: (/D \f\2e'2φ dA)1/2 <
oo. The inner product of L2

φ(β) is given by (/, g)Li = JΏfge~2φdA for
/, g G L2

φ{β). Let AL2

φ{p) denote the closed subspace of L2(D) consisting
of analytic functions. Let P be the orthogonal projection from L2

φ(Ώ)) onto
AL2

φ(Ώ>), which is given by Pf(z) = JΌK(z,w)f(w)e-2φ^dA(w), where
K(z,w) is the reproducing kernel of AL2

φ(Ό). For b G L2(Ό), the Hankel
operator Hb on AL2

φ (D) is defined on the dense set iϊ£°(D) of AL2

φ (D) (for
certain class of subharmonic ψ) by

Hbf = bf-P(bf).

For a finite positive Borel measure μ on D, the Toeplitz operator Tμ on
AL2

ψ(p) is defined by

Tμf(z)= ί K(z,
JΏ)

The purpose of this paper is for a certain class of subharmonic φ to prove
necessary and sufficient conditions on b (respectively on μ) in order that
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the Hankel operator Hh (respectively the Toepolitz operator Tμ) on AL2

φ(B)
belongs to a Schatten ideal Sp.

In [Lul], Luecking obtained the trace ideal criteria for the Toplitz oper-
ators on the (standard) weighted Bergman spaces. In [Lu2], he considered
the boundedness, compactness and the Schatten class properties of the Han-
kel operators on the Bergman spaces of the unit disk B with the symbol
functions in L2(B).

In [LR], we studied the boundedness and compactness of the Hankel op-
erator Hh on the weighted space AL2

φ (B) with b G L2(B) for a certain class
of subharmonic φ.

In the present paper, we will continue to study the Hankel operator Hh

on AL2

φ (B) and we will also consider the Toepolitz operator Tμ on AL2

φ (B).
We will still concentrate on the same class of subharmonic φ as in [LR].
The typical examples of our weight e~2φ are (1 — | ^ | 2 ) A , A > 0 (which cor-
responds to the weights for the standard weighted Bergman spaces A2'a for
a > 0) and (1 - \z\2)A exp {-B/(l - \z\2)a}, A > 0, B > 0, a > 0. For the
Toeplitz operator Tμ on AL2

φ (B), we will give conditions on the finite posi-
tive Borel measure μ on B in order that Tμ be bounded, compact and in Sp

respectively. For the Hankel operator Hb on AL2

φ (B), we will give conditions
on the function b G L2(B) in order that Hb belong to Sp.

The paper is arranged as follows. In Section 2 we recall some results about
the Carleson measures on AL2

φ(B). In Section 3, we consider the Toeplitz
operator Tμ on AL2

φ (B) for finite positive Borel measure μ on B. In Section
4, by using the results obtained in Section 3, we prove the trace ideal criteria
for the Hankel operator Hb on AL2

φ (B) for a certain class of subharmonic ψ.
Throughout this paper, we will use the letter C to denote constants and

they may change from line to line.

2. Carleson measures on AL2

φ (B).

Let μ be a locally finite nonnegative Borel measure on the unit disk B, dA
be the area measure on B and φ : B —> R be subharmonic function. Let
L2

 μ(B) be the space of all measurable functions / on B such that

1/2

Let L2

φ(D) denote L2

φ4A{β) and AL2

φ(D) be the closed subspace of L2

φ(D)

consisting of analytic functions.

Definition 2.1. μ is called a Carleson measure on AL2

φ (D) if the imbedding
operator J : AL2

φ(D) -+ L2

φ^μ(p) is bounded.
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Definition 2.2. μ is called a vanishing Carleson measure on AL2

φ(D) if
the imbedding operator J : AL2

φ(D) -> L2

φ (D) is compact.

Definition 2.3. For real valued function y> E C2(D) with Aφ > 0, let

r(z) = (Aφ(z))~1^2. We say that φ E ϋ if the following conditions are

satisfied.

(1) There exists a constant CΊ > 0 such that |τ(z) — τ(ξ)| < C\\z — ξ\ for

z, ξ E D.

(2) There exists a constant C2 > 0 such that τ(z) < C 2 ( l — \z\) for ̂ E D .

(3) There exist constants 0 < t < 1 and α > 0 such that τ(z) < τ(ξ) +

t\z-ξ\ for \z-ξ\>aτ(ξ).
Some typical examples of functions in class V are as follows:

(i) ψι{z) = —y log(l — \z\2), A > 0. The corresponding weight e~2φi is

the standard weight (1 — \z\2)A for A > 0.

(ii) <£2(£) = §(—Alog(l —|;z|2) + .Θ/(l —|z | 2 ) α ) , A > 0, B > 0, α > 0. The
corresponding weight e~2φ2 is the exponential weight

(1 - \z\2)A exp {-5/(1 - M 2 Π , A > 0, B > 0, α > 0.

(iii) ψι + h and (p2 + /ι, where </?i and φ2 are as in (i) and (ii) respectively,
and h E C2(D) can be any harmonic function on D.

The following notation will be frequently used:

minίCΓ1, Co1)
mφ =

where CΊ and C2 are the constants of φ in Definition 2.3.

For φ E P , we have the following theorem about the Carleson measure on

AL2

φ(Ώ).

Theorem 2.4. Let ψ E P . TΛen μ is a Carleson measure on AL2

φ(D) i/

and on/y if £/ιere ea;i5f5 a constant a E (0, m v ) si/c/i ίΛaί

(2.1) sup -7-T2 μ {ξ E D : |ξ - ^| < ar(^)} < 00.

Proof. The sufficiency was proved by Oleinik [O] under the condition (1) and
(2) of Definition 2.3 for any a E (0, mφ). For the necessity, see [LR]. D

The following theorem is about the vanishing Carleson measures on AL2

ψ (D).

Theorem 2.5. Let ψ E V. Then μ is a vanishing Carleson measure on

AL2

φ(D) if and only if there exists a constant a E (0, mφ) such that

lim sup ——-μ{ξ E D : \ξ - z\ < aτ(z)} =0.
r~^1r<\z\<l T\ZY



130 PENG LIN AND RICHARD ROCHBERG

Proof. For the sufficiency, see [O]. For the necessity, see [LR]. •

In this paper, we will use the equivalent discrete form of condition (2.1)
in Theorem 2.4. In order to get the equivalent condition of (2.1) in discrete
form, we need some notations and a covering lemma.

Throughout this paper, we will always use the following notations: τ(z) =
(Aφ(z))~1^2

) for any constant a > 0, D(aτ(z)) = D(z, ar(z)) denotes the
Euclidean disk in C with center z and radius aτ(z).

Lemma 2.6 ([O]). Let φ G V and let a G (0, mψ). Then there exists a
sequence of points {ZJ} C D, such that the following conditions are satisfied:

(1) ZjiD{ar{zk)),j^k.

(2) (JjD(aτ(zj))=Ό.

(3) D(aτ{zj)) C D{$orr(zj)), where

D(aτ(zj)) = \JzeD(aτ(tj)) D(aτ(z)), j = 1, 2, . . . .

(4) {D(3ar(zj))} is a covering ofΌ of finite multiplicity N.

Definition 2.7. A covering {D(aτ(zj))} of D is called a r-covering of D if

it satisfies all the conditions in Lemma 2.6.

Theorem 2.8. Let ψ G V. Then μ is a Carleson measure on AL2

φ{D) if

and only if there exists a constant a G (0, mφ) such that for every r -covering

{D(aτ{Zj))} o/D,

sup , n ; / \\\ <oo.

Proof. The necessity follows from Theorem 2.4 immediately. The sufficiency

follows from the proof of the sufficiency of Theorem 2.4 (see [O]). D

3. Toeplitz operators on ^

Let μ be a finite positive Borel measure on D and let K(z, w) be the repro-

ducing kernel of AL2

φ(Ώ). The Toeplitz operator Tμ on AL2

φ(Ώ)) is defined

by

Tμf(z)= ί K(z,w)f(

Recall that J : AL2

φ(Ώ>) -* L2

φ^μ(Ώ) is the imbedding operator. By direct
computation one can check that for #, h G ^

(Jg, Jh)Ll =(Tμg, h)Li.
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Thus Tμ = J*J. Then the next two theorems about the Toeplitz operator
Tμ on AL*(D) follow immediately from Theorem 2.4 and Theorem 2.5.

Theorem 3.1. Let φ G V. Then the Toeplitz operator Tμ is bounded on
AL2

φ{Ώi) if and only if there exists a constant a G (0, mφ) such that

SUp ^ — y ^ r < OO.

z& \D(aτ(z))\

Theorem 3.2. Let ψ G V. Then the Toeplitz operator Tμ is a compact
operator from AL2

φ{Ώί) to L2

φ{β) if and only if there exists a constant a G
(0, mφ) such that

μ(D(aτ(z))) Λlim sup 7r> \{γ = 0.
τ+1 \D(aτ(z))\

Prom Theorem 2.8 we also have

Theorem 3.3. Let φ G V. Then the Toeplitz operator Tμ is bounded on
AL2

ψ{Ό) if and only if there exists a constant a G (0, mφ) such that for every
τ-covering {D(aτ(zj))} ofΏ,

sup , v

n : / \\γ < oo.

In the rest of this section, we will characterize those finite positive Borel
measure μ for which the Toeplitz operator Tμ on AL2

φ{p) belongs to the
Schatten ideal Sp.

The Schatten ideal Sp consists of all the operators T on Hubert space
for which the singular numbers sn(T) form a sequence belonging to lp. The
singular numbers of the operator T are defined by

sn = sn{T) = inf {||Γ - K\\ : rank K < n} .

We denote \T\P = (ΣΓ=i sΌ1/p- For p > 1 the quantity \T\P is a norm, while
for 0 < p < 1 we have the following inequality

We refer to [GK] and [S] for more information about Sp.
First we consider the case 1 < p < oo.
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Theorem 3.4. Let I < p < oo and let φ G V. Then Tμ belongs to Sp if and
only if there exists a constant a G (0, mφ) such that for every r-covering
{D(aτ(Zj))} of®,

\D(aτ(z-))\ ) < O ° -

We will prove the sufficiency first. We need a lemma.

Lemma 3.5. Let φ G V. Then we have

K(z,z)e~2φ{z) ~ ( φ ) ) - 2 = Δφ(z), z G D.

By the relation ~ we mean that the ratio of the two expressions is bounded
above and below by absolute positive constants.

Proof For any zGD, let Lzf = f(z) be the point evaluation on AL2

φ(D). It
is well known that

K(z,z) = \\LZ\\2.

The point evaluation Lz can be regarded as an imbedding operator from
AL2

φ{β) to L2

φ?e2<^z(D), where δz is the Dirac measure at the point z. Then
by Theorem 2.4 and the estimate of the norm of the imbedding operator
(obtained in the proof of Theorem 2.4, see [O] and [LR]), we have

\\LZ\\2 ~ sup — ! — ϊ e2^δz(ξ), for some a € (0, mφ)
w e D T(wy JD(aτ(w))

where we use the fact that r(w) ~ r(z) whenever \z — w\ < mφτ(w), which
follows easily from condition (1) of Definition 2.3. Thus

K(z, z)e~2φ{z) - (r(z))-2 = Δφ(z), z G D.

This finishes the proof of Lemma 3.5. D

Proof of the Sufficiency of Theorem 3.4. Let {en} be any orthonormal set in
AL\(D). For any n > 1,

(Tμen, en)L2 = ί \en(z)\2e~2^dμ(z).
φ
 JΌ

Since μ is a finite positive Borel measure on D, it follows that

< [ K{z,z)e~2φ(z) dμ(z).
JΌ
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Let {D(ar(zj))} be a r-covering of D with a G (0, mφ). Then

Tμen, en)L%\ <

<T [
j JD(aτ(z3))

<CΣ I (r(z))-2 dμ(z)
j JD(ar(Zj))

where the last inequality is by Lemma 3.5. As we pointed out before, τ(z)
τ(w) whenever \z — w\ < mφτ(w). Thus we have

n

\(Tμen, en)L%\ < CJ2(T(ZJ))
 2 ί dμ(z)

JDίarίz,))

Y \D(aτ{Zj))\

Therefore

3

On the other hand, by Theorem 3.3 we have

μ{D{aτ{Zj)))

i \D{aτ{zj))\

It then follows by interpolation that

rr r-Q ^^fμiDiariz.W

This completes the proof of the sufficiency. D

To prove the necessity, we need two more lemmas.

Lemma 3.6. Let φ G V and let

kw{z) = K(z,w)(K(w,w))-1'2.

Then there exists a small constant aQ G (0, mφ) such that

\kw{
z)\2 ~ K{z > z) whenever \z — w\ < aoτ(w).
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Proof. For any fixed w0 G D, consider the subspace AL2

φ(Ώ,w0) which is

defined by

AL2

φ(Ώ>, wo) = { / € AL2

φ(Ώ>) : f(w0) = θ } .

Note that we have the decomposition

(3.1) l φ

where CWo is the one-dimensional subspace spanned by the function

kW0(z)=K(z,w0)(K(w(hw0))-1'2.

We denote by KWo(z,w) the reproducing kernel of AL^(B,wo). Prom (3.1)
we obtain

(3.2) K(z,z)=KW0(z,z) + \kW0(z)\2.

Hence we always have

(3.3) \kW0(z)\2<K(z,z).

Now we need to prove the reverse inequality. By (3.2) we only need to show
that there exist constants 0 < α 0 < mφ and 0 < δ0 < 1 such that

(3.4) KWo(z, z) < δ0K{z,z) whenever \z - wo\ < aor(wo).

Let us consider the operator

(Swof)(z)=f(z)(z-wo)-1.

It is easy to check that SWo maps AL2

φ(B, w0) into AL2

φ{β). Let V£o : C ->• C
be defined by V£Q(ξ) = [z — wo)ξ. Then the point evaluation U^of = f(z)
on AL2

φ(Ώ), w0) can be represented as

where Lz is the point evaluation on AL2

φ{β). Hence

(3.5) l l^ o l l<iK z oll l l^ l l l l^ol l

When \z — wo\ < aoτ(wo), where a0 G (0, mφ) will be chosen later, it is

obvious that

(3-6)
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To estimate the norm of SWo, let us take a small a± E (0, mφ). The choice
of OLi will be made precise later. For any / E AL2 (D, w0), let

Then g G
have

(3-7)

g(z)=f(z)(z-wo)-1 = (SwJ)(z).

since SWo maps AE£(D,u;o) into AL^D). For this g we

/

+ /
VD\£)(αir(

dA{z).

By the reproducing property we have

g(z) = ί K{z,w)g

It then follows

{w) dA{w).

D{a1τ(w0))

(3.8)

[
D(a1τ(w0))

By using Lemma 3.5, we obtain

K(z, z)e~2φ{z) dA{z) <C I
{CHT{WQ)) JD{a1τ{w0))

dA(z)

(3.9)

< C(τ(w0))-2 ί dA{
JDiaxriwo))

<Caλ.

The second inequlity is because τ(z) ~ r(w) whenever \z — w\ < mφr(w).

Note that the constant C in (3.9) is independent of w0. Now we choose a

small αi E (0, mφ) such that Caλ < 1 in (3.9). Then from (3.7), (3.8) and

(3.9) we obtain

llslll* < c I \g( z)\2e~2φ(z) dA{z)

r(iϋo)) Z — Wo

1 dA(z)
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It then follows that

(3.10) \\SW0\\<C(τ(w0)) - 1

where C is independent of w0.
Now from (3.5), (3.6) and (3.10) we obtain, for \z — wo\ < aoτ(wo), that

(3.11)

Choose a0 E (0, mφ) such that Ca0 < 1 in (3.11). Since | |£/^ 0 | | 2 = KWo(z,z)

and \\LZ\\2 = K(z,z), we have

KWo(z, z) < δ0K(z,z) whenever \z - wo\ < aor(wo)

where δ0 = (Ca0)
2 < 1 is independent of w0. This completes the proof of

(3.4) and of Lemma 3.6. D

We will always let kw(z) — K(z, w)(K(w, w)) 1//2, which is the normalized
reproducing kernel of AL2

φ{β).

L e m m a 3.7. Let φ G V and let {D(aτ(zj))} be a r-covering ofΏ> with
0 < a < mφ. Then for every orthonormal sequence {e^} in AL2

φ(D), the
operator A taking e3- to kZj (z) is bounded.

Proof. It is required to show

1/2

< Γ I \ ^ \r |2

3

For any g E AL2

φ (D), we have

Ll

jkZj, g I
{K(;zj

>.(K(z- z ) Y
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where μ0 is the discrete measure defined by

μo({zj}) = (K(zJ,zJ))-1e2^\ J = l,2,

For μ0 we have

^r—^ < oo.

Thus by Theorem 2.8 we have

/ r ^ 1/2

This completes the proof of Lemma 3.7. D

<C\\g\\L2.

Proof of the Necessity of Theorem 3.4. From p. 94 of [GK] a necessary condi-
tion for an operator T on a Hubert space to be in Sp is that Σj l(^ei? ej)\P <
oo for any orthonormal set {βj}. If T is in Sp then so is A*TA for any
bounded operator A. If we choose A as in Lemma 3.7, then the necessary
condition Σj\(A*TμAej, e^)L%\v < oo becomes Σj\(TμkZj, kZj)L2φ\P < oo.
But

\/rτi jf, jL \ \p ( I

\{iμκZ3, KZ3)L%\ - I /
\JΏ>

fD(a0τ(Zj)) )

where α 0 is chosen as in Lemma 3.6. By Lemma 3.6 and Lemma 3.5 we have
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f \kZj(z)\2e-2^ dμ(z)) >cίί \K(z,z)\2e~2^dμ(z))

>c( ί (τ(z)Γ2dμ(z))

r2 I )> C ({τ{Zj)r2 I dμ(z))

(μ(D(aτ(zj)))γ
U ^ \D(aτ(Zj))\ ) •

The last inequality is because r(z) ~ r(w) whenever \z — w\ < mφτ(w).
Therefore

This completes the proof of the necessity and of Theorem 3.4. D

For the case 0 < p < 1, we have a sufficient condition.

Theorem 3.8. Let 0 < p < 1 and let φ G T>. If there exists a constant
a G (0, mφ) such that for every τ-covering {D(aτ(zj))} ofB,

p

< oo,zj)))\
j))\ )\D(aτ(z.

then Tμ belongs to Sp.

Proof We only need to consider the case 0 < p < 1/2 because the results
for 1/2 < p < 1 can follow by interpolation.

Since Tμ = J*J, where J : AL2

φ(Ό) -* L^μ(D) is the imbedding operator,
we have \Tμ\

p

p — \J\lp1. Let {D(ao(zj))} be a τ-covering of D where 0 <
&o < mφ is chosen as in Lemma 3.6 and let {σ }̂ be a partition of unity
subordinate to the covering {D(aoτ(zj))}. Then for any / G AL2

φ(β) we
have

3

We introduce the following operators

Jj : AL2

φ(B) -+ L2
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and the natural imbeddings

Ij : L2

φJD(a0τ(Zj))) -> L2^(D); Ij9 = g.

We then have

Since 0 < 2p < 1, we have

\2

\2p
I τ\2p < V^ i T T \2p < V^ i T \2p

Now everything reduces to an estimate of the norm | J^-12p

By (3.1) we have the orthogonal decomposition

AL2

φ(B)=AL2

φ(B,zj)®£Xj

where ALφ(B, Zj) = {/ E AL2

φ{p) : / (^) = θ | and£ 2 i is the one-dimensional

subspace spanned by the function kZj(z) = K(z1zj)(K(zjlzj))~1/2. Set

It is clear that J, = jf} + jf\ Hence for 0 < 2p < 1,

(3-12) \Ji\%<\AX)\% + \^\%-

Since j j 2 is a rank one operator, we have

(3.13) | j f | 2 p = | j f | 2 <([ K(z,z)e~2^ dμ(z)) .

To estimate \Jj \2p we consider the division operator

and the multiplication operator

The operator Jj admits a decomposition Jj = TjJjSj. Hence
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Then as in the proof of Lemma 3.6, there exists a constant 0 < δ0 < 1 such

that

Thus from (3.12), (3.13) and (3.14) we obtain

/ r \P

1 / K{z,z)e-2φ{z)dμ{z)\ .

Then by Lemma 3.5 and the fact that τ(z) ~ τ(w) whenever \z — w\ <

mφτ(w), we obtain

Thus

inn |p I τ|2p < V ^ I T ι2p < π V ^ f i
1 μlp ~' l 2 p - v ' i l 2 p - r v iϋκr(z 3 ) ) i) - —

This completes the proof. D

4. Schatten class Hankel operators on AL2

φ(D).

In [LR] we studied the boundedness and compactness of the Hankel operator

Hb on AL2

φ (D) with 6 G L2(Ώ). We restate our main results in [LR] here for

convenient reference.

Theorem 4.1 ([LR]). Let φ G V and suppose that i7£°(D) is dense in
AL2

φ (D). Lei 6 G L2(D) and Zeί i/6 be defined on H™(B) by Hbf = 6/ -
P(bf). Then the following are equivalent.

(1) Hb is bounded in the L2

φ norm.
(2) The function Fa(z) defined by

Fa(z)2 = inf < — — - r - r / |6 - h\2 dA : h analytic in D(ar(z)) \
[\D(aτ{z))\ JD(OLT(Z)) J

is bounded for some a E (0, mφ).
(3) b admits a decomposition b — b\ + 62 where b2 G C1(D) and satisfies
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while 6χ satisfies the following condition: the function Ga(z) defined by

l^l2 dA
D{ar{z))

is bounded for some a G (0, mφ).

Theorem 4.2 ([LR]). Let ψ G V and suppose that iJ£°(D) is dense in
AL2

φ(Ό). Let b G L2(D) and let Hb be defined on H™(B) by Hbf = bf -
P(bf). Then the following are equivalent.
(1) Hb is (extends to) a compact operator from AL2

ψ{Ώ)) to L2

φ{D) .

(2) The function Fa(z) defined by

FQ{z)2 = inf I ——-ΓΓ7 / \b-h\2dA: h analytic in D(aτ(z))\
[\D{ar(z))\ JD(aτ(z)) J

tends to zero as \z\ -+ 1 for some a G (0, mφ).

(3) b admits a decomposition b = bx + b2 with b2 G C1 (D) so that

Bb2{z)
v J * 0 as z\ - > 1,

and for some a G (0, m^), Gα(z) ->0 as |^| —)• 1, where the function Ga(z)

is defined by

|
D(ar(z))

Remark 4.3. If φ G V is a radial function, one can show that H^(Ώ>)
is dense in AL2

φ(Ό). So, at least for radial function φ G V, the assumption
that H™(Ό) is dense in AL2

φ (D) is satisfied in Theorem 4.1 and Theorem
4.2.

Now we consider the membership of Hb in the Schatten classes Sp. We

have the following theorem.

Theorem 4.4. Let φ G V and suppose that H™(JD>) is dense in AL2

φ (D).
Let 1 < p < oo and let b G L2(D). Assume that Hb is bounded in the L2

φ

norm. Then the following are equivalent.

(1) Hb belongs to Sp.
(2) Fa(z) G LP(D, AψdA) for some a G (0, mφ), where the function Fa(z)
is defined by

Fa(z)2 — inf < -— -—— / \b — h\2dA: h analytic in Dlaτ(z)) \ .
{\D(aτ(z))\ JD(ar(z)) J
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(3) b admits a decomposition b = bx + b2 where bx satisfies

f i r λ 1 / 2

G"W = ιm t \\\ / \b^dA e V(B
\\D(aτ(z))\ JD(aτ(z)) J

for some a G (0, mφ), and db2/(AφY^2 satisfies the same condition as bλ.

By using a similar argument of [Lu2], one can show that Theorem 4.4 is

equivalent to the following theorem.

Theorem 4.4'. Let φ G V and suppose that H™(B) is dense in AL2

φ(B).

Let 1 < p < oc and let b G L2(D). Assume that Hb is bounded in the L2

φ

norm. Then the following are equivalent.

(V) Hb belongs to Sp.

(2') There exists a constant a G (0, mφ) such that for every r-covering

{D(aτ(Zj))} ofB,

(3') There exist a constant a G (0, mψ) and a decomposition b — 6X +b2 such
that for every r-covering {D(aτ(zj))} ofΌ,

|δi| dA < oo,

and the same holds with Bb2/(Aφ)1^2 in place ofbγ.

So we only need to prove Theorem 4.4'.

Proof of Theorem 4.4'. First we prove (1') => (2'). Let {D(aoτ(zj))} be a τ-
covering of D, where 0 < α 0 < mφ is chosen as in Lemma 3.6. Since if£°(D)
is dense in AL2

φ (D) and convergence in AL2

φ (D) implies uniform convergence
on compactra, it is easy to see that for each Zj {j — 1,2, ) there exists
kZj (z) G H^(D) (j — 1,2, ) satisfying the following conditions:

(4.i) \K-k.M<$

and

(4.2) \kZj{z)\2e-2φ{z) > C{T{ZJ))-2 whenever \z - zj\ < α o r ( ^ ).

Let {e^} be an orthonormal sequence in AL2

φ{Ώ>) and let A be the operator

taking e, to kZj(z). We have

Aej = kx. (z) = kZj (z) + (kz. (z) - kZj (z)) - Aej + Eeό, (j = 1,2, • • •)
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where Aβj = kZj (z) is a bounded operator by Lemma 3.7 and Eβj = kZj (z) —

kZj (z). To prove A is bounded, we only need to show that E is bounded. By

using (4.1) we have

Zj -kZj)

Thus E is bounded, so is A.

From p. 94 of [GK] a necessary condition for an operator T on a Hubert

space to be in Sp is that Σ^ |(Tej, βj)\p < oo for any orthonormal se-

quence {e^}. We apply this to B*HbA where A is as above and Bβj =

ajXDiaoτ(Zj)}Hb(kZj) with α, = UD(aoτ(zj))\Hb{kZjψe-^dA)-^. By the

finite multiplicity property of the r-covering, it is easy to see that B is

bounded. Since Hb G Sp, we have B*HbA G Sp. Thus

Σ
3

Ll

bkZj -P{bkZ})\ e-2φdA\
y / 2
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\D{aoτ
I / _ p { b ~ k

k

P/2

where the first inequality is by (4.2). Hence (Γ) implies (2').
Now we prove (2') => (3'). As we point out in the proof of (2) => (3)

of Theorem 4.1 in [LR], the functions 6χ and b2 produced in the proof of
Theorem 3.1 in [LR] actually satisfy the following conditions:

(4.3)

and

(4.4)

Vτπ / \bi\2dA < Csup{Fa(w)2 : w e D(3aτ(z))}
\D{aτ(z))\

Bb2(z)
< Csup {Fa(w) : w G D(3aτ(z))} .

It is easy to verify from the definition of Fa(w) that

(4.5) sup{Fa(w) : w G D(3ar(z))} < CF4a(z).

If we replace a by α/5, then from (4.3), (4.4) and (4.5) we obtain

K ( w\ f I 6 1 ' 2 dA

a/5τ{z))\ JD(a/δτ(z))
and

(4.7)
Bb2(z)

< CF4a/5(z).

Let us consider the r-covering {D(a/5τ(zj))} of D. From (4.6) and the fact
Fia/siz) < CFa{z), we obtain

\ P/2

Σ
<oo.

If z 6 D(a/5τ(zj)), then it is easy to verify from its definition that
CFa{zj). Therefore, from (4.7) we obtain

*,))
Bb2(z)

p/2

dA



TOEPLITZ AND HANKEL OPERATORS 145

Thus (2') implies (3')
Finally, let us show (3') => (Γ). Let Hb be a bounded Hankel operator

and let b = &i -f b2 be as in part (3) of Theorem 4.1. The argument in the
proof of the boundedness theorem of Hb in [LR] actually shows that for any

\\HhJ\\Ll<C\\MhJ\\Ll

and \\HhJ\\L2φ < C\\MBb2/iAφV/2f\\L2φ,

where Mblf = bxf and Mβb2^Aφy/2f = 8b2/(Aφ)1/ί2f are the multiplication
operators. By the following equivalent definition of the singular numbers of
the operator T,

sn = inf {||T|μ/|| comdim W = n) ,

we know that the singular numbers for Hbl and Hb2 are dominated by those

for Mbl\AL%(β) a n d Mβb2/(Aφy/2\AL2^Όy So, to prove Hb e Sp it suffices to

show that M^ : AL2

ψ(D) -> Z£(D) belongs to 5 P for <ψ = bx or Bb2/(Aφ)^2.

Observe that

Therefore M^Mψ = T^| 2 . Thus M^ G 5P if and only ifTW2 e Sp/2 By The-
orem 3.4 (for p/2 > 1) and Theorem 3.8 (for 0 < p/2 < 1), the condition in
(37) is exactly what is needed to have both Tj6l|2 and T^b2^Aφy/2^ belong to
5̂ /2- Thus the corresponding multiplication operators Mbl and Mgb2^Aψy/2
belong to Sp. Hence Hb belongs to Sp. This completes the proof. D
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